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Abstract

We study how human subjects learn under extremely limited information. We use C
(forthcoming) data on cost sharing games, and Van Huyck et al.’s (1996, Manuscript) d
coordination games to compare three payoff-based learning models. Under the serial mec
and coordination games, the payoff-assessment learning model (Sarin and Vahid, 1999, Gam
Behav. 28, 294–309) tracks the data the best, followed by the experience-weighted attraction
model (Camerer and Ho, 1999, Econometrica, 67, 827–874), which in turn, is followed by a s
reinforcement learning model. Under the average cost pricing mechanism, however, none
learning models tracks the data well.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Limited information environments are found in many economic settings, for exam
in distributed networks. In a distributed system such as the Internet agents hav
limited a priori information about other agents and the payoff matrix (Friedman
Shenker, 1998). To design mechanisms for resource allocation in distributed system
important to study how agents learn in settings which have the characteristics of distr
systems. In this paper we study how human subjects learn under limited information
laboratory.

From the perspective of studying human learning, limited information environm
provide the simplest setting for evaluating learning in repeated games. When agen
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know their own past actions and the corresponding own payoffs, belief learning m
are not applicable. Learning models which depend on only a player’s own action
payoffs are relevant. These include simple reinforcement learning models (such a
and Erev, 1995), payoff-assessment learning models (Sarin and Vahid, 1999), a m
experience-weighted attraction learning model (Camerer and Ho, 1999) and resp
learning automata (Friedman and Shenker, 1995).

Several investigators have experimentally studied behavior in limited inform
environments. Mookherjee and Sopher (1994) found that in a repeated matching p
game in which players did not know the other player’s payoffs nor the other pla
decisions, play was significantly different from the minimax solution. Van Huyck e
(1996) report experimental results from a median-action coordination game under l
information and find that median player always converged to the interior Nash equili
and convergence was much faster than the Cross reinforcement learning mode
(forthcoming) studies the serial and average cost pricing mechanism under l
information and asynchronous actions. She finds that the serial mechanism signifi
outperforms the average cost pricing mechanism under limited information even t
both games are dominance-solvable. Friedman et al. (2000) report an experim
learning in a continuous-time, limited information setting where subjects played
Cournot oligopoly game and the serial cost sharing game. Mitropoulos (forthco
reports an experiment on a 2× 2 game of mutual fate control under limited informati
and finds that experimental results are unfavorable for the reinforcement learning ru

In this paper we use Chen’s experimental data on cost sharing games, and Van H
al.’s data on coordination games to compare three payoff-based learning models. Se
introduces the two experiments used in the paper. Section 3 introduces three p
based learning models that we will evaluate. Section 4 reports parameter estimates,
sample forecasting and the ranking of the three learning models based on the out-of-
forecasting. Section 5 concludes with a discussion of various aspects of learning m
which might predict well in limited information environments in light of our results.

2. The experiments

We rank the learning models by using two samples of experimental data. These
are Chen’s (forthcoming) cost sharing games, and Van Huyck et al.’s (1996) median-
coordination games. We chose these games for several reasons.

First, both experiments have the characteristics that the players have extremely
information. Each player only knows his own feasible set of actions, his own past ch
and the resulting own payoffs. As reviewed in the Introduction, there are not
experiments with this information condition.

Second, the games have a range of different structural features. In Chen (forthc
each of the two cost sharing games has a unique dominance solvable Nash equi
However, the serial game is both dominance-solvable and overwhelmed-solvable,
is a stronger solution concept than dominance solvability (Friedman and Shenker,
while the average cost pricing game is only dominance-solvable but not overwhe
solvable. In Van Huyck et al. (1996) each of the four coordination games have two
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Nash equilibria. This avoids the possible mistake of concluding that a model genera
well because it happens to fit one class of games.

Third, the games have different spans—the cost sharing games last 150 rounds
the coordination games last 40, 70 or 75 rounds. A mixture of long and short span
challenge to the learning models, which ought to be able to predict why converge
quick in some games and slow in others.

Next we describe the main features and findings in each of the two experiments.

2.1. Cost sharing games in Chen (forthcoming)

Chen (forthcoming) studies the serial and average cost pricing mechanisms
limited information as well as complete information. We will only use the limi
information data here.

Suppose a group ofn agents share a one-input, one-output technology with decre
returns. Each of then agents announces his demandqi of output. Letq1 � q2 � · · · � qn.
The cost function is denoted byC, which is strictly convex. The cost sharing mechan
must allocate the total costC(

∑
i qi) among then agents. Under the serial mechani

(hereafter shortened as SER) agent 1 (with the lowest demand) pays(1/n)th of the cost
of producingnq1, C(nq1)/n. Agent 2 pays agent 1’s cost share plus 1/(n − 1)th of the
incremental cost fromnq1 to (n− 1)q2 + q1, i.e.,

C(nq1)

n
+ C(q1 + (n− 1)q2)−C(nq1)

n− 1
.

And so on. Therefore, an agent’s cost share is independent of demands higher than h
Under the average cost pricing mechanism (hereafter shortened as ACP), wheni

demandsqi amount of output, agenti ’s cost share is given by(qi/
∑
k qk)C(

∑
k qk), for

all i = 1, . . . , n. Therefore, an agent’s cost share is proportional to his own demand
affected by his own demand and the sum of all other agents’ demands.

In the experiment agents are endowed with linear preferences,πi(xi, q) = αiqi − xi ,
whereαi is agenti ’s marginal utility for the output, andxi is his cost share. The co
function is quadratic,C(q)= q2. There are two types of players,α1 = 16.1 andα2 = 20.1.
The mechanisms are implemented as normal form games with a discrete strategy
Si = {1,2, . . . ,11,12} for eachi. Under the serial mechanism the unique, dominan
solvable Nash as well as the Stackelberg equilibrium is(4,6). Under ACP, the unique
dominance-solvable Nash equilibrium is(4,8), while the Stackelberg equilibrium wit
player 2 as the leader is(2,12).

There are two treatments with synchronous play and updating, two with asynchr
play and updating. In the synchronous treatments (hereafter shortened as SYN
player receives his own payoff feedback for each round. In the asynchronous trea
(hereafter shortened as ASYN) player 1 submits a demand and gets a payoff feedba
round, but player 2 submits a demand which is matched with his opponent’s deman
the next five rounds and gets a cumulative payoff feedback every five rounds. The
in the asynchronous treatment player 2 acts five times slower than player 1 and be
the de facto Stackelberg leader. There are two types of matching protocols—rando
matching and fixed pairs. In all four treatments the game lasts for 150 rounds (30 r
for player 2 in ASYN). We summarize the four treatments:
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(1) SYNr : synchronous play, with random re-matching for each of the 150 rounds;
(2) SYNf : synchronous play, with repeated fixed pairs for 150 rounds;
(3) ASYNr : asynchronous play, with random re-matching for each of the 150 rounds
(4) ASYNf : asynchronous play, with repeated fixed pairs for 150 rounds.

The main findings are as follows. First, Kolmogorov–Smirnov test (d = 0.093 yielding a
p-value of 73.6%, two-tailed) cannot reject the null hypothesis of uniform play in the in
period. This motivates our use of the uniform distribution as the initial distribution fo
cost sharing games in Section 4. Second, under all four treatments the serial mec
performs significantly better than the ACP mechanism both in terms of the prop
of equilibrium play and group efficiency. Third, the presence of asynchrony reduce
amount of equilibrium play.

2.2. Coordination games in Van Huyck et al. (1996)

Van Huyck et al. (1996) report an experiment on coordination games. Letei denote
playeri ’s action, ande−i be the actions chosen by other players. The payoff function
playeri is given by

π(ei, e−i )= 0.5− ∣∣ei −ωM(e)(1−M(e))∣∣, (1)

whereω ∈ (1,4] andM(e) is the median ofe. The stage game has two strict Na
equilibria, (e,M) = (0,0) and (1 − 1/ω,1 − 1/ω), both of which are symmetric an
efficient.

In the experiments, Van Huyck et al. (hereafter shortened as VHBR) implemen
treatments by settingω= 2.44, 2.47, 3.85, and 3.87, respectively. Each individuali has the
same set of 101 actions in each round,Ei = {0,1, . . . ,100}. Each cohort has five subjec
playing the same coordination game forT periods, whereT = 40, 70, or 75 in differen
treatments. In each period, each individual chooses one action and receives a payo
treatments players have limited information and synchronous play.

The main findings are as follows. First, Kolmogorov–Smirnov tests fail to rejec
null hypothesis of uniform play in the initial period. “The largest KolmogorovT statistics
is 0.18 and the critical value at the 5% level of statistical significance is 0.29. The Sm
T statistics is 0.15 and the critical value at the 5 percent level of statistical significa
0.8” (Van Huyck et al., 1996, p. 8). Again, this motivates our use of the uniform distribu
as the initial distribution for the coordination games in Section 4. Second, median p
always converged to the interior Nash equilibrium. Third, convergence was extre
rapid, much faster than the Cross learning model.

Sarin and Vahid (1997) compare the payoff-assessment learning model, which w
introduced in Section 3, with the Cross learning model using the VHBR (1996) data.
find that in contrast to the Cross learning model the payoff-assessment model con
to the same equilibrium and in roughly the same number of rounds as the data
that the Cross learning model is a reinforcement type of learning model, in whic
updating of choice probabilities is different from the simple reinforcement learning m
characterized in Eqs. (2) and (3) in Section 3.
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3. Learning models

The design of mechanisms for distributed systems relies on the actual dynamic le
behavior of humans in this context. Fudenberg and Levine (1998) provide an exc
survey for the vast theoretical and empirical literature on learning. Because o
extremely limited information, learning models which utilize only a player’s own pa
information are relevant. We evaluate three such learning models: a simple reinforc
learning model, a modified experience-weighted attraction learning model, and a p
assessment learning model. In an earlier version we evaluated four learning model
plus the responsive learning automata, which turned out to have the worst perform
Therefore, we dropped it in this version. These three models will be introduced in tu

Let n be the number of actions for each player in each round. For simplicity we
omit all subscripts which represent playeri. Therefore,πj (t) is the payoff of strategy
j in round t ; pj (t) is the probability that strategyj is chosen in roundt ; and r is the
discount factor. Since the coordination game has a large strategy space, we inco
similarity functions into all three learning models to represent the idea that an agent
use similarity among strategies to simplify the decision problem he faces. This ide
used by Rubinstein (1988), Gilboa and Schmeidler (1997), and more recently by Sa
Vahid (1997) who build similarity functions into the payoff-assessment learning m
Following Sarin and Vahid (1997), we assume that strategies are naturally ordered b
labels and use the Bartlett similarity function,fjk(h, t), to denote the similarity betwee
the played strategyk and an unplayed strategyj at periodt :

fjk(h, t)=
{

1− |j − k|/h, if |j − k|< h,
0, otherwise.

The parameterh determines theh − 1 unplayed strategies on either side of the pla
strategy to be updated. Note that whenh = 1, fjk(1, t) degenerates into an indicat
function which equals one if strategyj is chosen in roundt and zero otherwise.

Thereinforcement learning (RL) model is a model of “rote” learning, in which action
which do well in the past are more likely to be repeated in the future. Learning mod
this spirit have a long history in biology and psychology. Their systematic applicati
experimental economics starts from Roth and Erev (1995). Erev and Roth (1998) sho
the RL model tracks the data well across a wide variety of experimental games with u
mixed strategy equilibria. Note that the amount of information in the two experime
exactly the same as that required by the RL model, which bases its predictions solely
individual payoff gains of that specific subject. Subjects do not form beliefs nor per
any optimization procedures. An often noted disadvantage of the RL model is its ina
to lock on to the optimal strategy even with a long horizon.

Let Rj(t) be the discounted payoff sum of an individual from choosing strategyj . It
is sometimes called the propensity to choose strategyj . It begins with some prior value
Rj(0). Updating is governed by

Rj (t)= rRj (t − 1)+ fjk(h, t)πk(t). (2)
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The choice probability for an individual at roundt + 1 is

pj (t + 1)= eλRj (t)∑n
l=1 eλRl(t)

, ∀j, (3)

where λ � 0 helps to scale up or scale down the relative weights of the discou
payoff sums. The exponential functional form (logit) is chosen rather than the no
form (probit) or power form because of its ability to deal with negative payoffs.
working paper version of Chen and Tang (1998) evaluates all three functional for
the RL model on public goods games and concludes that their performance is statis
indistinguishable. The exponential form has been used to study learning in gam
Mookerjhee and Sopher (1994, 1997), Ho and Weigelt (1996), Fudenberg and L
(1998), McKelvey and Palfrey (1995, 1998), and Camerer and Ho (1999).

The experience-weighted attraction (EWA) learning model (Camerer and Ho, 199
incorporates the reinforcement approach with belief-based approaches. A key diff
of EWA from RL is that EWA weighs hypothetical payoffs from unchosen strategie
a parameter,δ, and weighs the payoff actually received from the chosen strategy b
additional 1− δ. Therefore, unchosen strategies which would have yielded high pa
are more likely to be chosen as well. In the experiments considered in this paper al
the underlying payoff structure is unknown to the subjects they can still form beliefs
the possible payoffs. Let̄πj (0) be an individual’s initial belief about the possible pay
he might obtain from strategyj before playing the game. These beliefs can be update
actual payoffs are received from different strategies. Updating is governed by the foll
rule:

π̄j (t)= αfjk(h, t)πk(t)+
(
1− αfjk(h, t)

)
π̄j (t − 1),

wherek is the strategy used in periodt , andα = 0.75 for the cost sharing games a
α = 0.5 for the coordination games. We tried other values ofα and found these to be th
best value among what we have searched.

The EWA model defines a variable,N(t), which can be interpreted as the number
“observation-equivalents” of past experience, and a variable,Aj(t), which measures th
attraction of strategies. Both variables begin with some prior values,N(0) andAj(0).
Updating is governed by two rules. First,

N(t)= ρN(t − 1)+ 1, (4)

whereρ is a depreciation rate that measures the fractional impact of previous exper
compared to one new period. The second rule updates the level of attraction:

Aj(t)= N(t − 1)Aj(t − 1)+ [δ+ (1− δ)fjk(h, t)]π̃j (t)
N(t)

, (5)

where π̃j (t) = fjk(h, t)πk(t) + (1 − fjk(h, t))π̄j (t). The choice probability for an
individual at roundt + 1 is

pj (t + 1)= eλAj (t)∑n λAl(t)
, ∀j. (6)
l=1 e
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The original EWA model has more parameters. Because of the limited information co
and to make it comparable to other models, we reduce it to a three-parameter
Because of this simplification, RL is no longer a special case of EWA.

The payoff-assessment (PA) learning model (Sarin and Vahid, 1999) is different fro
the above two learning models. It assumes that a player is a myopic subjective max
He chooses among alternate strategies only on the basis of the payoff he assesses
obtain from them. These assessments do not explicitly take into account his sub
judgements regarding the likelihood of alternate states of the world. At each stag
player chooses the strategy that he myopically assesses to give him the highest pa
updates his assessment adaptively. Letuj (t) denote the subjective assessment of strategsj
at timet . The initial assessments are denoted byuj (0). Payoff assessments are updated
taking a weighted average of his previous assessments and the objective payoff he
obtains at timet . If strategyk is chosen at timet , then

uj (t + 1)= (
1− rfjk(h, t)

)
uj (t)+ rfjk(h, t)πk(t), ∀j. (7)

Suppose that at timet the decision-maker experiences zero-mean, symmetrically dis
uted shocks,Zj(t), to his assessment of the payoff he would receive from choosing
egysj , for all sj . Denote the vector of shocks byZ = (Z1, . . . ,Z12), and their realization
at timet by z(t)= (z1(t), . . . , z12(t)). The decision maker makes choices on the bas
his shock-distorted subjective assessments, denoted byũ(t) = u(t) + z(t). At time t he
chooses strategysj if

ũj (t)− ũl(t) > 0, ∀sl �= sj . (8)

Note that mood shocks only affect his choices and not the manner in which asses
are updated. Sarin and Vahid (1999) prove that such a player converges to stocha
choose the strategy that first order stochastically dominates another among the st
he converges to play with positive probability.

4. Parameter estimation and out-of-sample forecasting

We estimated the values of learning model parameters using two samples of e
mental data and compared the learning models by their abilities to predict behavior
sample.

For parameter estimation, we conducted Monte Carlo simulations designed to re
the characteristics of each of the experimental settings. We then compare the sim
paths with the actual paths of a subset of the experimental data to estimate the par
which minimize the mean-squared deviation (MSD) scores. Since the final out
distributions of our data are unimodal, the simulated mean is an informative statistic
well captured by MSD (Haruvy and Stahl, 2000).

In each simulation, 10,000 pairs of players were created, which yields a stat
accuracy of 1%. In each simulation the following steps were taken:

(1) Initial values. Since Kolmogorov–Smirnov tests of the initial choice distribution
experimental subjects cannot reject the null hypothesis of uniform distribution in
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data sets, in the cost sharing games we setRj (0)=Aj(0)= π̄j (0)= uj (0)= 200 for
all players in RL, EWA, and PA, respectively, since the average first-round pa
was around 200. This also results in a probability predictions around the cen
(1/12, . . . ,1/12), for the first round. For the same reason, in the coordination ga
we setRj (0) = Aj(0) = π̄j (0) = uj (0) = 0.5 for all players in RL, EWA, and PA
respectively. The other variable of the EWA model,N(0), was set to zero.

(2) Simulated players were matched into fixed pairs, or randomly rematched pairs fo
period, depending on the treatment.

(3) The simulated players’ strategies were randomly determined via Eq. (3) for RL
Eq. (6) for EWA. Their strategies were determined via Eq. (8) for PA.

(4) Payoffs were determined using the SER, ACP payoff rule or Eq. (1) employed
experiment in question.

(5) Propensities were updated according to Eq. (2) for RL. Number of observ
equivalents and attractions were updated according to Eqs. (4) and (5), respe
Assessments were updated according to Eq. (7) for PA. For cost-sharing
updating occurred every period under SYN for both players, every period for p
1 in ASYN and every five periods for player 2 in ASYN. For coordination gam
updating occurred every period.

The discount factor,r ∈ [0,1], and depreciation rate,ρ ∈ [0,1], were searched at a gr
size of 0.1, and the scale factor,λ was searched at a grid size of 0.001 for the cost sha
games and 0.1 for the coordination games until the average MSD reached the min
Grid size was determined by the magnitude of payoffs.

Mood shocks in PA,z, were drawn from a uniform distribution on an interval[−a, a].
For the cost sharing games,a was searched on[0,100] with a step size of 10 to locate th
best interval, and was then searched on this interval with a step size of 1 until the a
MSD reached the minimum. For the coordination games,a was searched on[0.02,0.2]
with a step size of 0.02 until the average MSD reached the minimum. Again the int
and grid size were determined by the magnitude of payoffs.

To check the robustness of the PA model with respect to different distributions of
shocks, we considered two other specifications and tested them on the cost sharing

(1) z was drawn from an extreme value distribution with parametera, which implies that
the difference,zi(t)− zj (t), has a logistic distribution. We call this model PAl .

(2) z was drawn from an exponential distribution with parametera, which implies that
the difference,zi(t)− zj (t), has a double exponential distribution. We call this mo
PA2e.

In both cases, the parametera was searched on[1,10] with a step size of one, sincea = 1
was small enough given the magnitude of payoffs whilea = 10 gives almost flat densit
functions. Note that with all three distributions (or any other distribution) the stan
forms would be inappropriate because the magnitude of payoffs differ from experim
experiment.

For the coordination games we searched the size of the similarity window ath = 1,
6, and 12 and foundh= 6 fit the data the best. Since we useh= 6, the RL model allows
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some unchosen strategies to receive foregone payoffs. This is a generalization of the
choice reinforcement learning model, in which unchosen strategies donot receive foregone
payoffs.

We calibrated the models by deriving MSD estimates using nine independent
(three pairs from each subject pool) for each treatment in the cost sharing games, a
independent sessions for each treatment of the coordination games (cohorts 9 an
ω= 3.87, cohorts 15 and 16 forω= 2.47, cohorts 3 and 4 forω= 3.85 and cohorts 7 an
8 for ω = 2.44). Then we validated the models by using the derived estimates to p
the path of play in the remaining independent sessions. This procedure uses enou
to estimate parameters reliably, and also have enough remaining data for out-of-
forecasting. Camerer and Ho (1999) use the first 70% of the observations in each
for parameter estimation and use the derived estimates to predict the path of play
remaining 30% of the sample. Their approach is frequently used in time-series anal
macroeconomics, because there is usually only one independent time-series obse
In contrast, in experimental economics we typically have several independent obser
for each treatment. Since there is little reason to believe that learning patterns in
periods of the game remain the same as the later periods, our method seems to b
appropriate in the context of comparing learning models in experimental games.

As a baseline, the MSD for arandom choice model (RC), where each individua
randomly chooses one of the alternatives with equal probability for all rounds, equals
for the cost sharing games and 0.990 for coordination games. Since this model is ba
totally random choices of each subject, a learning model that produces a MSD great
the above scores probably does not capture the essence of individual learning proc

Figures 1 and 2 present the time series data from experimental subjects unde
and ACP, respectively. Each graph presents the mean (the stars), standard deviat
error bars) and stage game equilibria (the dashed lines) for each of the two differen
averaged over all sessions for each mechanism. The four graphs in the first column
the average demand (and standard deviation) for type 1. The second column displ
average demand for type 2. These two figures reveal a fairly clear pattern of conve
under the serial mechanism, but not under ACP.

Table 1 reports the calibration results in the SER games. We took eighteen fixed p
the SER games and calculated the estimated parameter values and MSD scores. I
model mood shocks are drawn from a uniform interval of[−3,3] under SYN and[−2,2]
under ASYN, which is very small compared with the magnitude of payoffs. Compared
SYN, the introduction of asynchrony increases the discount factor,r, to one. Intuitively,
asynchrony as implemented in Chen (forthcoming) stabilizes the play by allowing pla
to change his message only once every five rounds, therefore we have smaller sho
larger discount factors. For the EWA model, in both SYN and ASYN, we haveδ = 1, which
indicates that player’s belief about payoffs associated with a strategy completely outw
the actual received payoffs. This could also be due to the fact that play converged
quickly in SER. For the same reason, the depreciation parameter,ρ = 0.1, is rather small
In RL the discount factor equals 1.0 in both cases. This indicates that RL keeps trac
past payoffs. With discount factor less than one, convergence of RL becomes much
In both EWA and RL increasingλ increases fit. In each case we report the largestλ that
does not cause explosion.
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Fig. 1. Experimental data under SER in Chen (forthcoming).
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Fig. 2. Experimental data under ACP in Chen (forthcoming).
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Table 1
Calibration in the SER game: MSD and parameter values

Games PA EWA RL

SYNf ASYNf SYNf ASYNf SYNf ASYNf

0.346 0.409 0.853 0.617 0.748 0.754
0.873 0.716 0.655 0.659 0.905 0.775
0.338 0.539 0.790 0.660 0.749 0.781
0.325 0.348 0.639 0.626 0.747 0.754

MSD 0.390 0.675 0.634 0.722 0.757 0.791
1.139 0.272 0.847 0.625 0.833 0.752
0.444 0.455 0.639 0.647 0.757 0.768
0.428 0.369 0.649 0.613 0.766 0.753
0.594 0.675 0.665 0.665 0.772 0.784

Estimated δ = 1.00 δ = 1.00
Parameter r = 0.80 r = 1.00 ρ = 0.10 ρ = 0.10 r = 1.00 r = 1.00
Values a = 3.00 a = 2.00 λ= 0.007 λ= 0.007 λ= 0.008 λ= 0.008

Table 2
Validation in the SER game

PA EWA RL

SYNr ASYNr SYNr ASYNr SYNr ASYNr

# of sessions1 0.650 0.743 0.724 0.726 0.805 0.8
2 0.511 0.703 0.683 0.747 0.779 0.81
3 0.702 0.733 0.724 0.709 0.801 0.80

Overall 0.621 0.726 0.710 0.727 0.795 0.80

SYNf ASYNf SYNf ASYNf SYNf ASYNf

# of pairs 1 0.390 0.326 0.845 0.605 0.756 0.74
2 0.325 0.388 0.640 0.599 0.749 0.74
3 0.428 0.642 0.647 0.682 0.752 0.79
4 0.329 0.613 0.666 0.620 0.750 0.75
5 0.561 0.822 0.675 0.732 0.784 0.79
6 0.463 0.353 0.653 0.642 0.769 0.76
7 0.813 0.376 0.784 0.641 0.827 0.75
8 1.008 0.485 0.842 0.646 0.872 0.76
9 0.522 0.674 0.776

10 0.399 0.641 0.761
11 0.392 0.633 0.758

Overall 0.512 0.501 0.700 0.646 0.778 0.76

Table 2 reports the validation results, using the best fit parameters in Table 1
hold-out sample, including the fixed pair treatment and the random matching treatm

Table 3 reports the calibration results in SER and ACP games using two other ve
of PA: PAl and PA2e . The estimated parameters have similar patterns as those o
original PA model:

(1) from SYN to ASYN, the discount factor,r, increases;
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Table 3
Calibration in the SER and ACP game: PAl and PA2e

Games SER: PAl ACP: PAl SER: PA2e ACP: PA2e

SYNr ASYNr SYNr ASYNr SYNr ASYNr SYNr ASYNr

0.393 0.458 0.898 0.844 0.365 0.435 0.899 0.84
0.851 0.683 0.871 0.824 0.851 0.690 0.874 0.82
0.387 0.565 0.851 0.930 0.359 0.550 0.859 0.92
0.376 0.425 0.898 0.861 0.347 0.392 0.898 0.86

MSD 0.433 0.646 0.886 0.972 0.408 0.648 0.885 0.9
1.036 0.367 0.907 0.855 1.087 0.328 0.906 0.85
0.472 0.492 0.897 0.847 0.456 0.472 0.898 0.84
0.465 0.436 0.916 0.868 0.441 0.406 0.914 0.86
0.585 0.662 0.939 0.827 0.591 0.662 0.936 0.83

Parameter r = 0.80 r = 1.00 r = 0.50 r = 0.90 r = 0.80 r = 1.00 r = 0.40 r = 0.90
Values a = 1 a = 1 a = 10 a = 6 a = 1 a = 1 a = 10 a = 8

Table 4
Validation in the SER and ACP game: PAl and PA2e

SER: PAl ACP: PAl SER: PA2e ACP: PA2e

SYNr ASYNr SYNr ASYNr SYNr ASYNr SYNr ASYNr

# of sessions1 0.648 0.707 0.896 0.888 0.645 0.713 0.896 0.
2 0.528 0.684 0.893 0.892 0.513 0.684 0.893 0.8
3 0.689 0.701 0.879 0.910 0.694 0.706 0.881 0.9

Overall 0.622 0.697 0.889 0.897 0.618 0.701 0.890 0.8

SYNf ASYNf SYNf ASYNf SYNf ASYNf SYNf ASYNf

# of pairs 1 0.434 0.396 0.844 0.851 0.411 0.365 0.852 0.8
2 0.377 0.452 0.836 0.820 0.349 0.423 0.843 0.8
3 0.461 0.648 0.839 0.873 0.435 0.640 0.847 0.8
4 0.381 0.597 0.885 0.945 0.352 0.597 0.887 0.9
5 0.579 0.754 0.899 0.846 0.567 0.771 0.900 0.8
6 0.497 0.424 0.897 0.836 0.474 0.392 0.896 0.8
7 0.784 0.434 0.926 0.945 0.788 0.406 0.922 0.9
8 0.954 0.516 0.919 0.886 0.978 0.498 0.916 0.8
9 0.541 0.860 0.863 0.529 0.865 0.86

10 0.438 0.943 0.416 0.935
11 0.434 0.409

Overall 0.535 0.528 0.885 0.874 0.519 0.512 0.886 0.8

(2) Parameter,a, is much larger under ACP than under SER, indicating much larger sh
under ACP because of its volatile paths.

Table 4 reports the validation results, using the best fit parameters in Table 3 on the
out sample. Compared to the corresponding columns 2 and 3 in Tables 2 and 4, we
that the MSD scores are very similar under the three versions of the PA model. Indee
will be confirmed in Results 1 and 2 using permutation tests.
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In presenting the results, we introduce two shorthand notations. First,x→ y, denotesx
“beats”y, i.e., MSD(x) is significantly less than MSD(y) at the 10% level or less. Secon
x−y denotes that the difference between MSD(x) and MSD(y) is statistically insignifican
at the 10% level.

Result 1 (Learning models under SER). The ranking of MSD of the three learning mo
is highly significant under the serial mechanism: PA→ EWA → RL.

The ranking of MSD of the three versions of the PA model is statistically insignifi
under the serial mechanism except one case: under ASYNr , PAl → PA at the 10% level.

Support. P -values from one-tailed permutation tests using the MSD scores in Table
summarized in the following four triangles, one for each treatment:

SER-SYNf SER-SYNr SER-ASYNf SER-ASYNr
PA

0.00060.0070

EWA
0.0057

RL

PA

0.00000.1000

EWA
0.0000

RL

PA

0.00060.0190

EWA
0.0000

RL

PA

0.00000.5000

EWA
0.0000

RL

P -values from one-tailed permutation tests using the MSD scores in Table 4 are su
rized in the following four triangles, one for each treatment:

SER-SYNf SER-SYNr SER-ASYNf SER-ASYNr
PA

0.53360.6079

PAl 0.4230 PA2e

PA

0.40000.5500

PAl 0.4500 PA2e

PA

0.55490.6368

PAl 0.4046 PA2e

PA

0.1500

PAl

0.1000

0.6500 PA2e

Therefore, under the serial mechanism PA clearly outperforms every other model, fo
by EWA, which in turn, is followed by RL. It is interesting to note that the degree
optimization in each learning model follows virtually the same order. Even in cases
extremely limited information experimental subjects seemed to have carried out
amount of optimization, as embodied by PA and EWA.

Figure 3 presents the simulated time series paths under SERSYNf from the PA, EWA,
and RL models, respectively. Simulated paths under other treatments of the SER
exhibit similar patterns. Comparing the Monte Carlo simulations with the correspo
real data in the first row of Fig. 1 one can see that under the serial mechanism exper
subjects converged a lot faster to the equilibrium prediction than that predicted by t
model. The PA and EWA models capture the convergence dynamics much better.

In the ACP games, the subjects did not converge to the equilibrium strategie
analyzed in Section 2, in the SER games a player’s payoffs are independent of de
larger than his own, while under ACP a player’s payoffs are affected by every pla
demands. The greater the variation a player can have on the payoffs of other play
less inherently stable the play of the game is. Under ACP one player’s experimen
is more likely to cause experimentation of other players. Therefore, the payoff feed
in the ACP game are not as useful as the SER game. This type of feedback whic
to more confusion and lack of stability is called “experimentation cascades” by Frie
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Fig. 3. Learning models under SER SYN (fixed pairs).
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Table 5
Calibration in the ACP game: MSD and parameter values

Games PA EWA RL

SYNr ASYNr SYNr ASYNr SYNr ASYNr

0.900 0.862 0.888 0.843 0.892 0.853
0.870 0.821 0.857 0.823 0.845 0.831
0.851 0.968 0.845 0.950 0.842 0.950
0.898 0.858 0.895 0.851 0.894 0.856

MSD 0.885 0.949 0.880 0.939 0.880 0.898
0.910 0.874 0.903 0.868 0.905 0.870
0.899 0.875 0.898 0.865 0.901 0.875
0.917 0.868 0.921 0.864 0.928 0.869
0.945 0.857 0.937 0.841 0.943 0.860

Estimated δ = 0.20 δ = 1.00
Parameter r = 0.40 r = 0.80 ρ = 0.10 ρ = 0.40 r = 1.00 r = 1.00
Values a = 50 a = 45 λ= 0.005 λ= 0.005 λ= 0.008 λ= 0.008

et al. (2000). As revealed by Fig. 2, the ACP data exhibited relatively volatile paths
turns out to be a challenge for the learning models.

Table 5 reports the calibration results in the ACP games. We took eighteen fixed
in the ACP games and estimated the parameter values and MSD scores. In the PA
mood shocks are drawn from a uniform interval of[−50,50] under SYN and[−45,45]
under ASYN, which are much larger than that in the SER games, reflecting the vo
dynamic paths in the data. Compared with SYN, the introduction of asynchrony
increases the discount factor,r, from 0.4 to 0.8. This is mirrored in EWA by an increa
of the depreciation parameter,ρ, from 0.1 to 0.4, and an increase ofδ from 0.2 to 1.0. The
discount factor in RL remains stable at 1.0.

Table 6 reports the validation results, using the best fit parameters in Table 5
hold-out sample, including the fixed pair treatment and the random matching treatm

Result 2 (Learning models under ACP). Under ACP the MSD of the three learning mo
are all close to the random choice prediction. The ranking of MSD of the three mod
statistically insignificant except for three cases: under SYNr : EWA → PA, and RL→ PA;
under ASYNr : EWA → PA at the 10% level.

The ranking of MSD of the three versions of the PA model is statistically insignifi
under the ACP except one case: under SYNr , PAl → PA at the 10% level.

Support. P -values from one-tailed permutation tests using the MSD scores in Table
summarized in the following four triangles, one for each treatment:

ACP-SYNf ACP-SYNr ACP-ASYNf ACP-ASYNr
PA

0.34910.3882

EWA RL

PA

EWA

0.1000

RL

0.0000

PA

0.30460.2154

EWA RL

PA

0.2000

EWA

0.1000

RL

0.5525 0.4500 0.3614 0.2500
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Table 6
Validation in the ACP game

PA EWA RL

SYNr ASYNr SYNr ASYNr SYNr ASYNr

# of sessions 1 0.901 0.887 0.892 0.862 0.894 0.8
2 0.900 0.889 0.889 0.863 0.889 0.86
3 0.893 0.908 0.871 0.904 0.871 0.90

Overall 0.898 0.895 0.884 0.876 0.885 0.88

SYNf ASYNf SYNf ASYNf SYNf ASYNf

# of pairs 1 0.843 0.860 0.834 0.848 0.819 0.85
2 0.834 0.846 0.823 0.822 0.807 0.83
3 0.837 0.900 0.828 0.877 0.813 0.87
4 0.886 0.942 0.878 0.930 0.872 0.92
5 0.904 0.843 0.903 0.839 0.912 0.85
6 0.898 0.887 0.895 0.861 0.898 0.87
7 0.929 0.955 0.926 0.940 0.932 0.93
8 0.922 0.882 0.916 0.869 0.921 0.88
9 0.859 0.860 0.855 0.851 0.848 0.85

10 0.945 0.947 0.953

Overall 0.886 0.886 0.880 0.871 0.877 0.87

P -values from one-tailed permutation tests using the MSD scores in Table 4 are su
rized in the following four triangles, one for each treatment:

ACP-SYNf ACP-SYNr ACP-ASYNf ACP-ASYNr
PA

0.51740.4782

PAl 0.5401 PA2e

PA

0.1500

PAl

0.1000

0.7000 PA2e

PA

0.25860.2770

PAl 0.3500 PA2e

PA

0.7000

PAl

0.7500

0.4867 PA2e

Note that even though EWA beats PA in ACP games with random matching, the differ
in the MSD scores are very small. Since there are only three independent observa
each random matching treatment while there are many more independent observa
the fixed-pair treatments, we think that the results for the fixed-pair treatments are
more robust, i.e., the performance of the three learning models under ACP are stati
indistinguishable, and close to the prediction of the random choice model.

Figure 4 presents the Monte Carlo simulation results for the three learning models
ACP. Comparing the simulated paths with the corresponding data in the first row of F
one can see that although all three models capture the non-convergence pattern
experimental data none of the models does a good job of describing how individual p
learn and adapt.

The ACP mechanism provides a challenging data set for the learning models.
none of the three models does a good job of tracking the data. As discussed earlie
does not facilitate learning under limited information because each player’s payof
affected by everyone else’s demands. One player’s experimentation immediately c
everyone else’s payoffs, and thus can cause much more experimentation, as indic
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Fig. 4. Learning models under ACP SYN (fixed pairs).
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Table 7
Calibration (without similarity windows) in coordination games

Features PA EWA RL

Treatment Cohort MSD Parameter MSD Parameter MSD Param

δ = 1.0
ω= 2.44 5 0.935 r = 0.20 0.951 ρ = 0.3 0.983 r = 1.0
(75 rounds) 6 0.929 a = 0.16 0.948 λ= 1.5 0.983 λ= 1.0

δ = 1.0
ω= 2.47 15 0.952 r = 0.50 0.980 ρ = 0.1 0.989 r = 1.0
(40 rounds) 16 0.956 a = 0.14 0.981 λ= 1.5 0.989 λ= 1.0

δ = 1.0
ω= 3.85 1 0.912 r = 0.80 0.953 ρ = 0.1 0.985 r = 1.0
(75 rounds) 2 0.938 a = 0.16 0.956 λ= 1.5 0.984 λ= 1.0

δ = 1.0
ω= 3.87 9 0.927 r = 0.90 0.983 ρ = 0.1 0.989 r = 1.0
(40 rounds) 10 0.935 a = 0.14 0.983 λ= 1.5 0.989 λ= 1.0

the data. In order to predict how subjects learn in ACP games, a learning model’s
(or error term) should depend on the previous strategies and corresponding payo
hill-climbing fashion rather than being random. Intuitively, the direction and magnitu
experimentation ought to depend on the payoffs a player received from each strateg
aspect is not captured by any of the existing learning models that we are aware of.

In the coordination games, we did two sets of analysis. In this game each player h
actions in each round. We use similarity windows to see whether it improves the pred
of various learning models.

Result 3 (Learning models under coordination games). The ranking of MSD of the
learning models is highly significant under the coordination games: PA→ EWA → RL.

Support. Results from one-tailed permutation tests using the MSD scores in Tables
10 are summarized in the following two triangles:

VHBR: without similarity windows VHBR: with similarity windows
PA

0.00000.0001

EWA
0.0012

RL

PA

0.00000.0001

EWA
0.0000

RL

Result 3 confirms Result 1 in the ranking of learning models.

Result 4 (Effect of similarity functions). The use of similarity function significan
improves the predictions of all three learning models in coordination games.

Support. Comparison of validation results from Tables 8 and 10 show that for
independent observation and each learning model, MSD with similarity windows is sm
than that without similarity windows. Any statistical test is superfluous.
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Table 8
Validation (without similarity windows) in coordination games

Treatment Cohort PA EWA RL

ω= 2.44 7 0.930 0.946 0.983
(75 rounds) 8 0.931 0.945 0.98

ω= 2.47
(40 rounds) – – – –

ω= 3.85 3 0.943 0.961 0.985
(75 rounds) 4 0.943 0.959 0.98

11 0.931 0.983 0.989
12 0.932 0.983 0.989

ω= 3.87 13 0.927 0.983 0.98
(40 rounds) 14 0.927 0.983 0.98

Table 9
Calibration (with similarity windows) in coordination games

Features PA EWA RL

Treatment Cohort MSD Parameter MSD Parameter MSD Param

δ = 0.9
ω= 2.44 5 0.916 r = 0.9 0.939 ρ = 0.1 0.975 r = 1.0
(75 rounds) 6 0.909 a = 0.1 0.933 λ= 1.5 0.975 λ= 1.0

δ = 1.0
ω= 2.47 15 0.950 r = 1.0 0.968 ρ = 0.1 0.982 r = 1.0
(40 rounds) 16 0.955 a = 0.2 0.971 λ= 1.5 0.983 λ= 1.0

δ = 0.9
ω= 3.85 1 0.872 r = 0.8 0.929 ρ = 0.1 0.972 r = 1.0
(75 rounds) 2 0.924 a = 0.02 0.939 λ= 1.5 0.974 λ= 1.0

δ = 1.0
ω= 3.87 9 0.912 r = 1.0 0.962 ρ = 0.1 0.979 r = 1.0
(40 rounds) 10 0.922 a = 0.06 0.962 λ= 1.5 0.980 λ= 1.0

Table 10
Validation (with similarity windows) in coordination games

Treatment Cohort PA EWA RL

ω= 2.44 7 0.906 0.934 0.975
(75 rounds) 8 0.906 0.934 0.97

ω= 2.47
(40 rounds) – – – –

ω= 3.85 3 0.921 0.945 0.976
(75 rounds) 4 0.924 0.944 0.97

11 0.917 0.962 0.979
12 0.919 0.962 0.980

ω= 3.87 13 0.913 0.962 0.97
(40 rounds) 14 0.912 0.962 0.97
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Result 4 shows that subjects use the order of an unchosen strategy with respec
chosen strategy to estimate its foregone payoffs and then use it to change their c
This implies that learning models that do not use foregone payoffs might not work so
even in environments with limited information.

Figures 5 and 6 present the simulated paths for all treatments of the coordi
games under each of the three learning models without and with similarity wind
A comparison of these two figures illustrates that adding similarity windows increas
speed of convergence under all three learning algorithms, and thus capturing the le
dynamics in the data a lot better.

5. Conclusion

To understand individual behavior under limited information three payoff-b
learning models are evaluated by comparing Monte Carlo simulations of the lea
models with experimental data. Under the serial mechanism and the coordination
the payoff-assessment learning model tracks the data the best, followed by the expe
weighted attraction learning model, which in turn, is followed by a simple reinforce
learning model. Learning models which incorporate more optimization, such as the p
assessment learning model and the experience-weighted attraction learning mode
better predictions under the serial mechanism and the coordination games. Und
average cost pricing mechanism, however, none of the learning models does a goo
tracking the data. To test robustness of the performance of the payoff-assessment l
model, we used three different specifications of the model and found their performa
be statistically indistinguishable.

Understanding individual learning behavior under limited information is impor
for mechanism design for distributed systems such as the Internet. The SER an
mechanisms are both used for congestion allocation on Internet routers. In the con
several agents sharing a network link, the cost to be shared is congestion exper
Each agent controls the rate at which he is transmitting data, which corresponds
demand in the cost sharing framework. If the sum of the transmission rates is great
the total link capacity, then the link becomes congested and the agents’ packets exp
delays. Most current Internet routers use a FIFO packet scheduling algorithm, which
in each agent’s average queue being proportional to his transmission rate. His qu
affected by everyone else’s transmission rates. This corresponds to the average cos
mechanism (Shenker, 1990). In contrast, the Fair Queueing packet scheduling alg
which corresponds to the serial mechanism, leads to congestion allocations such
agent’s average queue is independent of transmission rates higher than his own. T
generation of Cisco 7200, 3600, and 2600 routers have both the FIFO and Fair Qu
options. Under the Fair Queueing algorithm, the environment is much more stabl
thus facilitating learning. Under FIFO, each agent’s experimentation immediately a
everyone else’s queue, which prompts more experimentation, therefore, the environ
not so stable.

A PA type of learner in the Internet setting would choose among transmission rat
strategies) with the shortest delays (or best payoffs). Bad strategies are quickly aban
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Fig. 5. Learning models without similarity windows in VHBR’s coordination games.
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Fig. 6. Learning models with similarity windows in VHBR’s coordination games.
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Therefore, in a stable environment under the Fair Queueing algorithm the agen
the smallest demand can quickly find the best strategy via hill-climbing and sett
that strategy or a close neighborhood of that strategy, the agent with the second s
demand then finds the best strategy and settles, and so on. The whole system will c
rather quickly. In contrast, an EWA or RL learner will keep all strategies alive, there
convergence is not as rapid. The original EWA model is designed to deal with situ
where there is a role for beliefs. This is probably why the modified version does n
as well in limited information settings. The RL learner has too little optimization bui
and therefore has too much inertia. In an unstable environment under FIFO (or AC
feedback is not as useful as in the SER game since it is the aggregate result of all
experimentation. A PA learner will be responding to all other learners’ experimen
in trying to locate the best strategy. There is no obvious order of settling as und
SER mechanism. To capture how real humans learn in such an unstable environm
speculate that the direction and magnitude of a learner’s experimentation (or the
term) should be a function of the payoffs received from each strategy. However, this
is not captured by any of the learning models we are aware of.
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