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Abstract

This paper reports the first experimental study of the serial and the average cost pricing mech-
anisms under five different treatments: a complete information treatment and four treatments de-
signed to simulate distributed systems with extremely limited information, synchronous and asyn-
chronous moves. Although the proportion of Nash equilibrium play under both mechanisms is
statistically indistinguishable under complete information, the serial mechanism performs robustly
better than the average cost pricing mechanism in distributed systems, both in terms of the propor-
tion of equilibrium play and system efficiency.
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1 Introduction

In a wide variety of real world situations a group of agents share a common production process
transforming input into output. Examples of shared resources include computing facilities, secre-
tarial support and lab facilities within an organization. A cost-sharing mechanism distributes the
service and allocates the corresponding costs to each agent. Two prominent cost-sharing mecha-
nisms are the serial mechanism (Shenker (1990), Moulin and Shenker (1992)) and the average cost
pricing mechanism (see Tauman (1988) for a survey). We will use two examples to illustrate how
the mechanisms work.

We first look at a group of ranchers who might share the cost of constructing and maintaining
an irrigation network. Aadland and Kolpin (1998) provide an empirical and axiomatic analysis of
cost-sharing arrangements of irrigation ditches located in south-central Montana. In their sample,
a typical ditch begins at the headgate and then continues on a sequential path through the lands
of each rancher using the main ditch. Ranchers’ private ditches branch off from the main ditch
and transport water to their land. The costs associated with the main ditch are shared among the
ranchers. Kolpin and Aadland (2001) find that the cost sharing rules employed on these ditches
are variations of the average and serial cost sharing mechanisms. A rule is in the average class if
all agents pay according to an identical fixed “rate”, which may be defined on a per capita basis,
per irrigated acre basis, etc. A serial rule partitions the ditch into “a sequence of segments such
that all agents require the first segment to be operational in order to receive water, all but the first
agent on the ditch additionally require the second segment to be operational, ... . Each segment is
then treated like a separate ditch whose costs are covered by having all agents requiring its use pay
an identical fixed rate.” (Kolpin and Aadland (2001)) An agent’s total cost share is the sum of his
obligations on each of these individual segments. This example provides a more traditional setting
where the ranchers know the rules of the game as well as each other’s demand fairly well.

A more recent example is provided by the Internet, which has becoming increasingly important
in global telecommunications. In the context of several agents sharing a network link, the cost to be
shared is congestion experienced. Each agent controls the rate at which she is transmitting data. If
the sum of the transmission rates is greater than the total link capacity, then the link becomes con-
gested and the agents’ packets experience delays. Most current Internet routers use a FIFO packet
scheduling algorithm, which results in each agent’s average queue proportional to her transmis-
sion rate. This corresponds to the average cost pricing mechanism (Shenker (1990)). In contrast,

A formal definition of each mechanism is provided in Section 2.



the Fair Queueing packet scheduling algorithm, which corresponds to the serial mechanism, leads
to congestion allocations such that an agent’s average queue is independent of transmission rates
higher than her own. The latter has been proposed as an alternative to the former, based on theoret-
ical and simulation results (Stoica, Shenker and Zhang (1998)). The new generation of Cisco 7200,
3600 and 2600 rounters have both the FIFO and Fair Queueing optibinis. paper presents the

first experimental study of the performance of the two mechanism in both the traditional complete
information setting and the Internet setting.

Most of the theoretical literature has focused on the axiomatic characterization of these mech-
anisms (e.g., Moulin and Shenker (1994), Friedman and Moulin (1999)) and their static properties
in a complete information setting with synchronous actions. However, as Friedman and Shenker
(1998) pointed out, in distributed systefnsuch as the Internet where agents have very limated
priori information about other agents and the payoff structure and where there is no synchroniza-
tion of actions, traditional solution concepts that we use to characterize these mechanisms, such
as Nash equilibrium or even the serially undominated, setght not be achieved as a result of
learning. They propose new solution concepts for distributed systems describing convergence for
learning algorithms satisfying certain theoretical properties.

Although Friedman and Shenker (1998) used the Internet as the context for their new theory,
limited information and asynchrony are more realistic assumptions than complete information and
synchronous play in many real economic situations. To my best knowledge there have not been
experimental studies that incorporate both limited information and asynchrony to study implemen-
tation. The average cost pricing mechanism has not been studied in the laboratory either. The
only other experimental study of the serial mechanism is by Dorsey and Razzolini (1999). They
investigate the performance of the serial mechanism with each human subject against three com-
puterized players, where each human player knows his own cost share and payoff structure but has
no information about the opponents’ payoff structures. Their information condition is in between
the complete information and limited information setting in this study. They do not consider the
performance of the mechanism under limited information or asynchrony.

In this paper | design an experiment to evaluate the serial and the average cost pricing mecha-
nism in an easy environment with complete information, and more challenging environments with

2http://www.cisco.com/warp/public/121/72Qger-vc-CBWFQ.htm

3Following Friedman and Shenker (1998), a system is calldidtaibuted systertbecause the users are geograph-
ically dispersed and are accessing the resource through the network.” The Internet is a prominet example.

4Serially undominated set is the set of outcomes of a strategic game that survives iterated elimination of strictly
dominated actions.



extremely limited information and asynchronous moves. The goal of this paper is to compare the
performance of the two mechanisms in various settings and to assess the plausibility of the new
solution concepts.

The paper is organized as follows. Section 2 introduces the theoretical properties of the serial
(sometimes shortened as SER) and average cost pricing (hereafter shortened as ACP) mechanisms.
Section 3 presents the experimental design. Section 4 compares the performance of the mecha-
nisms under complete information. Section 5 presents results in distributed systems with limited
information and asychrony. Section 6 discusses the robustness of the experimental results with
respect to changes in the environment. Section 7 concludes the paper.

2 The Serial and ACP Mechanisms - Theoretical Properties

Suppose a group ot agents share a one-input, one-output technology with decreasing returns.
Each of the: agents announces his demapndf output. Each agent gets her demagpdnd pays a

cost sharey;. Notex; is the total cost ageritpays. In the irrigation example; corresponds to the
total amount of maintenance of the main ditch demanded by agehile z; is what agent pays

to get the maintenance done. In the example of Internet routeisagent:;’s data transmission
rate, whilex; is the congestion, i.e., the average queue experienced by agéherefore,r; is

the reduction in agents utility due to congestion. Lej; < ¢ < --- < ¢,. The cost function

is denoted by, which is strictly convex. A cost-sharing mechanism must allocate the total cost
C(X; ¢;) among then agents.

The serial mechanism, originally introduced by Shenker (1990), was analyzed by Moulin and
Shenker (1992) in the context of cost and surplus sharing with complete information. The mecha-
nism can be characterized by four properties: unique Nash equilibrium at all prodifesymity
(the name of the agents does not matter), monotonicity (an agent’s cost share increases when she
demands more output) and smoothness (an agent’s cost share is a continuously differentiable func-
tion of the vector of demands). Among agents endowed with convex, continuous and monotonic
preferences, the serial mechanism is the only cost sharing rule which is dominance-solvable and
its unique Nash equilibrium is also robust to coalitional deviations when agents cannot transfer
outputs.

Under the serial mechanism, agent 1 (with the lowest demand) ([@dygth of the cost of
producingng;. Agent 2 pays agent 1's cost share plu$n — 1)th of the incremental cost from

5Assume agents have convex, continuous and monotonic preferences.
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ng to (n — 1)ge + q1, i.€.,

S

25 (¢, 1) = C(nq1)/n; andas (¢, q1, g2) = Clna) + Cla+ (n—1)gp) - C(Wh).

n n—1

And so on. Therefore, an agent’s cost share under the serial mechanism is only affected by her own
demand and those whose demands are lower than hers. Thatis, an agent’s cost share is independent
of demands higher than her own.

Like the serial mechanism, the average cost pricing mechanism satisfies anonymity, monotonic-
ity and smoothness. Itis the only method that is robust to arbitrage, i.e., agents cannot benefit from
merging or splitting their demands. In contrast to the serial mechanism, the normal form game
induced by the average cost pricing mechanism is in general not dominance-solvable, nor does
it have a unique equilibrium at all profiles when agents have convex, continuous and monotonic
preferences.

When ageni demandg;; amount of output, the general formula for agéstcost share under
the average cost pricing mechanism is given by

e, q) = (ql/qu) . C’(qu), foralli=1,--- n.

Therefore, under ACP an agent’s cost share is proportional to her demand. It is affected by her
own demand, and the sum of all other agents’ demands.

There is no systematic efficiency comparison between the two mechanisms. In general there
exists no differentiable and monotonic cost sharing mechanism where all Nash equilibrium out-
comes are first best Pareto optimal at all preference profiles. Moulin and Shenker (1992) provide
a definition of second best efficierfcgind show that the serial mechanism yields a second best
efficient equilibrium while ACP does not.

A particularly interesting question is the performance of the two mechanisms in distributed sys-
tems where users are geographically dispersed and are accessing the resource through the network.
Friedman and Shenker (1998) address the issue of learning and implementation in distributed sys-
tems. They argue that when agents have very limat@diori information about the other players

6“For an arbitrary cost sharing mechanigmsay that(q, - - -, ¢, ) is a Nash equilibrium outcome at some utility
profile. We ask if there is another vector of demangs - - -, ¢,,) such that at the corresponding allocation dictated
by the mechanisrg, no one is worse off and someone is better off than at the equilibrium allocation corresponding to
(g1, -+, ¢gn)- If no such vector of demands exists, we call our equilibrium second best efficient.” Moulin and Shenker
(1992, p.1025)



and the payoff structure, standard solution concepts like Nash equilibrium or even the serially un-
dominated set are not necessarily achieved as a result of learning in the network setting. Therefore,
new solution concepts, such as the serially unoverwhelmed set and the Stackelberg undominated
set are proposed. Loosely speaking, one aaterwhelmsanother if all payoffs, over all sets of

other players’ actions, for the one are greater than all payoffs, over all sets of other players’ actions,
for the othef. Therefore, if action U overwhelms action D, then U dominates D, but the converse

IS not true.

Player 2
L R
Player 1 U| m(UL), m(UL) | m(UR), m(UR)
D | m(DL), ma(DL) | m(DR), ma(DR)

For example, in the abo&x 2 game, action U dominates D7f (U L) > m (DL) andm (UR) >

m(DR); action U overwhelms D ifnin{m (UL), 7 (UR)} > max{m (DL), m (DR)}. Theseri-

ally unoverwhelmed sét the set remaining after iterated elimination of overwhelmed actions. One
main result of Friedman and Shenker (1998) is that reasonable |€acoersrge to the serially
unoverwhelmed set. In comparison, Milgrom and Roberts (1990) showed that adaptive learners
converge to the serially undominated set. A gamB-solvableif iterated elimination of domi-

nated strategies leads to a single eventual outcome. A gaeadvablef iterated elimination of
overwhelmed strategies leads to a single eventual outcome. Among the cost sharing mechanisms,
the serial mechanism is O-solvabighile ACP is not.

3 Experimental Design

The experimental design reflects both theoretical and technical considerations. The goal of the
design is to compare the performance of the serial and ACP mechanisms in two different set-
tings: a complete information setting that tests the prediction of dominance-solvability, and a more
challenging network setting to compare the performance of the two mechanisms and to assess the
plausibility of the new solution concepts. The economic environment and experimental procedures
are discussed in the sections below.

’See Friedman and Shenker (1998) for a precise definition.
8The key components of a reasonable learner are optimization, monotonicity and responsiveness. See Friedman

and Shenker (1998).
9This is proved in Theorem 8 in Friedman and Shenker (1998).
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3.1 The Economic Environment

In a simple environment to test the serial and ACP mechanism under various treatments, agents
are endowed with linear preferencesz;, q) = «;q; — =;, whereq; is agent’s marginal utility
for the output, and:; is her cost share. The cost function is chosen to be quadfgii¢,= ¢*. In
the network context with several agents sharing a network dinls agent’s value for the amount
of data transmitted per unit of time, and the cost to be allocated corresponds to the congestion
experienced. Therefore, the cost should be interpreted as the reduction in’ageility due to
congestion. | chose linear utility and quadratic cost functions in order to get a unique interior Nash
equilibrium. In Section 6 | present simulation results for more general utility and cost functions.

Consider a two-player game with, < «a,. Then under the serial mechanism, the cost share
for agent 1 isty = C(2q1)/2 = 2¢3. Agent 2 picks up the remaining cost; = C(q + ¢) —
C(2¢1)/2 = (¢1 + ¢2)* — 2¢3. The unique, dominance-solvable Nash equilibrium is thus charac-
terized by

s_ M

1
q = 1 andq25 = 1(20@ —ay).

The Stackelberg equilibrium for the serial game coincides with the above Nash equifibrium

For the ACP mechanism, the cost shares of the two agents;are A Ol + @) =

(@ + q2), andzf = P C(q1 + ¢2) = q2(q1 + ¢2) respectively. Therefore, the unique

dominance-solvable Nash equilibrium is characterized by

2&1 — Q9
3

2000 — (1

,andgy™ = 3

A
Gt =

Note that the Stackelberg equilibria under ACP usually differ from the Nash equilibrium. The
Stackelberg equilibrium with player 2 as the leader is

3a a o
A52 — 1 2 A52 — 1
= — — —,and¢** = ag — —.
N VR Rhahas 27

In the asynchronous treatment discussed in Section 3.2 player 2 will be the Stackelberg leader.
The mechanisms are implemented as normal form games with a discrete strategy>space,
{1,2,---,11,12} for eachi. Parameters are chosen to ensure: (1) the serial game is both D-
solvable and O-solvable, while the ACP game is D-solvable but not O-solvable; (2) the Stackelberg

equilibrium and Nash equilibrium under ACP are sufficiently far away from each other; (3) the

0This is a general property of the SER mechanism (Corollary 1 to Theorem 1 in Moulin and Shenker (1992)).



normal form games with a discrete strategy space has a unique Nash equilibrium und&rnACP

most of the payoffs are positive in both normal form games. Note that since the stage game under
SER and ACP are both dominance-solvable, the equilibrium of the complete information repeated
game is simply repeated play of the static equilibrium.

[Table 1 about here.]

Table 1 reports the parameters and equilibrium quantities for each type of equilibrium for the
two mechanisms. In the second column wedgt= 16.1 anday, = 20.1. Under the serial
mechanism the Nash as well as the Stackelberg equilibrium quantitié$, 6§e Under ACP, the
Nash equilibrium quantities aré, 8), while the Stackelberg equilibrium quantities with player 2
as the leader ar@, 12). Note that we use Blue for player 1 and Red for player 2 in the instructions
(see Appendix).

3.2 Experimental Procedures

| implement five different treatments. For a baseline treatment | conducted twelve sessions of the
serial and ACP mechanisms under complete information with the round robin design (hereafter
shortened aRound Robin). Each session has eight pairs of players. Each of the player 1's is
matched with each of the player 2’s only once. The entire session lasts for eight rounds. Under
the Round Robin treatment, each player is given complete information about the payoff matrix
and the structure of the game. They are also given information about quantities chosen and the
corresponding payoffs of all players. This treatment is designed to compare the performance of
the two mechanisms as one-shot games under complete information. The natural solution concept
for this treatment is dominance-solvability.

To evaluate the possibility of applying these mechanisms to distributed systems such as the
Internet, | designed four treatments with limited information and various degrees of asynchrony.
Learning in distributed systems is characterized by two features. First, players have extremely
limited information - they often do not know the payoff functions, nor do they know how their
payoffs depend on the actions of others, probably due to the lack of information about the detailed
nature of the resources itself. Therefore, in the experimental setup the only information players

11} thank Scott Shenker for suggesting using non-intgget; to avoid the multiple equilibria problem in ACP. In
environments with linear preferences and quadratic cost functions even though there exists a unique Nash equilibrium
in a continuous strategy space under the ACP mechanism, there are multiple equilibria when the strategy space is
discrete and the preference parametgisy,;, are integers. The proof is available from the author upon request.
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have is their own action and the resulting own payoffs. Second, there is no synchronization. The
rate at which updating occurs can vary by many orders of magnitude. This feature is reflected by the
following design: two treatments with synchronous play and updating, two with asynchronous play
and updating. In the synchronous treatments (hereafter shortei@d\gvery player receives

his own payoff feedback after each round. In the asynchronous treatments (hereafter shortened
asASYN) player 1 submits a demand and gets a payoff feedback after each round, but player 2
submits a demand which is matched with his opponents’ demands for the next five rounds and gets
a cumulative payoff feedback every five rounds. Therefore, in the asynchronous treatment player
2 acts five times slower than player 1 and becomesléhiactoStackelberg lead&:.

With both synchronous and asynchronous play, | designed one treatment where players are
randomly re-matched into pairs in each of the 150 rounds, and another treatment where players
are matched into fixed pairs at the beginning of each session, and play the same partner for 150
rounds. The former captures the inherent randomness in many network settings, while the latter
reflects situations with fixed sets of players, such as cost sharing in irrigation ditches (Aadland and
Kolpin (1995)). In all four treatments the game lasts for 150 rounds (30 rounds for player 2 in
ASYN) and the players always keep their own type. To summarize, | implement the following five
different treatments.

1. Round Robin: complete information, round robin;

2. SYN,: limited information, synchronous play, with random re-matching for each of the 150
rounds;

3. SYN;: limited information, synchronous play, with repeated fixed pairs for 150 rounds;

4. ASYN,: limited information, asynchronous play, with random re-matching for each of the
150 rounds; and

5. ASYN;: limited information, asynchronous play, with repeated pairs for 150 rounds.

Computerized experiments were conducted by the author at the EEPS Laboratory at the Cali-
fornia Institute of Technology (hereafter shortened as CIT) in June and July, 1997, and the RCGD

2Asynchrony as defined by Friedman and Shenker (1998) requires the ratio of expected reaction time of different
players to be fixed. Therefore, there can be two different implementations of asynchrony in the experimental setting:
a fixed ratio as described above, or more random speed differentials with fixed expected ratio. Both implementation
of asynchrony are faithful to the theoretical model. | chose the former because of its simplicity.
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Laboratory at the University of Michigan in November, 1999 and January, 2000. Subjects were stu-
dents and staff from CIT, Pasadena City College (hereafter shortened as PCC) and the University
of Michigan (hereafter shortened as UM)A total of 484 subjects participated in the experiment.

No subject was used in more than one session.

[Table 2 about here.]

Table 2 lists the features of each session, including session number and subject pool, number
of subjects in each session, mechanisms implemented, and game length under each treatment. At
the beginning of each session subjects randomly drew an identification number. Then each of
them was seated in front of the corresponding terminal, with a folder containing the instructions
and record sheets. After the instructions were read aloud, subjects were required to finish the
Review Questions, which were designed to test their understanding of the instructions. Afterwards
the experimenter checked answers and answered questions. In all sessions the instruction period
was within 20 minutes. There was no practice round in any session. The Round Robin sessions
consisted of 8 rounds and typically lasted for 40 minutes. The SYN and ASYN sessions consisted
of 150 rounds and typically lasted for one and a half hours. The average earnings of experimental
subjects was $20.16, not including the $8 participation fee for PCC sulfjects

Instructions for the experiments are in the Appendix. Note that in both the SYN and ASYN
treatments players had extremely limited information - they were told that they were in a game, the
game length and their strategy space. At the end of each round each player was informed of his
own choice in the previous round and his own payoff corresponding to his previous round’s choice
of quantity. They had no information about the payoff matrix, nor whom they were playing with.

13| checked the subject pool effects by using the data from the fixed-pairs and Round Robin treatments. In the fixed
pairs treatments, one-tailed t-tests show that the difference in the proportion of equilibrium play are not significant at
the 10% level £ = 2.32 for CIT vs. PCC,z = 1.22 for CIT vs. UM, andz = 1.02 for UM vs. PCC), and that
the difference in efficiency are not significant between CIT and UM:(1.88), PCC and UM £ = 0.12). The only
significant difference in efficiency is CI® PCC, withz = 2.63 (p < 0.05). Under Round Robin, CIT subjects
played Nash equilibrium strategy significantly more than those from BC& (.01, one-tailed permutation test)

while efficiency difference is weakly significant & 0.768, one-tailed permutation test).
YThe participation fee was used to compensate the PCC subjects for transportation costs. Since the experiment was

conducted on the CIT and UM campuses, subjects from CIT and UM did not receive a participation fee.
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4 Performance of the Mechanisms Under Complete Information

In this section | compare the performance of the two mechanisms under the Round Robin treatment,
using two criteria - the proportion of Nash equilibrium play and the system effictéridgder the

Round Robin treatment, the theoretical prediction for both mechanisms is the dominance-solvable
Nash equilibrium.

[Table 3 about here.]

Table 3 tabulates the proportion of Nash equilibrium play in each round under the Round Robin
treatment, as well as the proportion of equilibrium play in all rounds. The last row presents the
p-values for one-tailed permutation tests under the null hypothesis that the proportion of Nash
equilibrium play is the same under both mechanisms.

RESULT 1 (Equilibrium Play under Round Robin) : Inthe Round Robin treatment, at the 8th
round an average of 88.6% of the subjects played the unique Nash equilibrium strategy under
SER; while an average of 80.9% of the subjects played the unique Nash equilibrium strategy under
ACP. The proportion of the Nash equilibrium play under the two mechanisms is not significantly
different.

SUPPORT.Table 3 presents the proportion of Nash equilibrium play for each round. Permutation
tests under the null hypothesis that the proportion of Nash equilibrium play under SER is the same
as that under ACP for roungdwheret = 1,2, - - - | 8, show that none of the p-values is significant at

the five percent level. The overall proportion of Nash equilibrium play under the two mechanisms
is not significantly different eithep(= .456, one-tailed).

Result 1 is not surprising since both games are dominance-solvable, and the presentation in the
form of bimatrix games is fairly transparent. Under complete information we expect that adaptive
learning converge to the unique Nash equilibrium.

Although there is no theoretical systematic efficiency comparison between the two mechanisms
in general, it is informative to check the actual efficiency of the system in this particular experi-
ment. Group efficiency is calculated by taking the ratio of the sum of the actual earnings of all
subjects in a session and the Pareto-optimal earnings of the group. Note that in this experimental
setting the Pareto optimal payoff is 970 at strategy two-tipl®) in both SER and ACP. As a

15A complete set of the data is available from the author upon request.
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benchmark, the efficiency of Nash (and Stackelberg) equilibrium under the serial mechanism is
87.63%. Under ACP the efficiency of Nash equilibrium is 83.71%, while the efficiency of the
Stackelberg equilibrium with player 2 as leader is 79.71%.

RESULT 2 (Efficiency under Round Robin) : The efficiency of the serial mechanism is signif-
icantly higher than that of the ACP mechanism under the Round Robin treatment.

[Table 4 about here.]

SUPPORT. The last column of Table 4 shows the efficiency of each session under the Round
Robin treatment. Permutation tests show that the efficiency of SERP at a significance level
of .023 (one-tailed).

Therefore, under Round Robin although the amount of Nash equilibrium play is not signifi-
cantly different between the two mechanisms, the serial mechanism generated significantly higher
system efficiency than ACP.

5 Performance of the Mechanisms in Distributed Systems

Although the proportion of Nash equilibrium play was not significantly different under the two
mechanisms under complete information, the performance of the two mechanisms differed dra-
matically in distributed systems. In this section | will evaluate the two mechanisms under SYN
and ASYN in terms of the proportion of equilibrium play and efficiency, and the plausibility of
new solution concepts proposed for distributed systems.

[Table 5 about here.]

Table 5 presents the proportion of Nash and Stackelberg equilibrium play for each independent
observatiotf under each of the four different treatments in distributed systems.

RESULT 3 (Equilibrium Play under SER and ACP) : Under all four treatments the ranking
of the proportion of equilibrium play is highly significant: SERACP.

18Note under the random matching treatment each session is an independent observation, while under the fixed pair
treatment each pair is an independent observation.
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SUPPORT. Table 5 presents the proportion of Nash and Stackelberg equilibrium play for each
independent observation. One-tailed permutation tests show that the proportion of equilibrium
play under SER is greater than the proportion of equilibrium play under ACPpwitly.05 under

SYN,, p = 0.05 under ASYN, p < 0.01 under SYN, andp < 0.01 under ASYN..

Therefore, in contrast to Result 1 where the proportion of Nash equilibrium play are not signifi-
cantly different under the Round Robin treatment, the proportion of Nash and Stackelberg equilib-
rium play do differ significantly in distributed systems. The SER mechanism induces significantly
more equilibrium play than the ACP mechanism.

RESULT 4 (Efficiency under SER and ACP) : Under all four treatments the ranking of group
efficiency is highly significant: SER ACP.

[Table 6 about here.]

SUPPORT. Table 6 presents the efficiency of each independent observation under SER and ACP.
One-tailed permutation tests show that the efficiency under SER is greater than the efficiency under
ACP, withp = 0.05 under SYN, p = 0.05 under ASYN, p < 0.01 under SYN, andp < 0.01

under ASYN.

Although both games are dominance-solvable and the amount of equilibrium play is not sta-
tistically different under complete information, their performance does differ dramatically in dis-
tributed settings with limited information and asynchrony: the serial mechanism performs robustly
better than the ACP mechanism both in terms of Nash and Stackelberg equilibrium play and system
efficiency.

One of the characteristics of distributed systems is the asynchrony of actions. In the following
result | examine the effects of asynchrony on the proportion of equilibrium play and efficiency.

RESULT 5 (Effects of Asynchrony) : The proportion of Nash equilibrium play under SYN is
significantly higher than the proportion of Stackelberg equilibrium play under ASYN. Efficiency
under SYN and ASYN is not significantly different.

SUPPORT. Table 5 presents the proportion of Nash and Stackelberg equilibrium play for each
independent observation. One-tailed t-td$§:(SYN = ASYN; H;: SYN > ASYN) yieldsz =

2.18 (p < 0.05). Table 6 presents the efficiency of each independent observation under SYN and
ASYN. One-tailed t-test yields = 1.26 (p > 0.10).

13



Intuitively, under the asynchronous treatments the Stackelberg leaders moved five times slower
than the followers. Therefore they did not have the same opportunity to learn the equilibrium
strategies. It is interesting to note that even though we observe significantly more equilibrium
play in the synchronous case, the presence of asynchrony does not reduce the system efficiency
significantly.

Results in this section lend support for the following result:

RESULT 6 (O-solvable vs. D-solvable Mechanisms) The SER mechanism, which is O-solvable,
performs significantly and robustly better than the ACP mechanism, which is D-solvable but not
O-solvable, in terms of efficiency and the proportion of equilibrium play.

Results in Sections 4 and 5 provide empirical support for Friedman and Shenker’s (1998) ar-
gument that traditional solution concepts such as Nash equilibrium or dominance-solvability are
not adequate for predicting what can happen in distributed systems. Analysis of experimental data
shows that O-solvable games exhibited rapid and robust convergence to the unique Nash equilib-
rium regardless of the degree of asynchrony, while D-solvable games did not converge as well. In
Chen and Khoroshilov (2000) we examine the learning dynamics induced by the two mechanisms
by comparing the explanatory power of three learning models. In Section 6 | examine whether the
experimental results in the last two sections are robust in more general environments.

6 Robustness of Experimental Results in More General Environments

In this section | assess the extent to which the experimental results in Sections 4 and 5 depend
on the linearity of the utility function and the quadratic cost function employed. | consider nine
different environments. For simplicity | use polynomial utility and cost functions. The utility
function ist;(z;, ) = asq® — x;, wherea; = 16.1, ap = 20.1 are agents’ marginal utility for the
output,b = 0.5, 1, and2, andx; is her cost share. The cost function is chosen t6'bg = ¢-,

wherec = 0.5,1 and2. Varying parameterg andc will give us nine combinations of concave,
linear and convex utility and cost functions. Note that 1 andc = 2 is the original experimental
design.

[Table 7 about here.]

Table 7 presents the Nash equilibrium quantities and payoffs for the two types of players under
each of the nine environments. Note that all 14 boundary Nash equilibfiLim]2), and one

14



interior Nash equilibrium under SER?, 2), are dominant strategy Nash equilibrium, whereas the
other three interior Nash equilibria are dominance solvable.

For the complete information, Round Robin treatment, | expect Result 1 to hold in each of the
nine environments, i.e., the proportion of Nash equilibrium play will be indistinguishable between
SER and ACP, since both games have either a dominance-solvable or a dominant strategy equilib-
rium in each of the nine environments, and the presentation in the form of bimatrix games is fairly
transparent. Under complete information | expect that adaptive learning leads to convergence to
the unique Nash equilibrium.

Note that in Table 7 the Nash equilibrium payoffs for the players are the same under the two
mechanisms in eight out of nine environments, where the Nash equilibria are symmetric. This is
because SER and ACP allocate the same cost share to each player when they demand the same
guantity. Indeed, the only environment where the payoffs differ is the experimental environment
(b = 1 andc = 2). Therefore, | expect that the efficiency will be indistinguishable between
SER and ACP in each of these eight environments under complete information and Round Robin
treatment. That is, Result 2 might not hold in these eight environments. This is not surprising,
since in general there is no systematic efficiency comparison between the two mechanisms, as |
discussed in Section 2. Therefore, any efficiency comparison between the two mechanisms will
necessarily depend on the environment.

To assess how robust the experimental results are in distributed systems in different environ-
ments, | conduct Monte Carlo simulations for each of the nine environments. Since Chen and
Khoroshilov (2000) study the learning dynamics induced by the SER and ACP mechanisms, | use
the learning algorithm that performs the best on these data set and the calibrated parameters in
Chen and Khoroshilov (2000) to conduct simulations.

Chen and Khoroshilov (2000) study how human subjects learn under extremely limited infor-
mation. They use experimental data on cost sharing games reported in this paper, and Van Huyck,
Battalio and Rankin’s (1996) data on coordination games to compare three payoff-based learning
models: the payoff-assessment learning model (Sarin and Vahid 1999), a modified experience-
weighted attraction learning model (Camerer and Ho 1999) and a simple reinforcement learning
model. They show that the payoff-assessment learning model tracks the data the best in both the
cost sharing games as well as the coordination games. Therefore, | use the payoff-assessment
learning model and the parameters calibrated on the cost sharing games to conduct simulation
in other environments. Admittedly, even though the payoff-assessment learning model performs
the best in capturing how human subjects learn under limited information in one environment
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(b = 1 andc = 2), it is possible that it might not be the best learning model when the environ-
ment changes. However, this is the best approximation we have. At least, the simulation results
can show us the relative performance of the two mechanisms in other envirorifregeats are
myopic maximizers described by the payoff-assessment algorithm.

The payoff-assessmentearning model assumes that a player is a myopic subjective maxi-
mizer. She chooses among alternate strategies only on the basis of the payoff she assesses she
would obtain from them. These assessments do not explicitly take into account her subjective
judgements regarding the likelihood of alternate states of the world. At each stage, the player
chooses the strategy that she myopically assesses to give her the highest payoff and updates her as-
sessment adaptively. Let(¢) denote the subjective assessment of strategy timet. The initial
assessments are denotedihy0). Payoff assessments are updated by taking a weighted average
of her previous assessments and the objective payoff she actually obtains atlfisteategyk is
chosen at time, then

ui(t +1) = (1 = rfi(h, 1)u;(t) + rfiu(h, t)me(t), V5. 1)
Suppose that at timeghe decision-maker experiences zero-mean, symmetrically distributed shocks,

Z;(t) to her assessment of the payoff she would receive from choosing stratetpr all s;.
Denote the vector of shocks by = (Z,,---, Z12), and their realizations at timeby z(t) =

(z1(t), -+, z12(t)). The decision maker makes choices on the basis of her shock-distorted subjec-
tive assessments, denotediddy) = u(t) + Z(t). Attime ¢ she chooses strategy if
ﬂj(t) > al(t),Vsl 7é S;. (2)

Note that mood shocks only affect her choices and not the manner in which assessments are up-
dated. Sarin and Vahid (1999) prove that such a player converges to stochastically choose the
strategy that first order stochastically dominates another among the strategies she converges to
play with positive probability.

For parameter estimation, Chen and Khoroshilov (2000) conducte Monte Carlo simulations
designed to replicate the characteristics of each of the experimental settings. They then compare
the simulated paths with the actual paths of a subset of the experimental data to estimate the
parameters which minimize the mean-squared deviation scores. | use these estimated parameters
to conduct Monte Carlo simulations for each of the nine environments.

In each simulation, 10,000 pairs of players were creldtelsh each simulation the following
steps were taken:

"This yields a statistical accuracy of 1%.
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1. Initial values: Since Kolmogorov-Smirnov tests of the initial choice distribution by experi-
mental subjects cannot reject the null hypothesis of uniform distribution. $et = 200
for all players wherb = 0.5 and1, since in the experimental data the average first-round
payoffs was around 200 which also result in a probability predictions around the centroid,
(1/12,---,1/12), for the first round. With concave (= 0.5) and linear { = 1) utility
functions, the magnitude of payoffs are similar to the experimental setting. With convex
utility function (b = 2), the payoffs are about two orders of magnitude larger than the payoff
matrices in the experiment, therefore | 8et0) = 3000 for all players wherb = 2.

2. Simulated players were matched into fixed pairs, or randomly rematched pairs for each pe-
riod, depending on the treatment.

3. Shocks are drawn from a uniform distributidnsa, a], wherea is estimate#f in Chen and
Khoroshilov (2000).

4. The simulated players’ strategies were determined via Eq. (2).

5. Payoffs were determined using the SER or ACP payoff rule for @ach parameter combi-
nation.

6. Assessments were updated according to Eg. (1), using discount faestimated in Chen
and Khoroshilov (2000). Updating occurs every period under SYN for both players, every
period for player 1 in ASYN and every five periods for player 2 in ASYN.

[Figures 1, 2 and 3 about here.]

Figure 1 shows the simulated time series paths for player 1 in an environment with concave util-
ity function (b = 0.5) under SERSYN (left column) and ACPSYN (right column) respectively.
Simulated paths for player 2 exhibit similar patterns, therefore are not displayed. The first row
presents the simulated paths under concave utility (.5) and concave cost function & 0.5).

The second row presents the same information under a linear cost functom)( The last row
presents the same information under a convex cost funetien?). Each graph presents the mean

18The best fit parameters ae= 3 for SER SYN,a = 2 for SER ASYN,a = 50 for ACP SYN, anda = 45 for

ACP ASYN. The larger in ACP reflects the relatively volatile paths of the ACP data.
1°The best fit parameters are= 0.2 for SER SYN,r = 0.0 for SER ASYN,r = 0.6 for ACP SYN, andr = 0.2

for ACP ASYN.
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(the black dots), standard deviation (the grey error bars) and stage game equilibria (the dashed
lines) for each mechanism. Larger error bars indicate more variance in the choice of strategies
and thus worse convergence to the mean. Figures 2 and 3 present the simulated time series paths
for player 1 under SERSYN(left column) and ACPSYN (right column) in environments with
linear ( = 1) and convex{ = 2) utility functions respectively. Simulation results for the random
matching treatments display similar patterns. Therefore they are not displayed.

Based on the Monte Carlo simulation | have the following results:

1. With concave § = 0.5, e.g. figure 1) and lineah (= 1, e.g. figure 2) utility functions,
regardless of the forms of the cost function, simulated players converge much more quickly
to the stage game equilibrium under SER than under ACP. As a result the proportion of
equilibrium play is significantly larger under SER than under ACP.

2. With convex ¢ = 2, e.g. figure 3) utility function, regardless of the forms of the cost func-
tion, simulated players under both mechanisms converge quickly to the stage game equilib-
rium. Convergence under SER is slightly more quickly than that under ACP. As a result the
proportion of equilibrium play is weakly larger under SER than under ACP.

3. As a result of the different speed of convergence to equilibrium, with concave and linear
utility functions, efficiency under SER is significantly high than that under ACP. With convex
utility functions, efficiency under SER is weakly higher than that under ACP.

Simulation results for nine different environments suggest that the experimental results on the
proportion of equilibrium play are robust to variations in the environment, while experimental re-
sults on efficiency might depend on variations in the environment. In other words, even though
efficiency comparison might be sensitive to the environment, the SER mechanism is more pre-
dictable than ACP because it induces robustly quicker convergence to the stage game equilibrium.

7 Conclusion

Cost sharing mechanisms have many practical applications in the real world. An increasingly
important area is distributed systems like the Internet, where agents have very limited information
about the payoff structure as well as the characteristics of other agents and where there is no
synchronization of actions. Most current Internet routers use the average cost pricing mechanism,
while this study suggests that the serial mechanism might be a better choice.
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This paper reports experimental results on the serial and the average cost pricing mechanisms
under five different treatments. The first is a complete information treatment designed to test the
basic properties of the mechanisms. The other four treatments simulate distributed systems by giv-
ing the subjects very limited information about the game and by imposing two levels of asynchrony.
The latter present a more challenging and realistic setting for the cost sharing mechanisms.

The experimental data show that under the complete information treatment both mechanisms
converge well to the Nash equilibrium prediction and their performances are statistically indis-
tinguishable. Under the limited information treatments, however, the serial mechanism performs
significantly and robustly better than the average cost pricing mechanism, in terms of efficiency
and convergence to equilibrium predictions regardless of the level of asynchrony. To test the ro-
bustness of the results, | conduct Monte Carlo simulation using calibrated learning algorithms in
nine different environments. Simulation results indicate that the experimental results on the pro-
portion of equilibrium play are robust to variations in the environment, while experimental results
on efficiency might depend on variations in the environment.

Since both the serial and average cost pricing games are dominance-solvable in our design,
these results indicate that traditional solution concepts such as Nash equilibrium or dominance-
solvability might not be so useful in distributed systems. Experimental data provide empirical
support for Friedman and Shenker’s (1998) serially unoverwhelmed set.
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APPENDIX. EXPERIMENT INSTRUCTIONS

Instruction for Mechanism S corresponds to the serial mechanism under Round Robin. Instruc-
tion for Mechanism A corresponds to the average cost pricing mechanism under Round Robin.
Instruction for Mechanism XY is for SYN for both mechanisms, as well as for player 1 in ASYN.
Instruction for Mechanism XYZ is used for player 2 in ASYN for both mechanisms.

Experiment Instructions — Mechanism SID=___

Procedure

e Each participant has to make a decision in each ofounds.

e There are two different types: participants are Blue players andire Red players.

e The small envelope has your type and ID number. Your type remains the same for the entire
experiment.

¢ A Blue player always meets a Red player and a Red player always meets a Blue player.

¢ In each round, a Blue is matched with a Red. You will be matched with each participant of
the other type only once.

¢ In each round, a Blue and a Red simultaneously choose a number out of the following num-
bers:{1, 2,3,4,5,6,7,8,9, 10, 11, 32which denote¥our Demand of output.

¢ Your Payoff = (Your Valuation - Your Share of the Cost) x10.

e One unit of output is worth 16.1 points (Unit Value) to a Blue player, and 20.1 points (Unit
Value) to a Red player. Therefore,

Your Valuation = (Your Unit Value) x (Your Demand)

e Cost of producing: units isz2. The smaller demander will pay half of the cost of producing
twice the amount of the smaller demand, i.e., you pay the per capita cost of production as if
everyone demanded the same amount as you did. Therefore, if your demand is smaller than your
opponent’s demand, your share of the cost is the following

Smaller Demander’s Cost = 3 x (2 x Smaller Demany
= 2 x (Smaller Demang
If you demand a larger amount than your opponent, you are the larger demander. You will pay
the rest of the cost of production. Therefore,

Larger Demander’s Cost= (Smaller + Larger Demané— 2 x (Smaller Demanyt

Total Cost of Production Smaller Demander’s Cost
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e For example, if a Blue demands 2 unit and a Red demands 1 units, then the total demand is 3
units. The calculation of payoffs for the two types are tabulated as follows:

Blue Red
Your Demand 2 (Larger) 1 (Smaller)
Your Valuation 16.1 x 2 =32.2 20.1 x 1 =20.1
Your Share of the Cost (1+2)2 —2x 12 =7 2x12=2
Your Payoff (322 —7) x 10 =252 | (20.1 —2) x 10 =181

e The above information is summarized by the Payoff Tables in your folder.

Payoff Table

e The Payoff Table summarizes both your payoff and your opponent’s payoff. A Blue player
chooses which row to play. A Red player chooses which column to play. Your payoff is determined
by both your choice and your opponent’s choice. The first number in each cell (in blue) denotes
the payoff to a Blue player. The second number in each cell (in red) denotes the payoff to a Red
player.

e For example, if a Blue demands 2 unit, and a Red demands 1 unit, you can find the payoff
to each participant on the second row and the first column of the payoff matrix. The cell contains
two numbers: the first number is 252, which is Blue’s payoff; the second number is 181, which is
Red'’s payoff.

Information

¢ At the end of each round, each participant is informed of the following results of the round:

- your own demand

- your opponent’s demand

- your own payoff

- the distribution of demands of the other type in the last round.

¢ You will not know who your opponent was.

Total Payoff
e Your total payoff is the sum of your payoffs in all rounds.
e The exchange rate is $1 for_points.

Record Sheet you are required to record your demand, your opponent’s demand and your payoff
each round.

Review QuestiongWrite down your answers on top of your Record Sheet.)

1. Youarea (Blue or Red) player.

2. If you demand 2 units and your opponent demands 10 units, your payoff ggour oppo-
nent’s payoffis . Find it from your payoff tglé)le.
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Experiment Instructions — Mechanism A ID=___

Procedure

e Each participant has to make a decision in each ofounds.

e There are two different types: participants are Blue players andire Red players.

e The small envelope has your type and ID number. Your type remains the same for the entire
experiment.

¢ A Blue player always meets a Red player and a Red Player always meets a Blue player.

¢ In each round, a Blue is matched with a Red. You will be matched with each participant of
the other type only once.

¢ In each round, a Blue and a Red simultaneously choose a number out of the following num-
bers:{1, 2,3,4,5,6,7,8,9, 10, 11, 32which denote¥our Demand of output.

e Your Payoff = (Your Valuation - Your Share of the Cost) x 10.

e One unit of output is worth 16.1 points (Unit Value) to a Blue player, and 20.1 points (Unit
Value) to a Red player. Therefore,

Your Valuation = (Your Unit Value) x (Your Demand)

e Cost of producingr units isz?. Your share of the cost is proportional to your demand.
Therefore,

Your Share of the Cost = %%%x (Total Demang?
= (Your Demand) x (Total Demand),
where Total Demand = Your Demand + Your Opponent’s Demand.
e For example, if a type A demands 2 unit and a type B demands 1 units, then the total demand
is 3 units and the total cost of producing 3 units is 9. The calculation of payoffs for the two types
are tabulated as follows:

Blue Red
Your Demand 2 1
Your Valuation 16.1 x 2 =322 20.1 x 1 =20.1
Your Share of the Cost 2x9=6 $x9=3
Your Payoff (32.2 — 6) x 10 =262 | (20.1 — 3) x 10 = 171

e The above information is summarized by the Payoff Table in your folder.
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Payoff Table

e The Payoff Table summarizes both your payoff and your opponent’s payoff. A Blue player
chooses which row to play. A Red player chooses which column to play. Your payoff is determined
by both your choice and your opponent’s choice. The first number in each cell (in blue) denotes
the payoff to a Blue player. The second number in each cell (in red) denotes the payoff to a Red
player.

e For example, if a Blue demands 2 unit, and a Red demands 1 unit, you can find the payoff
to each participant on the second row and the first column of the payoff matrix. The cell contains
two numbers: the first number is 262, which is Blue’s payoff; the second number is 171, which is
Red'’s payoff.

Information
¢ At the end of each round, each participant is informed of the following results of the round:
- your own demand
- your opponent’s demand
- your own payoff
- the distribution of demands of the other type in the last round.
¢ You will not know who your opponent was.

Total Payoff
e Your total payoff is the sum of your payoffs in all rounds.
e The exchange rate is $1 for_points.

Record Sheet
e You are required to record your demand, your opponent’s demand and your payoff each
round.

Review QuestiongWrite down your answers on top of your Record Sheet.)

1. Youarea (Blue or Red) player.

2. If you demand 2 units and your opponent demands 10 units, your payoff gour oppo-
nent’s payoffis . Find it from your payoff table.
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Experiment Instructions — Mechanism XY ID=___

Procedure
e You are part of a game, in which you have to make a decision in each of 150 rounds.
e In each round, you will choose a number out of the following numbers:

{1,2,3,4,5,6,7,8,9,10,11, }2

Information
¢ At the end ofeach round you are informed of your result of the round:
- your own choice
- your own payoff

Total Payoffs
e Your total payoff is the sum of your payoffs in all rounds.
e The exchange rate is $1 for_points.

Record Sheet you are required to record your choice and your payoff each round.

Experiment Instructions — Mechanism XYZ ID=___

Procedure
¢ You are part of a game, in which you have to make a decision in each of 30 rounds.
¢ In each round, you will choose a number out of the following numbers:

{1,2,3,4,5,6,7,8,9,10,11, }2

Information
¢ At the end ofeach round you are informed of your result of the round:
- your own choice
- your own payoff

Total Payoffs
¢ Your total payoff is the sum of your payoffs in all rounds.
e The exchange rate is $1 for_points.

Record Sheet you are required to record your choice and your payoff each round.
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Equilibrium Quantities
ID Parameters SER ACP
«; Nash Stackelberg | Nash Stackelberg
(Leader: 1 or 2) (Leader: 2)
1 (Blue) 16.1 4 4 4 2
2 (Red) 20.1 6 6 8 12
Table 1: Parameters and Equilibrium Quantities
# of Subjects Game
Treatments Session # (Subject Pool) | Per Session| Mechanisms Length
1,2,3(CIT) 16, 16, 16 SER
Round 4,5, 6 (PCC) 16, 16, 16 SER
Robin 7,8,9 (CIT) 16, 16, 16 ACP 8
10, 11,12 (PCC) 16, 16, 16 ACP
Synchronous | 13 (CIT), 14 (PCC), 15 (UM) 16,12,12 SER
(fixed pair) | 16 (CIT), 17 (PCC), 18 (UM) 14, 12,12 ACP
Synchronous 19, 20, 21(UM) 12,12,12 SER
(random match 22, 23, 24 (UM) 12,12,12 ACP
Asynchronous| 25 (CIT), 26 (PCC), 27 (UM) 10, 12, 12 SER 150
(fixed pair) | 28 (CIT), 29 (PCC), 30 (UM) 12,12,12 ACP
Asynchronous 31, 32, 33 (UM) 12,12,12 SER
(random match 34, 35, 36 (UM) 12,12,12 ACP

Table 2: Features of Experimental Sessions
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Session Mechanism Round # All
# (Subj. Pool) 1 2 3 4 5 6 7 8| Rounds
1 SER(CIT) | .625 .688 .938 1.000 .938 1.000 1.000 1.000 .899
2 SER (CIT) | .688 .750 .938 938 .938 .938 1.000 1.000 .899
3 SER (CIT) | .750 .938 .825 .938 1.000 1.000 1.000 1.000 .931
4 SER (PCC)| .188 .313 .438 .625 750 .625 .825 .813 .572
5 SER (PCC)| .313 .375 .438 313 375 625 .625 .688 .469
6 SER (PCC)| .125 .313 .313 438 500 .750 .688 .813 .493
7 ACP (CIT) | .438 .438 .688 .688 .813 .813 .825 .85 .691
8 ACP (CIT) | .375 .500 .688 .625 750 .813 .813 .750 .664
9 ACP (CIT) | .688 1.000 1.000 938 .938 1.000 .825 .813 .900
10 ACP (PCC)| .250 .375 .688 .625 .813 .813 .813 .85 .650
11 ACP (PCC)| .313 438 .375 563 625 813 .688 .85 .580
12 ACP (PCC)| .500 .563 .563 750 .813 .813 .938 .813 .719
Perm. tests p-value | .461 .484 .549 481 667 656 .323 .083 .456

Table 3: Proportion of Subjects Choosing Nash Equilibrium Strategies under the Round Robin
Treatment and Results of Permutation Teéis:(SER= ACP; H,: SER> ACP.)

Session # Mechanism Subj. Pool Efficiency

1. SER CIT .8669
2. SER CIT .8655
3. SER CIT .8696
4. SER PCC .8241
5. SER PCC .8069
6. SER PCC .8206
7. ACP CIT .8066
8. ACP CIT .7809
9. ACP CIT .8326
10. ACP PCC 7788
11. ACP PCC .8070
12. ACP PCC .8310

Table 4: Efficiency of Each Session Under the Round Robin Treatment
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SER ACP
# of Sessions SYN, ASYN, | SYN, ASYN,
1 0.529 0.544 | 0.166 0.051
2 0.669 0.447 | 0.149 0.045
3 0.468 0.596 | 0.174 0.066
#of Pairs | SYN; ASYN; | SYN; ASYNy
1 0.873 0.683 | 0.197 0.077
2 0.343 0.383 | 0.207 0.003
3 0.893 0.480 | 0.383 0.393
4 0.710 0.687 | 0.400 0.040
5 0.937 0.737 | 0.743 0.053
6 0.760 0.553 | 0.610 0.123
7 0.883 0.363 | 0.180 0.030
8 0.657 0.477 | 0.117 0.007
9 0.937 0.367 | 0.200 0.120
10 0.773 0.630| 0.110 0.117
11 0.133 0.327 | 0.067 0.043
12 0.683 0.677 | 0.167 0.050
13 0.380 0.637 | 0.107 0.077
14 0.283 0.317 | 0.160 0.020
15 0.690 0.557 | 0.143 0.087
16 0.767 0.647 | 0.047 0.363
17 0.503 0.703 | 0.147 0.040
18 0.590 0.170 0.027
19 0.847 0.060
20 0.737

Table 5: Proportion of Nash/Stackelberg Equilibrium Play in Distributed Systems
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SER ACP
# of Sessions SYN, ASYN, | SYN, ASYN,
1 0.800 0.797 | 0.607 0.690
2 0.821 0.779 | 0.612 0.690
3 0.793 0.799 | 0.658 0.625
#of Pairs | SYN; ASYN; | SYN; ASYNy
1 0.853 0.829 | 0.709 0.688
2 0.524 0.797 | 0.670 0.761
3 0.851 0.789| 0.844 0.772
4 0.788 0.841 | 0.778 0.653
5 0.858 0.817 | 0.787 0.708
6 0.859 0.776 | 0.765 0.729
7 0.845 0.710 | 0.640 0.682
8 0.812 0.769 | 0.600 0.729
9 0.847 0.733 | 0.587 0.700
10 0.831 0.789| 0.562 0.572
11 0.779 0.767 | 0.520 0.709
12 0.821 0.785| 0.600 0.760
13 0.742 0.790 | 0.567 0.697
14 0.683 0.768 | 0.648 0.693
15 0.827 0.795| 0474 0.777
16 0.832 0.848 | 0.489 0.552
17 0.784 0.797 | 0.515 0.689
18 0.803 0.711 0.712
19 0.817 0.301
20 0.832

Table 6: Efficiency in Distributed Systems
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SER ACP

Parameters c=10.5 c=1 c=2 c=0.5 c=1 c=2

q (12, 12) (12, 12) (2, 2) (12, 12) (12, 12) (1, 3)
b=5|m (533,672) (438,576) (148,204) (533,672) (438,576) (148,204)

q (12, 12) (12, 12) (4, 6) (12, 12) (12, 12) (4, 8)
b=1| n | (1908,2388) (1812,2292) (324,526)| (1908,2388) (1812,2292) (164,648)

q (12, 12) (12, 12) (12, 12) (12, 12) (12, 12) (12, 12)
b=2 | m | (23160,28920) (23064,28824) (20304,2606423160,28920) (23064,28824) (20304,26064)
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Table 7: Nash equilibrium quantitieg)(and payoffs £) for utility function o;¢> — x; and cost
functionC'(q) = ¢°.
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Figure 1. Simulaton fesuls ith concave utity function
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