
Journal of Economic Theory 127 (2006) 202–231
www.elsevier.com/locate/jet

School choice: an experimental study

Yan Chena,∗, Tayfun Sönmezb

aSchool of Information, University of Michigan, 1075 Beal Avenue, Ann Arbor, MI 48109-2112, USA
bDepartment of Economics, Koç University, Sarıyer, 34450, İstanbul, Turkey
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Abstract

We present an experimental study of three school choice mechanisms. The Boston mechanism is
influential in practice, while the Gale–Shapley and Top Trading Cycles mechanisms have superior
theoretical properties. Consistent with theory, this study indicates a high preference manipulation rate
under Boston.As a result, efficiency under Boston is significantly lower than that of the two competing
mechanisms in the designed environment. However, contrary to theory, Gale–Shapley outperforms
Top Trading Cycles and generates the highest efficiency. Our results suggest that replacing the Boston
mechanism with either Gale–Shapley or Top Trading Cycles mechanism might significantly improve
efficiency.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

School choice has been one of the most important and widely debated topics in education
research and policy in the past 15 years. In the current debate on school reform, choice has
moved to the top of the U.S. national agenda [40]. The most prevalent form of school choice
in urban areas is open enrollment [9]. Well-known pioneer open enrollment programs,
such as the intra-district choice plan in Boston and Cambridge, Massachusetts and the

∗ Corresponding author. Fax: +1 734 764 1555.
E-mail address: yanchen@umich.edu (Y. Chen).

0022-0531/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jet.2004.10.006

http://www.elsevier.com/locate/jet
mailto:yanchen@umich.edu


Y. Chen, T. Sönmez / Journal of Economic Theory 127 (2006) 202–231 203

inter-district choice plan in Minnesota, have been widely praised in the education literature
[40]. However, there has been little research rigorously assessing the performance of these
plans. Empirical work on school choice tends to focus on the effects of choice on housing
prices, student performance and tax revenue (e.g., [20]), rather than on the mechanisms
themselves. 1 As more states have passed legislation mandating intra- or inter-district choice,
the urgency of such research is apparent.

In a recent paper, Abdulkadiroğlu and Sönmez formulate school choice as a mechanism
design problem [2]. In their model, there are a number of students each of whom should
be assigned a seat at one of a number of schools. Each student has a strict preference
ranking of all schools. Each school, on the other hand, has a maximum capacity and a
strict priority ordering of all students. The school choice model is closely related to the
well-known college admissions model [13]. The key difference between the two models
is that, in school choice, school seats are indivisible objects, which shall be assigned to
students based on student preferences and school priorities, whereas in college admissions,
both sides of the market are agents who have preferences over the other side and whose
welfare are taken into consideration. In college admissions, both sides of the market are
strategic actors who can misrepresent their preferences, whereas in school choice, only
students are strategic actors and school priorities are exogenously determined by the school
district based on state/local laws (and/or education policies). Nevertheless, based on the
isomorphism between the two models, one can treat school priorities as school preferences
and therefore, many concepts/findings in college admissions have their counterparts in
school choice. Stability is one such concept. A matching (i.e. the outcome of both models)
is unstable in the context of college admissions, if there exists a student–college pair (i, s),
where student i prefers college s to her assignment and college s prefers student i to at least
one of its assignments. The counterpart of this situation in the context of school choice
involves a student–school pair (i, s), where student i prefers school s to her assignment,
although she has higher priority than another student who is assigned a seat at school
s. Therefore, stability in the context of college admissions corresponds to elimination of
justified-envy [3] in the context of school choice.

It is well-known that not only does there exist a stable matching in the context of college
admissions, but indeed there exists a stable matching that is weakly preferred to any sta-
ble matching by each student [13]. Moreover, truthful preference revelation is a dominant
strategy for each student under the mechanism which selects this student-optimal stable
matching [10,31]. Since students are the only strategic agents in the context of school
choice, the corresponding mechanism, namely the Gale–Shapley student-optimal stable
mechanism (GS hereafter), is strategy-proof in this setup. Moreover, it eliminates justified
envy. However, it has a caveat in the context of school choice. Although it is Pareto efficient
when the welfare of colleges are taken into consideration, its outcome may be Pareto ineffi-
cient when only the welfare of students are considered. 2 As a remedy, Abdulkadiroğlu and

1 Another line of discussion has been on private school vouchers. See [19,11,38,27].
2 This is because, while the student-optimal stable matching is weakly preferred to any stable matching by each

student in the context of college admissions, there can be an unstable matching that is weakly preferred to the
student-optimal stable matching by each student [31].
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Sönmez [2] propose an extension of the Top Trading Cycles mechanism (hereafter TTC)
which plays a central role in housing markets [41]. TTC is also strategy-proof [2,30,32] and
Pareto-efficient, but it does not eliminate justified-envy.

Until recently, neither of these two theoretically appealing mechanisms had been in use at
any school district. In contrast the Boston mechanism has been very influential in practice.
School districts which uses this mechanism and its variants include Boston, Cambridge,
Denver, Minneapolis, Seattle and St. Petersburg-Tampa.

In the Boston mechanism, students submit preference rankings, which are then used in a
series of rounds to assign students to schools, following the priorities of schools within each
round but otherwise giving priority to students according to their stated ranking of schools.
More precisely, in the first round, only the first choices of the students are considered,
and they are sorted by their priorities at their first choice schools. Assignments are then
made until each school is full, or until all first choices are accommodated, whichever comes
first. In round two, the second choices of students still unassigned are considered, and they
are now sorted by their priorities at their second choice schools. Assignments are then
made for remaining slots (if any) until each school is full or until all second choices are
accommodated. This process is repeated with the third choices and so on, until all students
have been assigned a seat.

While it has been influential in practice, Abdulkadiroğlu and Sönmez point out that the
Boston mechanism has the following deficiencies [2]:

• it does not eliminate justified envy and hence may produce outcomes that may result in
lawsuits from dissatisfied parents;

• it is not efficient; and
• it gives students and their parents strong incentives to misrepresent their preferences by

improving the ranking of schools for which they have a high priority. 3

In fact, such preference misrepresentation is advocated by the Central Placement and
Assessment Center (CPAC) in Minneapolis:

The Minneapolis algorithm places a very high weight on the first choice, with second
and third choices being strictly backup options. This is reflected in the advice CPAC
gives out to parents, which is to make the first choice a true favorite and the other two
“realistic,’’ that is, strategic choices [14].

Similarly, preference misrepresentation is often advocated in the local press for school
districts which rely on the Boston mechanism and its variants. Consider the following
statement from Mas in the Seattle Press [24]:

The method the school district uses to sort the school choice requests gives first priority
to students who are already enrolled at that school. Next in line come those students with
siblings at the school. Both of these factors are beyond your control. These students
are sure things. Enrollment at these schools is theirs for the asking. No amount of

3 The Boston mechanism is a special case of a priority matching mechanism. Roth shows that these mechanisms
are vulnerable to preference manipulation in general [34]. Collins and Krishna report similar incentives under an
on-campus housing mechanism used at Harvard for the period 1977–1989 [6].
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strategizing, short of polling all existing students to determine how many have younger
siblings about to enter the school, can help you here. Third in line, and the first effect of
any real choice, are those students who live in the school’s reference area. This is why
you have such an excellent chance of getting into your reference school if you make it
your top choice. Choosing another neighborhood’s reference school, however, puts a
lot of kids in line ahead of yours. That reduces your chances of getting in, particularly
if the school has small classes.

Although both the CPAC and the Seattle Press advocate misrepresentation, the type
of misrepresentation advocated by each is different. Finally, in St. Petersburg, Tobin (St.
Petersburg Times, [43]) gives the parents similar advice as that in the Seattle Press:

Make a realistic, informed selection on the school you list as your first choice. It’s the
cleanest shot you will get at a school, but if you aim too high you might miss.

Here’s why: If the random computer selection rejects your first choice, your chances
of getting your second choice school are greatly diminished. That’s because you then
fall in line behind everyone who wanted your second choice school as their first choice.
You can fall even farther back in line as you get bumped down to your third, fourth
and fifth choices.

In spite of the strong incentives and the evidence for preference misrepresentation by
the Boston mechanism, practitioners in education have relied on stated preferences when
evaluating this mechanism. For example, Cookson indicates the following results [8]:

91% of all students entering the Cambridge public school system at the K-8 levels have
gained admission to a school of their choice, 75% to the school of their first choice,
and 16% to either their second or third choice.

Given the incentives under the Boston mechanism, field data that rely on stated prefer-
ences cannot adequately assess the effectiveness of the Boston mechanism. In this paper,
we turn to controlled laboratory experiments to compare the performance of the Boston
mechanism with the two theoretically superior mechanisms, GS and TTC. As Roth empha-
sizes [35], experimental economics is one of the basic tools of market design. Laboratory
experiments make it possible to evaluate allocations according to induced, true preferences,
and to assess the performance of alternative school choice mechanisms that have not yet
been used in the field.

Overall, GS and TTC have three advantages over the Boston mechanism. First, un-
like the Boston mechanism, truthful preference revelation is a dominant strategy under
either mechanism. Second, TTC mechanism is Pareto efficient whereas the GS mecha-
nism is constrained-efficient among mechanisms that eliminate justified-envy. Finally, the
GS mechanism eliminates justified envy. Despite their theoretical benefits, it is important
to evaluate their performance in the laboratory before introducing them into the field. In
particular, we are interested in testing

(1) the extent of preference manipulation and the resulting efficiency loss under the Boston
mechanism;
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(2) the extent to which subjects recognize and use their dominant strategies without prompt-
ing under the two competing mechanisms; and

(3) the robustness of theoretical efficiency comparisons when the mechanisms are imple-
mented among boundedly rational subjects and across different environments.

The school choice problem belongs to the general class of matching problems. While
we are not aware of any previous experimental studies of school choice mechanisms, there
have been experimental studies of other one- and two-sided matching problems, motivated
by various real-world applications. These include Olson and Porter [29], Nalbantian and
Schotter [26], Harrison and McCabe [16], Kagel and Roth [22], Ünver [44], Haruvy et
al. [17], Chen and Sönmez [5], and McKinney et al. [25]. Our experiment differs from
the above experiments in both the particular mechanisms compared and the potential field
applications of the mechanisms.

The paper is organized as follows. Section 2 introduces the school choice problem.
Section 3 reviews the theoretical properties of the three mechanisms. Section 4 contains
a description of the experimental design. Section 5 summarizes the main results of the
experiments. Section 6 concludes the paper.

2. The school choice problem

In a school choice problem [2], there are a number of students, each of whom should be
assigned a seat at one of a number of schools. In addition, each student has strict preferences
over all schools. Furthermore, each school has a maximum capacity and a strict priority
ordering of all students. Here, priorities do not represent school preferences. They are
imposed by the school district based on state and local laws. For example, in several school
districts, students who already have siblings at a school are given priority at that school.
Similarly, in most school districts, students are given priority at their district schools. The fact
that the law mandates school priorities also means that they are publicly known. However,
schools might have discretion in the interpretation of the law, which might be interesting to
study for future work.

As we have emphasized in the Introduction, the school choice problem is closely related to
the well-known college admissions problem [13]. The college admissions problem has been
well-analyzed and successfully applied in both the U.S. and British entry-level labor markets
(see [33,34]). The main difference between the two models is that in college admissions,
schools are strategic agents who have preferences over students, whereas in school choice,
schools are “objects’’ to be consumed by the students.

The outcome of a school choice problem is referred to as a matching, and it is an assign-
ment of school seats to students such that each student is assigned one seat and no more
seats than its capacity are filled for any school. A matching is Pareto efficient if there is
no matching which assigns each student a weakly better school and at least one student
a strictly better school. A matching � eliminates justified envy if there is no unmatched
student–school pair (i, s) such that:

• student i prefers school s to her assignment under � and
• student i has higher priority at school s than some other student who is assigned a seat at

school s under �.
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Elimination of justified envy in the present context corresponds to the well-known pair-
wise stability condition in the context of college admissions.

Finally, a student assignment mechanism is a systematic procedure that selects a matching
for each school choice problem. A mechanism is Pareto efficient if it always selects a Pareto
efficient matching; it eliminates justified envy if it always selects a matching which elimi-
nates justified envy; and it is strategy-proof (i.e., dominant strategy incentive-compatible)
if no student can possibly benefit by unilaterally misrepresenting her preferences.

3. Theoretical properties of the mechanisms

In this section, we introduce the three mechanisms and their theoretical properties. We
also informally state our hypotheses.

3.1. Boston mechanism

One of the most widely used student assignment mechanisms is the Boston mechanism
(BOS) which works as follows:

(1) For each school, a priority ordering of students is determined based on state and local
laws/policies. 4

(2) Each student submits a preference ranking of the schools.
(3) The final phase is student assignment based on submitted preferences and priorities.

The outcome is obtained in several rounds.
Round 1: In Round 1, only the first choices of the students are considered. For each

school, consider the students who have listed it as their first choice and assign seats of
the school to these students one at a time following their priority order until either there
are no seats left or there is no student left who has listed it as her first choice.

In general at
Round k: Consider the remaining students. In Round k only the kth choices of students

are considered. For each school with available seats, consider the students who have
listed it as their kth choice and assign the remaining seats to these students one at a time
following their priority order until either there are no seats left or there is no student
left who has listed it as her kth choice.

The major difficulty with the Boston student assignment mechanism is that it is not
strategy-proof; that is, students may benefit from misrepresenting their preferences. In
particular, Abdulkadiroğlu and Sönmez point out that the Boston mechanism gives students

4 For example at Boston the priority ordering is determined based on the following hierarchy:

• First priority: sibling and walk zone.
• Second priority: sibling.
• Third priority: walk zone.
• Fourth priority: others

Students in the same priority group are ordered based on a previously announced lottery. In the experimental
design we consider the simpler case where the priority is based on “walk zone’’ together with a random lottery.
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and their parents a strong incentive to misrepresent preferences by improving the ranking
of schools which they have a high priority [2]. 5 As we have indicated in the introduction,
such preference manipulation is even advocated by the central agencies in charge of school
choice programs as well as by the local press.

Despite this widespread preference manipulation, practitioners in education have been
using stated preferences to evaluate the Boston mechanism. In addition to Cookson’s eval-
uation of the Cambridge public school system [8], cited in the introduction, Glenn also
uses stated preferences to evaluate the choice program of the Massachusetts public school
system [15]:

A majority of the students are accepted into their first choice schools. For example,
in 1991, 74% of sixth graders were assigned to their first choice school, 10% to their
second choice, and 15% to schools they did not select.

Furthermore, school districts that rely on the Boston mechanism often emphasize in their
marketing efforts that they are able to accommodate most students’ top choices. Based on
these field results and the incentives under the Boston mechanism, we expect that under the
Boston mechanism a significant proportion of students will misrepresent their preferences.
Furthermore, we expect that most participants will be assigned their stated top choices in
the experiment.

In our experimental design each participant has high priority at her district school and
low priority at other schools. Based on this priority structure in our experimental design, we
expect that, under the Boston mechanism, a significant proportion of students will improve
the ranking of their district schools.

Recall that Pareto efficiency refers only to student preferences in our school choice model.
The outcome of the Boston mechanism is Pareto efficient provided that students submit
their true preferences. However, given the strong incentive to misrepresent preferences, a
substantial efficiency loss can be expected. Therefore, under the Boston mechanism, we
expect that efficiency will be lower than that under the two competing mechanisms.

3.2. Gale–Shapley mechanism

In the context of college admissions, the counterpart of the elimination of justified envy
is pairwise stability. The GS mechanism plays a key role in the pairwise stability literature 6

and it is adapted to the school choice setting as follows:

(1) For each school, a priority ordering of students is determined based on state and local
laws/policies.

(2) Each student submits a preference ranking of the schools.

5 While students are exogenously priority ordered at each school, the “effective priorities’’ are endogenous
under the Boston mechanism in the sense that each student who ranks a school as her kth choice is considered
before each student who ranks it (k+1)th for each k. The exogenous priorities are only utilized to tie-break among
students who have ranked a school at the same rank order. It is this ability of students to influence the effective
priorities that results in the vulnerability of the Boston mechanism to preference manipulation.

6 See, for example, [36].
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(3) The final and key phase is student assignment based on submitted preferences and
priorities. The outcome is obtained at the end of several steps.

Step 1: Each student proposes to her first choice. Each school rejects the lowest
priority students in excess of its capacity and keeps the remaining students on hold.

In general, at
Step k: Each student who has been rejected in the previous step proposes to her next

choice. Each school considers the students it has been holding together with its new
proposers; it rejects the lowest priority students in excess of its capacity and keeps the
remaining students on hold.

The algorithm terminates when no student proposal is rejected and each student is
assigned a seat at her final tentative assignment.

The Gale–Shapley mechanism is strategy-proof. Therefore, we expect that, under the
Gale–Shapley mechanism, participants will reveal their preferences truthfully.

Moreover, the Gale–Shapley mechanism eliminates justified envy, and is thus legally
appealing. Re-interpreting an example from [31], Abdulkadiroğlu and Sönmez show that
Pareto efficiency is incompatible with the elimination of justified envy [2]. Therefore, elim-
ination of justified envy has an efficiency cost and hence the Gale–Shapley mechanism is
not Pareto efficient. Nevertheless, it Pareto dominates any other mechanism that eliminates
justified envy.

3.3. Top trading cycles mechanism

In the trade-off between elimination of justified envy and Pareto efficiency, the Gale–
Shapley mechanism gives up Pareto efficiency. The top trading cycles mechanism, on the
other hand, gives up elimination of justified envy, but is Pareto efficient.

While the description of the TTC mechanism is somewhat involved in general, it takes
a relatively simple form for the priority structure we consider in our experimental design.
Suppose that:

• each student has a high priority at her district school and low priority at other schools and
• at each school, the priority among high-priority students, as well as the priority among

low-priority students, is determined with a single tie-breaking lottery.

Under this special case, the TTC mechanism works as follows:

(1) For each school, a priority ordering of students is determined.
(2) Each student submits a preference ranking of the schools.
(3) Based on the submitted preferences and priorities, the student assignment is determined

as follows:

(a) Each participant is tentatively assigned a seat at her district school.
(b) All participants are lined up in an initial queue based on the tie-breaking lottery.
(c) An application to the highest-ranked school is made on behalf of the participant at

the top of the queue.
• If the application is made to her district school, then her tentative assignment is

finalized. The participant and her assignment are removed from the system. The
process continues with the next participant in line.
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• If the application is made to another school, say school S, then the first participant
in the queue who tentatively holds a seat at school S is moved to the top of the
queue directly in front of the requester.

(d) Whenever the queue is modified, the process continues similarly: an application
to the highest ranked school with still available seats is made on behalf of the
participant at the top of the queue.
• If the application is made to her district school, then her tentative assignment is

finalized. The participant and her assignment are removed from the system. The
process continues with the next participant in line.

• If the application is made to another school, say school S, then the first participant
in the queue who tentatively holds a seat at school S is moved to the top of the
queue directly in front of the requester.

(e) A mutually beneficial exchange is obtained when a cycle of applications is made in
sequence (e.g., I apply to John’s district school, John applies to your district school
and you apply to my district school). In this case, the Pareto-improving exchange
is carried out and the participants, as well as their assignments, are removed from
the system.

(f) The process continues until all participants are assigned a school seat.

The TTC mechanism is not only Pareto efficient, but also strategy-proof. Therefore, we
expect that, under the TTC mechanism, participants will reveal their preferences truthfully.

In theory, the TTC mechanism has an efficiency advantage over the Boston mechanism
as well as the Gale–Shapley mechanism: The outcome of the Boston mechanism is Pareto
efficient provided that participants reveal their preferences truthfully. So any efficiency
loss in the Boston mechanism is a consequence of preference manipulation. The Gale–
Shapley mechanism, on the other hand, is strategy-proof, but elimination of justified envy
and Pareto efficiency are not compatible. Since Gale–Shapley mechanism Pareto dominates
any other mechanism that eliminates justified envy, any efficiency loss in the Gale–Shapley
mechanism is a consequence of this incompatibility. Based on theory, we expect that the
TTC mechanism is more efficient than both the Boston mechanism and the Gale–Shapley
mechanism.

Nonetheless, contrary to theory, there is room for efficiency loss in the TTC mechanism
and additional efficiency loss in the Gale–Shapley mechanism if agents misrepresent their
preferences. Chen and Sönmez find that about a third of the participants misrepresent their
preferences under a variant of the TTC mechanism in an experiment about on-campus
housing [5]. Therefore, at least in that context, the strategy-proofness property of the TTC
mechanism is not completely transparent. Thus, it is important to investigate whether the
appealing theoretical properties of the Gale–Shapley mechanism and the TTC mechanism
can be realized when they are implemented among real people with real incentives.

4. Experimental design

We design our experiment to compare the performance of the Boston, Gale–Shapley and
TTC mechanisms, with particular attention to the questions of truthful preference revelation
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and efficiency comparisons. The environment is designed to capture the key aspects of the
school choice problem and to simulate the complexity inherent in potential applications
of the mechanisms. We implement a 3 × 2 design: for each of the three mechanisms, we
examine it in a designed environment as well as a random environment to test for robustness.

To simulate the complexity inherent in real-world applications, we use relatively large
sessions. For all treatments, in each session, there are 36 students and 36 school slots across
seven schools. 7 These schools differ in size, geographic location, specialty and quality of
instruction in each specialty. Each school slot is allocated to one participant. There are three
slots each at schools A and B, and six slots each at schools C, D, E, F and G. Students 1–3
live within the school district (or walk zone) of school A, students 4–6 live within the school
district of school B, students 7–12 live within the school district of school C, students 13–18
live within the school district of school D, students 19–24 live within the school district of
school E, students 25–30 live within the school district of school F and students 31–36 live
within the school district of school G.

4.1. Designed environment

In real life, student preferences are influenced by the proximity of the school and the
school quality. In the designed environment, we construct a “realistic’’ environment by
correlating student preferences with both school proximity and quality. In this environment,
schools A and B are higher quality schools, while C–G are lower quality schools. A is
stronger in Arts and B is stronger in Sciences: A is first tier in Arts and second tier in
Sciences, whereas B is second tier in Arts and first tier in Sciences. Lower quality schools
C–G are third tier inArts as well as in Sciences. There are two types of students: odd-labelled
students are gifted in Sciences, while even-labelled students are gifted in Arts.

Each student’s ranking of the schools is generated by a utility function, which depends
on the school’s quality, proximity of the school and a random factor. The utility function of
each student has three components:

ui(S) = ui
p(S) + ui

q(S) + ui
r (S),

where

• ui
p(S) represents the proximity utility for student i at school S.

This utility is 10 if student i lives within the walk zone of school S and zero otherwise.
• ui

q(S) represents the quality utility for student i at school S.
For odd-labelled students (i.e., for students who are gifted in sciences), ui

q(A) = 20,
ui

q(B) = 40, and ui
q(S) = 10 for S ∈ {C, D, E, F, G}. For even-labelled students (i.e.,

for students who are gifted in arts), ui
q(A) = 40, ui

q(B) = 20, and ui
q(S) = 10 for

S ∈ {C, D, E, F, G}.
• ui

r (S) represents a random utility (uniform in the range 0–40) which captures diversity
in tastes.

7 While 36 per session is relatively large in the experimental literature, it is still far from the relevant population
size in real-world school choice problems. A further increase in size should not affect the incentive constraints.
Nor do we expect computational problems from such increase, based on our simulation analysis.
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Based on the resulting ranking, the monetary payoff to each student is $16 for her first
choice, $13 for her second choice, $11 for her third choice, $9 for her fourth choice, $7
for her fifth choice, $5 for her sixth choice and $2 for her last choice. The payoffs between
different outcomes are sufficiently dispersed so that there is a monetarily salient difference
($14) between getting one’s top choice and getting one’s last choice.

Table 1 presents the monetary payoff (i.e., the induced preferences over schools, [42])
for each participant as a result of the type of school she holds at the end of the experiment.
Boldfaced numbers indicate that the participant lives within the school district of that school.
For example, participant #1 lives within the school district of school A. She will be paid
$13 if she holds a slot at school A at the end of the experiment, $16 if she holds a slot at
school B, $9 if she holds a slot at school C, etc.

4.2. Random environment

To check the robustness of the results with respect to changes in the environment, we
also implement a random environment, as presented in Table 2.

In the random environment, for each participant the payoff for attending each school is a
distinct integer in the range 1–16, chosen without replacement. In the case where the district
school has the highest payoff, the entire row is discarded for the student and a new payoff
vector is constructed. Otherwise, the decision for the participant would be trivial under all
three mechanisms.

All three mechanisms are implemented as one-shot games of incomplete information.
Each subject knows his own payoff table, but not the other participants’ payoff tables. He
also knows that different participants might have different payoff tables. This information
condition is a good approximation of reality. Following Chen and Sönmez, we use one-shot
games to evaluate the mechanisms [5], as in real-world applications, the mechanisms will
likely be used in a one-shot setting. Without any practice rounds or opportunities to learn
over time, one-shot implementation presents the most realistic and (theoretically) cleanest
test for the mechanisms. From the analysis perspective, the advantage of one-shot games is
that each observation is an independent observation; therefore, we can run relatively fewer
sessions for each treatment and use the recombinant estimation technique [23] to get an
efficient estimation of summary statistics. While learning and experience may matter in
practice, we leave them as interesting extensions for future work.

Table 3 summarizes features of experimental sessions. For each mechanism in each
environment, we conducted by hand two independent sessions between September and
November 2002 at the University of Michigan. The subjects are students at the University
of Michigan. This gives us a total of 12 independent sessions and 432 subjects. 8 Each
session consists of one round only. The sessions last approximately 45 minutes, with the
first 20–25 minutes being used for instructions. The conversion rate is $1 for all sessions.
Each subject also receives a participation fee of $3 in addition to her earnings from the
experiment. The average earning (including participation fee) is $15.23.

8 Despite our explicit announcement in the advertisement that subjects could not participate in this set of
experiments more than once and our screening before each session, two subjects participated twice.



Y. Chen, T. Sönmez / Journal of Economic Theory 127 (2006) 202–231 213

Table 1
Payoff table in the designed environment

Schools

Student ID A B C D E F G

1 13 16 9 2 5 11 7
2 16 13 11 7 2 5 9
3 11 13 7 16 2 9 5

4 16 13 11 5 2 7 9
5 11 16 2 5 13 7 9
6 16 13 7 9 11 2 5

7 13 16 9 5 11 7 2
8 16 9 11 2 13 7 5
9 16 13 2 5 9 7 11

10 16 7 9 5 2 11 13
11 7 16 11 9 5 2 13
12 13 16 9 11 2 7 5

13 9 16 2 13 11 5 7
14 16 5 2 9 7 13 11
15 13 16 9 11 2 7 5
16 16 13 11 5 9 7 2
17 13 16 5 7 2 9 11
18 16 13 5 9 7 11 2

19 11 16 7 5 13 9 2
20 16 13 7 9 5 2 11
21 13 16 2 7 9 11 5
22 16 11 7 2 9 5 13
23 16 13 7 2 5 11 9
24 16 13 11 5 9 2 7

25 13 16 2 5 11 9 7
26 16 13 5 9 7 2 11
27 7 11 5 2 13 9 16
28 16 13 7 2 11 5 9
29 7 11 16 13 2 9 5
30 16 9 7 2 5 11 13

31 11 16 7 2 5 9 13
32 13 9 16 2 5 7 11
33 13 16 11 9 7 5 2
34 16 11 2 7 5 13 9
35 7 16 2 5 11 13 9
36 16 13 5 7 9 2 11

In the experiment, each subject is randomly assigned an ID number and is seated in a chair
in a classroom. The experimenter reads the instructions aloud. Subjects ask questions, which
are answered in public. Subjects are then given 15 minutes to read the instructions again
at their own pace and to make their decisions. At the end of 15 minutes, the experimenter
collects the decisions and asks a volunteer to draw ping-pong balls out of an urn, which
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Table 2
Payoff table in the random environment

Schools

Student ID A B C D E F G

1 14 8 10 13 16 12 3
2 7 15 1 6 14 3 4
3 4 10 5 1 12 8 15

4 8 7 14 9 4 11 1
5 11 9 14 7 12 5 4
6 4 11 5 9 3 16 7

7 14 10 8 15 11 6 5
8 6 9 12 5 14 10 8
9 12 10 13 16 9 15 3

10 16 5 13 12 3 1 4
11 5 11 8 2 16 10 7
12 9 6 7 4 10 13 11

13 4 7 13 11 8 10 1
14 10 1 7 5 14 13 16
15 16 13 5 9 8 3 6
16 7 12 5 8 15 9 4
17 14 11 3 4 10 6 8
18 10 1 6 11 15 2 8

19 8 12 16 5 14 4 13
20 15 4 1 2 11 14 3
21 3 16 8 6 7 10 2
22 1 8 14 15 5 3 4
23 11 16 12 1 3 7 15
24 12 11 6 3 9 4 14

25 8 14 7 15 1 5 12
26 11 16 9 7 4 12 1
27 7 13 15 14 3 10 12
28 4 15 10 11 9 6 7
29 11 12 7 14 6 10 9
30 13 8 3 12 16 2 11

31 6 3 10 14 11 16 1
32 13 12 7 11 2 16 14
33 2 5 7 8 15 10 6
34 8 10 3 14 16 1 12
35 10 12 2 7 3 14 8
36 16 3 14 13 8 10 11

generates the lottery. Because of the complexity involved in computing the results by hand,
the experimental sessions end after the lottery is generated and publicly announced. The
experimenter then puts the subject decisions and the lottery into a computer to generate
the allocations, announces the allocations by email and pays the subjects after the email
announcement.
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Table 3
Features of experimental sessions

Treatment Mechanism Environment Subjects per session Total # of subjects

BOSd Boston Designed 36 72
GSd Gale–Shapley Designed 36 72
TTCd Top Trading Cycle Designed 36 72

BOSr Boston Random 36 72
GSr Gale–Shapley Random 36 72
TTCr Top Trading Cycle Random 36 72

Experimental instructions and data can be found at the Journal of Economic Theory
web site.

5. Results

Three questions are important in evaluating the mechanisms. The first is whether indi-
viduals report their preferences truthfully. The second is whether one mechanism is more
efficient given the reported preferences. The third is whether the experimental results are
robust to changes in the environment.

We first examine whether individuals reveal their preferences truthfully, and if not, how
they manipulate their preferences under each of the three mechanisms. In presenting the
results, we introduce some shorthand notations. Let x > y denote that a measure un-
der mechanism x is greater than the corresponding measure under mechanism y at the
5% significance level or less. Let x ∼ y denote that a measure under mechanism x is
not significantly different from the corresponding measure under mechanism y at the 5%
significance level.

Table 4 presents the proportion of truthful preference revelations, as well as various
patterns of misrepresentation for each treatment. Note that, under the Boston mechanism,
truthful preference revelation requires that the entire reported ranking is identical to the
agent’s true preference ranking. The only exception is when an agent’s district school is her
top choice. In this case, truthful preference revelation entails stating the top choice. Under
GS or TTC, however, truthful preference revelation requires that the reported ranking is
identical to the true preference ranking from the first choice up to the participant’s district
school. The remaining rankings, from the district school to the last choice, are irrelevant
under both GS and TTC.

Result 1 (Truthful preference revelation). In both the designed and random environments,
the proportion of truthful preference revelation under BOS is significantly lower than that
under either GS or TTC. The proportion of truthful preference revelation under TTC is
significantly lower than that of GS in the designed environment, and is weakly lower in the
random environment.

Support. The second column of Table 4 presents the proportions of truthful preference
revelation for each mechanism. P-values for pairwise one-sided t-tests of proportions are
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Table 4
Proportions of truthful preference revelation and misrepresentation

Treatment Truth Misrepresentation of preferences

1. DSB 2. SSB 3. SPB 1 & 2 1 & 3 2 & 3 1 & 2 & 3 Other

BOSd 0.139 0.153 0.083 0.000 0.153 0.014 0.028 0.431 0.000
GSd 0.722 0.014 0.014 0.014 0.000 0.000 0.153 0.069 0.014
TTCd 0.500 0.014 0.014 0.000 0.042 0.000 0.167 0.236 0.028

BOSr 0.278 0.083 0.042 0.042 0.097 0.208 0.028 0.208 0.014
GSr 0.556 0.028 0.069 0.069 0.028 0.042 0.125 0.042 0.042
TTCr 0.431 0.056 0.028 0.083 0.028 0.139 0.111 0.097 0.028

Notes: (1) DSB = district school bias; (2) SSB = small school bias; (3) SPB = similar preference bias.

as follows:

Designed: Random:

GS GSTTC TTC

BOS BOS

� ��
�
��

�
�
��

�
�
��

�
�
��.000 .000

.003
.005 .028

.068 �

Result 1 has important efficiency implications, which will be explored later in this section.
In the education literature, the performance of the Boston mechanism is evaluated through

the proportion of students who get their reported top choices. Cookson writes that [8], in
the Cambridge public school system, 75% of the students got “into the school of their first
choice’’. We compare the proportion of participants receiving their reported top choices vs.
the proportion who actually receive their true top choices. We find a comparable proportion
of students get into their reported top choices as in the field data. However, only 40% of the
students who receive their reported top choices also receive their true top choices.

Result 2 (Top choices under BOS). Under the Boston mechanism, 70.8% of the partici-
pants receive their reported top choices, while only 28.5% of the participants receive their
true top choices. The difference is statistically highly significant.

Support. In the designed environment, 54.2% of the participants receive their reported top
choices, while 11.1% receive their true top choices. A t-test of proportions with the null
hypothesis of equal proportion is rejected in favor of H1: reported top choices% > true top
choices%, yielding z = 5.509 (p-value < 0.001). In the random environment, 87.5% of the
participants receive their reported top choices, while 45.8% receive their true top choices.
The same t-test of proportions with the null hypothesis of equal proportion is rejected in
favor of H1: reported top choices% > true top choices%, yielding z = 5.303 (p-value
< 0.001). �
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Results 1 and 2 indicate that, under the Boston mechanism a significant proportion of
participants misrepresent their preferences and most participants are assigned their reported
top choices. However, with the induced value method, we uncover the fact that only 28.5%
of the participants receive their true top choices. 9 It is important to emphasize that more
subjects receive their true top choices in the random environment. This is due to the fact
that preferences are not correlated in the random environment, thus reducing competition
and increasing a student’s chance of receiving her top choice.

However, even though both GS and TTC are strategy-proof, we have some misrepresen-
tation of preferences. Since roughly 80% of the participants under Boston, 53% under TTC
and 36% under Gale–Shapley misrepresent their preferences, it is important to analyze who
manipulates preferences in each mechanism and how.

Table 5 reports logit models of truthful preference revelation under each of the three
mechanisms. In each of three specifications, the dependent variable is truth-telling, which
equals one if a participant reports her preference ordering truthfully and zero otherwise.
The independent variables are: district school position dummies, Ddsi , where i = 1, . . . , 6,
which equals one if a participant’s district school is her ith choice and zero otherwise; small
school dummy, Dab1, which equals one if schools A or B is a participant’s first choice
and zero otherwise; and a constant. We omit the dummy Dds7. Therefore, the estimated
coefficient of Ddsi captures the difference between district school positions i and 7 on
the likelihood of a participant reporting her true preferences. The coefficient of dummy
Dab1 captures the effect of having a small school as a top choice on the same likeli-
hood. When including Dabi , where i = 2, . . . , 6, we cannot reject the hypothesis that
the coefficients for these dummies are jointly zero, 10 therefore, we do not include them in
our models.

Result 3 (Effects of district school and small school). Under BOS, having a small school
(A or B) as the top choice significantly reduces the likelihood of a participant reporting
her true preference, while under GS or TTC, having a small school as the top choice has
no significant effect on truthful preference revelation. Under all three mechanisms, having
a district school as the top choice predicts truthful preference revelation perfectly.

Support. Table 5 reports logit estimations of the effects of small school and district school
rankings on truthful preference revelation under each of the three mechanisms. �

Result 3 indicates that strategic behavior under the Boston mechanism is most likely
to be found when true first choices are capacity constrained. This result has important
practical implications, e.g., if one is going to continue to use the Boston mechanism, it
is worth knowing when it is better and when it is worse. Meanwhile, we do not observe
this effect under either GS or TTC. This result indicates that most participants understand
the basic incentives of each mechanism: since the Boston mechanism puts a lot of weight

9 In comparison, under GS, 51.4% of the participants receive their reported top choices, while 35.4% receive
their true top choices. The corresponding statistics under TTC are 56.3% and 31.3%.

10 In each of the three specifications, �2(5) tests of the null hypotheses that coefficients of Dab2–Dab6 are jointly
zero yield p-values of 0.9099 (BOS), 0.8325 (GS) and 0.5447 (TTC), respectively.
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Table 5
Logit regression: probability of truthful preference revelation

Dependent Variable: Truth-telling

(1) BOS (2) GS (3) TTC

Dds2 −0.075 1.530 −0.273
(1.234) (0.849)∗ (0.742)

Dds3 1.228 −0.111 −0.915
(1.177) (0.775) (0.771)

Dds4 1.004 −0.033 −0.497
(1.132) (0.722) (0.713)

Dds5 0.173 0.544 −1.105
(1.331) (0.913) (0.904)

Dds6 0.966 −0.886 −1.023
(1.216) (0.800) (0.799)

Dab1 −1.117 0.589 −0.014
(0.471)∗∗ (0.392) (0.361)

Constant −1.6491 0.0599 0.0599
(1.084) (0.690) (0.681)

Observations 140 140 140

Notes: (1) Standard errors are in parentheses. (2) Ddsi is a dummy variable which equals one if the district
school is the ith choice, and zero otherwise. (3) Dab1 is a dummy variable which equals one if school A or B is
the top choice, and zero otherwise. (4) In all three specifications, Dds1 predicts success perfectly and is hence not
reported. (5) Significant at: ∗ 10% level; ∗∗ 5% level.

on the top choice and a small school is competitive, we expect more manipulation from
those whose top choice is a small school. By contrast, under either GS or TTC, a student
is guaranteed a school at least as desirable as her district school; therefore, when a district
school is a student’s top choice, it is easier for subjects to figure out that truthful prefer-
ence revelation is a dominant strategy, and hence, we expect less manipulation from these
subjects.

We now analyze the manipulation patterns under each mechanism. Columns 3–8 in Table
4 represent eight exhaustive and mutually exclusive categories of misrepresentation under
each treatment.

• District school bias (1): A participant puts her district school into a higher position than
that in the true preference order. This category contains observations which exhibit only
district school bias.

• Small school bias (2): A participant puts school A or B (or both) into lower positions
than those in the true preference ordering. This type of manipulation might be caused by
the fact that schools A and B have fewer slots than schools C–G. This category contains
observations which exhibit only small school bias.

• Similar preference bias (3): A participant puts schools with the highest payoffs into lower
positions. This might be due to the belief that participants have similar preferences, there-
fore, my most desirable school might also be desired by others. This category contains
observations which exhibit only similar preference bias.
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• 1 and 2: District school bias often implies small school bias. When both are present,
we put them in a combined category. Note that, in the designed environment, as A and
B are ranked highly by all agents, upgrading the district school in most cases implies a
downgrading of school A or B.

• 1 and 3: As district school bias is sometimes also correlated with similar preference bias,
we put observations that exhibit both types of manipulation into a combined category.

• 2 and 3: When school A or B is an agent’s top choice, small school bias is perfectly
correlated with similar preference bias. Therefore, we put them into a combined category.

• 1, 2 and 3: When school A or B is an agent’s top choice, and an agent upgrades her district
school to her top choice, this type of manipulation exhibits all three biases.

• Other: This category contains manipulations which cannot be put into the above cate-
gories, possibly due to confusion, or misunderstanding of the allocation mechanisms.

The manipulation analysis serves three purposes. First, for the Boston mechanism, the
distribution of various types of manipulations help us understand when the mechanism
performs well or poorly. Second, for GS and TTC, if parents do not understand the mech-
anisms, there can be potential efficiency loss. Therefore, manipulation data can be used to
construct educational brochures about a new mechanism. They can also be used to provide
an estimate of the value of education or the potential efficiency loss without education.
Lastly, manipulation analysis for all three mechanisms will be used later in this section to
simulate the operation of the mechanisms in intermediate settings.

Result 4 (District school bias). A significant proportion (two-thirds) of the subjects under
BOS misrepresent their preferences using district school bias, which is significantly higher
than the proportion of misrepresentation under either GS or TTC.

Support. Columns 3, 6, 7 and 9 in Table 4 present the proportions of misrepresentation
related to District School Bias (1, 1 & 2, 1 & 3 and 1 & 2 & 3, respectively) under each
treatment. Pooling all four categories together and using the one-sided proportion of t-tests,
we get

(1) BOSd > 0 at p-value < 0.001; BOSr > 0 at p-value < 0.001;
(2) BOSd > GSd at p-value < 0.001; BOSd > TTCd at p-value < 0.001; and
(3) BOSr > GSr at p-value < 0.001; BOSr > TTCr at p-value = 0.004. �

Result 4 indicates that, under BOS, a significant proportion of the students improve the
ranking of their district schools. As we report in the Introduction, practical advice from the
Seattle Press, St. Petersburg Times, as well as the CPAC in Minneapolis, are all variants of
the District School Bias.

We now turn to a particular type of District School Bias. Recall that the Central Placement
and Assessment Center in Minneapolis actually instructs the parents on how to manipulate:
“make the first choice a true favorite and the other two ‘realistic’’’ [14]. We call this strat-
egy the “Minneapolis strategy,’’ which is a special kind of District School Bias and Small
School Bias. The Minneapolis strategy advocates that the reported top choice should be
the true top choice, while the reported second or third choice should be a child’s dis-
trict school or a school with a large capacity (schools C–G). We find that, in the Boston
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mechanism treatments in our experiment, 18.75% of our subjects use the Minneapolis
strategy. 11

Result 5 (Minneapolis strategy). Under the Boston mechanism, the average payoff from
the Minneapolis strategy is not significantly different from that of other misrepresentations
in the designed environment; however, in the random environment, the Minneapolis strategy
performs significantly better than other types of misrepresentations.

Support. Under BOS, in the designed environment, the average payoff from the Minneapo-
lis strategy is 10.967, while the average payoff from other misrepresentations is 11.235. A
t-test under the null hypothesis of equal mean yields a p-value of 0.685. In the random envi-
ronment, however, the corresponding average payoffs are 14 from the Minneapolis strategy
and 12.5 from non-Minneapolis manipulations. A t-test under the null hypothesis of equal
mean yields a p-value of 0.027 in favor of the alternative hypothesis that the Minneapolis
strategy yields higher payoffs. �

Result 5 provides the first empirical evaluation of the Minneapolis strategy, which is
offered for one of the leading inter-district open enrollment programs. As the Minneapolis
strategy reports an agent’s true top choice and manipulates the second and third choices,
we expect it to do well in less competitive environments, where most first choices can be
accommodated. In such environments, the Minneapolis strategy is essentially equivalent to
truthful preference revelation in most cases. The random environment is one such environ-
ment, as agent preferences are uncorrelated. Therefore, the Boston mechanism need not be
very inefficient when first choices can mostly be accommodated.

We next investigate the efficiency of the three mechanisms. To identify the efficiency gain
of each of the three choice mechanisms, we first look at the expected per capita payoffs in
some benchmark cases. In computing these benchmarks, we use 10,000 randomly generated
lotteries.

Table 6 presents the expected per capita payoff for six benchmark cases. In the first three
cases, we compute the expected per capita payoff for each of the three mechanisms under
the designed and random environments, assuming 100% truthful preference revelation. This
gives us an idea of the upper bounds for the expected payoffs for these mechanisms. The
last three columns present three relevant hypothetical mechanisms. For each of the 10,000
lotteries, the Serial Dictator mechanism lets the students sequentially choose their best
school among the remaining schools, from the first student in the lottery to the last one in
the lottery. The average per capita payoff over all lotteries gives us a reference payoff for
full efficiency. 12 The No Choice mechanism simply assigns each student to her district
school without any choices. This is the traditional public school assignment mechanism.

11 Furthermore, we observe the Minneapolis strategy being used in GS and TTC as well, although by a much
smaller fraction of subjects (6.94% and 9.03%, respectively). This is due to subjects’ misunderstandings of the
mechanisms.

12 Abdulkadiroğlu and Sönmez show that the Serial Dictator mechanism is Pareto efficient for any ordering of
the students and, conversely, any Pareto efficient allocation can be obtained for some ordering of the students [1].
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Table 6
Expected per capita payoff in benchmark cases

100% truth Hypothetical mechanisms

Environment BOS GS TTC Serial dictator No choice Random Assignment

Designed 12.546 12.078 12.413 12.262 9.360 8.277
Random 14.133 13.703 14.099 14.002 8.530 8.666

The Random Assignment mechanism randomly assigns each student to a school, regardless
of residency or preferences.

Since all three mechanisms are implemented as true one-shot games with a total of 432
independent observations, we can use the recombinant estimator [23] to compare the mean
efficiencies. With recombinant estimation, we recombine the strategies of different players
to compute what the outcomes would have been if players’ groupings had been different.
Under each mechanism in each environment, we have a total of (2)36 different groups. In
the actual estimation, we randomly generate 14,400 groups 13 under each mechanism to
estimate the mean (�̂), variance (�2) and covariance (�) of the expected per capita payoff.
Results of the recombinant estimation are reported in Table 7.

Result 6 (Efficiency). In the designed environment, the efficiency ranking is highly signif-
icant: GS > TTC > BOS. In the random environment, the efficiency ranking is: GS ∼
BOS > TTC. In all six cases, efficiency is significantly higher than in the No Choice
mechanism.

Support. The upper three rows of Table 7 report results of the recombinant estimation of
expected per capita payoffs for the designed environment. A t-test of H0 : �̂x = �̂y against
H1 : �̂x > �̂y yields t = 5.505 (p < 0.001) for x = GS and y = BOS, t = 2.402
(p = 0.008) for x = TTC and y = BOS, and t = 2.209 (p = 0.011) for x = GS and
y = TTC. The lower three rows of Table 7 report results of recombinant estimation of
expected per capita payoffs for the random environment. A t-test of H0 : �̂x = �̂y against
H1 : �̂x > �̂y yields t = 0.364 (p = 0.359) for x = BOS and y = GS, t = 2.165
(p = 0.015) for x = BOS and y = TTC, and t = 1.728 (p = 0.042) for x = GS and
y = TTC. All comparisons with the No Choice mechanism yield p-values < 0.01. �

Result 6 is one of our main results. Contrary to theoretical predictions, the Gale–Shapley
mechanism, rather than TTC, emerges as the most efficient mechanism. This is due to
the fact that significantly more subjects misrepresent their preferences under TTC than
under GS. We speculate that the dominant strategy feature of TTC is not transparent
to subjects without education. Similar empirical results have been discovered in the ex-
perimental auction literature, where not many subjects can figure out that bidding one’s

13 We generate 200 recombinations per subject for each of the 72 subjects in each treatment.
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Table 7
Recombinant estimation of expected per capita payoffs

Treatment Mean, �̂ Variance, �2 Covariance, � Asym. variance, var(�̂) Standard deviation

BOSd 11.150 0.040 0.001 0.011 0.105
GSd 11.713 0.115 0.001 0.010 0.098
TTCd 11.412 0.059 0.001 0.023 0.151

BOSr 12.835 0.133 0.0002 0.004 0.064
GSr 12.787 0.234 0.002 0.037 0.193
TTCr 12.351 0.228 0.004 0.066 0.256

true valuation is a dominant strategy underVickrey auction [21].Another point to emphasize
is that the efficiency ranking of BOS improves under the random environment. The success
of the Minneapolis strategy in the random environment accounts for much of this efficiency
improvement.

Ideally, we would compare the performance of these three mechanisms under many
different environments. However, budget constraints make such extensive testing infeasible.
Therefore, to understand how the environment affects mechanism performance, we run
simulations using behavior calibrated from the experimental data. The simulation algorithm
is described below.

1. We first extract the basic features of the existing payoff matrices and observed manipu-
lation patterns.
• For each student, in her true preference ordering, we find the following three numbers,

which represent the most important characteristics of her payoff table:
(1) the ranking of her district school,
(2) the ranking of her more preferred small school, and
(3) the ranking of her less preferred small school.

• For each student, in her reported preference ranking, we extract her manipulation
patterns by finding
(4) the ranking of her true 1st choice,
(5) the ranking of her true 2nd choice,

...
...

(10) the ranking of her true 7th choice.
2. We then generate new payoff matrices from the designed and random environments.

Let � ∈ [0, 1] be the probability of using the random environment data. For each �, we
divide the students into seven categories based on their district schools: 1–3, 4–6, 7–12,
13–18, 19–24, 25–30 and 31–36. The process is outlined below:
• For students 1–3:

◦ Randomly draw a number x from the uniform distribution on [0, 1]. If x��, use
the random environment data. Otherwise, use the designed environment data.

◦ Randomly draw a number y from the discrete uniform distribution on {1, 2,

. . . , 6}, as there are 6 students (3 in each session) whose district school is A in
each environment.
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◦ Use the yth student’s data by preserving the true ranking of district school and small
schools and randomly generating the ranking of other schools.

• For students 4–6: follow similar steps as students 1–3.
• For students 7–12:

◦ Randomly draw a number x from the uniform distribution on [0, 1]. If x��, use
the random environment data. Otherwise, use the designed environment data.

◦ Randomly draw a number y from the discrete uniform distribution on {1, 2,

· · · , 12}, as there are 12 students (6 in each session) whose district school is C.
◦ Use the yth student’s data by preserving the true ranking of district school and small

schools, and randomly generating the ranking of other schools.
• For students 13–18: follow similar steps as students 7–12.

...
...

• For students 31–36: follow similar steps as students 7–12.
3. We imitate the manipulation pattern according to (4)–(10), i.e., the ranking of the true

1st choice, 2nd choice, · · · and the 7th choice in the reported preference ranking.

In the simulation, we use � ∈ [0, 1], with a step size of 0.05. For each given �, we generate
1000 payoff matrices. For each payoff matrix, we use 50 tie-breakers.

The environments generated can be characterized using two alternative indices. The first
index looks at the proportion of first choices which can be accommodated. 14 We call it
the first choice accommodation index. This is a simple measure which characterizes the
competitiveness of the environment. In the simulation, for each environment (�), when
all students report their preferences truthfully, the first choice accommodation index is
computed as the average number of students who receive their first choice under the Serial
Dictator mechanism divided by 36.

A second measure, called the competitiveness index, looks at all choices. For each envi-
ronment, we find all efficient allocations and the corresponding rank of the assigned school
for each student. We then find the mean value of the sum of the ranks, and normalize the
index by computing the max and min indices, where max is the competitive environment
where everyone has identical preferences and min is the easy environment where every
student gets her top choice. Thus, the competitiveness index for an environment, where the
mean value of the sum of ranks of efficient allocation is x, equals (x − min)/(max − min).

Fig. 1 presents the first choice accommodation index (dashed line) and the competitive-
ness index (solid line) when the environment varies. These two indices are mirror images
of each other. As � increases, preferences become increasingly uncorrelated. As a result,
the proportion of first choices which can be accommodated increase and the environment
becomes less competitive. From now on, we present our simulation results using the first
choice accommodation index.

Fig. 2 reports the simulated per capita payoff for each first choice accommodation index
for each mechanism. We use the Serial Dictator mechanism based on truthful preference
revelation as a benchmark for full efficiency. As expected, as � increases, the per capita
payoff of all three mechanisms increases. However, the rates of increase are different across
mechanisms. In particular, the rankings of BOS and TTC switch when � is close to 0.4.

14 We thank Alvin Roth for suggesting this index.
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Fig. 1. First choice accommodation index and competitive index in different environments (� is the probability
that data is drawn from the random environment).
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Fig. 2. Simulated per capita payoffs across mechanisms in different environments.

This is consistent with Result 6. Unlike Result 6, however, BOS never catches up with GS.
Recall that the efficiency of mechanism x is computed as the ratio of per capita payoffs
under mechanism x and the Serial Dictator. The simulated efficiency is reported in Fig. 3.
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Fig. 3. Simulated efficiency across mechanisms in different environments.

When evaluating these mechanisms, it is important to examine each mechanism’s effi-
ciency gain compared to the benchmark case of No Choice, where each student is simply
assigned a seat in his district school. This benchmark is the traditional assignment mech-
anism for public schools in the U.S. Fig. 4 reports the simulated efficiency gain of each
mechanism for a range of environments. We compute the efficiency gain of mechanism x
as follows:

Efficiency Gain of x

= per capita payoff of mechanism x − per capita payoff of No Choice

per capita payoff of Serial Dictator − per capita payoff of No Choice
.

Fig. 4 indicates that all three mechanisms have considerable efficiency gains compared to
the No Choice mechanism. In particular, the efficiency gain of the Gale–Shapley mechanism
is consistently above 80%, while that of the Boston mechanism varies depending on the
environment. We now summarize our simulation results.

Result 7 (Simulated efficiency). In competitive environments, the efficiency ranking of the
mechanisms is: GS > TTC > BOS. In less competitive environments, the efficiency ranking
is: GS > BOS > TTC.

Support. Fig. 5 reports the z-statistics of pairwise t-tests comparing the mean payoffs of
different mechanisms. The four horizontal lines indicate z-statistics exactly at the 1% and
5% significance levels. From these tests, GS is significantly more efficient than TTC at the
1% level for any environment, as GS − TTC always lies above the band. Similarly, BOS is
always significantly less efficient than GS at the 1% level, as BOS − GS always lies below
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the band. TTC is significantly more efficient than BOS (at the 5% level) when the first
choice accommodation index is less than 0.37. It is significantly less efficient than BOS (at
the 5% level) when the first choice accommodation index is more than 0.42. �
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Both our experimental and simulation results indicate that the Gale–Shapley mecha-
nism performs better than BOS or TTC in terms of efficiency when implemented among
boundedly rational agents.

6. Conclusion

For parents, there is no decision more important than the school choice decision. This
experiment studies the school choice decision under three mechanisms. Our experimental
evidence identifies deficiencies of the widely used Boston mechanism. It also offers insight
into the effectiveness of two alternative mechanisms, the Gale–Shapley and Top Trading
Cycles mechanisms.

Education practitioners have promoted the Boston mechanism by arguing that, under
this mechanism, more than 70% of students are assigned their first choices [8,15]. On the
other hand, theory suggests that, under the Boston mechanism, students can improve their
assignments by improving the ranking of schools for which they have high priorities, such
as their district schools [2]. There is strong evidence that parents are well aware of this
weakness of the Boston mechanism. In a recent Boston Globe article, Cook states [7]:

Parents who learn how the system works begin to “game’’ it by lying about their top
choices, ranking a less desirable school first in the hope that they’ll have a better chance
of landing a spot.

Our experimental evidence is consistent with both the field data and the theory. Under
the Boston mechanism, more than 70% of the participants are assigned a seat at their first
choice based on their stated preference; however, because more than 80% of the participants
misrepresent their preferences, less than 30% of them are assigned a seat at their first choice
based on their true preferences. Therefore, we can conclude that an evaluation of the Boston
mechanism based on stated preferences is not adequate. Indeed, often important policy
decisions, such as which schools shall be terminated, depend on how popular schools are,
based on stated preferences [28]. Experimental evidence supports the theory and suggests
that such evaluation is not adequate under the Boston mechanism.

Furthermore, our experimental evidence on the efficiency of the Boston mechanism is
mixed: While the efficiency of the Boston mechanism is significantly lower than that of the
Gale–Shapley and TTC mechanisms under the designed environment, it is comparable to
that of the Gale–Shapley mechanism under the random environment. In order to understand
the difference, it is important to analyze the patterns of misrepresentation as well as the
implications of these patterns within different environments.

First, the Boston mechanism puts a very high weight on top choices, especially the first
choice. In both environments, there are two small schools and five large schools. Other
things being equal, small schools are more likely to have stiff competition. Experimental
evidence shows that participants whose (true) first choice is one of the large schools are
more likely to truthfully reveal their preferences than those whose first choice is a small
school. In the designed environment, preferences are correlated with school quality, with
the small schools being high-quality schools. In the random environment, preferences are
random and only a small fraction of the participants have one of the small schools as his
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top choice. As a result, significantly more participants reveal their preferences truthfully
under the random environment than the designed environment, considerably reducing the
efficiency loss for the random environment.

Second, under the Boston mechanism, 19% of all participants adopt the manipulation
strategy advocated by the Central Placement and Assessment Center (CPAC) in Minneapo-
lis:

Make the first choice a true favorite and the other two “realistic,’’ that is strategic
choices.

The Minneapolis strategy is adopted by these participants via keeping their true first
choice and misrepresenting their second or third choices by either improving the ranking of
their district school to the second or third place or by improving the ranking of a school with
more seats to the second or third place. This strategy has different efficiency implications
in the two environments. In the random environment, there is little conflict of interest and
it is possible to assign most participants a seat at their first choice. Consequently, for most
participants, the “relevant’’ component of the stated preference is merely the first choice.
Hence, the Minneapolis strategy results in a very small efficiency loss in this environment.
By contrast, in the designed environment, most participants’ first choices are the same and
only a fraction of the first choices can be accommodated. Hence, the entire preference profile
is “relevant’’under the designed environment. Therefore, the Minneapolis misrepresentation
causes significant efficiency loss in this environment.

These two factors are critical in explaining the efficiency difference for the Boston mech-
anism under the two environments. In reality, first choices are likely to be correlated, and
therefore the efficiency loss can be expected to be high.

Under the Boston mechanism, students are forced to play a very complicated preference
revelation game: Their best responses depend heavily on other students’ stated preferences
and truthful preference revelation is rarely in their best interest. Cook states [7]:

Of course, no new system can create more seats at the most sought-after schools. But
all parents interviewed by the Globe said that it would be a huge relief simply to write
a truthful answer to the question: What school do you want?

“A lot of the alienation some parents have toward the choice system is solely at-
tributable to the alienation of not making your first choice your first choice,’’ said Neil
Sullivan, the father of four children who have attended Boston public schools.

The game induced by the Boston mechanism often has multiple equilibria [12]. This is yet
another major deficiency of the Boston mechanism. By contrast, the games induced by the
Gale–Shapley and the TTC mechanisms are considerably simpler. Under either mechanism,
truthful preference revelation is a dominant strategy. However, it is not unusual for such
strategy-proof mechanisms to underperform in laboratory experiments, as many partici-
pants do not recognize their dominant strategies. Well-known examples include the second
price sealed-bid auction [21] and the pivotal mechanisms [4]. Naturally this possibility in-
creases as the mechanism description becomes more complex. Experimental results show
that 36% of participants misrepresent their preferences under the Gale–Shapley mechanism
and 53% of participants misrepresent their preferences under TTC. The misrepresentation
rate is especially high for TTC, reflecting its relatively more complex description. If either
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mechanism is adopted for real-life implementation, participants should be clearly instructed
that they can only hurt themselves by misrepresenting their preferences. Empirical patterns
of misrepresentation identified in our experiment can be used for educational brochures for
parents.

Perhaps the most surprising result of our experiments concerns the efficiency comparison
of the three mechanisms, as our experimental results do not support theory. Specifically, we
find that:

• In the designed environment, the Gale–Shapley mechanism is significantly more efficient
than TTC, which is significantly more efficient than the Boston mechanism.

• In the random environment, the Boston mechanism has the same efficiency as the Gale–
Shapley mechanism, and each is significantly more efficient than TTC.

Simulation shows that, in more competitive environments, GS dominates TTC, which in
turn dominates BOS. In less competitive environments, GS dominates BOS, which in turn
dominates TTC.

In extending these results to real-life implementation, we recommend that participants
should be educated on the strategy-proofness of both the Gale–Shapley and the TTC mech-
anisms. Therefore, efficiency loss in these two mechanisms can be reduced. This will also
reduce the efficiency advantage of GS over TTC or it may even give an efficiency advantage
to TTC. Since we do not prompt or educate our subjects in the experiment, the efficiency
loss of the two alternative mechanisms can also be used as a measure for the potential value
of education.

Interestingly, in October 2003, New York City public schools decided to use a version
of the Gale–Shapley mechanism to determine the placement of about 100,000 incoming
ninth and tenth graders [18]. In addition, Boston Public Schools are currently working with
matching theorists to discuss a possible change to either the Gale–Shapley or the Top Trading
Cycles mechanism [37]. We hope that this paper will stimulate similar discussions at school
districts that rely on variants of the Boston mechanism. We look forward to studying actual
implementations of these two mechanisms in the field.
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tist Award Program via Grant TS/TÜBA-GEBİP/2002-1-19. Any remaining errors are our
own.



230 Y. Chen, T. Sönmez / Journal of Economic Theory 127 (2006) 202–231

References
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