
An Experimental Study of Serial and Average Cost

Pricing Mechanisms∗

Yan Chen

Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220

Phone:(734)763-9619; Fax: (734)764-2769; Email: yanchen@umich.edu

Revised: August 2001

Abstract

This paper reports the first experimental study of the serial and the average cost pricing mech-

anisms under five different treatments: a complete information treatment and four treatments de-

signed to simulate distributed systems with extremely limited information, synchronous and asyn-

chronous moves. Although the proportion of Nash equilibrium play under both mechanisms is

statistically indistinguishable under complete information, the serial mechanism performs robustly

better than the average cost pricing mechanism in distributed systems, both in terms of the propor-

tion of equilibrium play and system efficiency.
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1 Introduction

In a wide variety of real world situations a group of agents share a common production process

transforming input into output. Examples of shared resources include computing facilities, secre-

tarial support and lab facilities within an organization. A cost-sharing mechanism distributes the

service and allocates the corresponding costs to each agent. Two prominent cost-sharing mecha-

nisms are the serial mechanism (Shenker (1990), Moulin and Shenker (1992)) and the average cost

pricing mechanism (see Tauman (1988) for a survey). We will use two examples to illustrate how

the mechanisms work.1

We first look at a group of ranchers who might share the cost of constructing and maintaining

an irrigation network. Aadland and Kolpin (1998) provide an empirical and axiomatic analysis of

cost-sharing arrangements of irrigation ditches located in south-central Montana. In their sample,

a typical ditch begins at the headgate and then continues on a sequential path through the lands

of each rancher using the main ditch. Ranchers’ private ditches branch off from the main ditch

and transport water to their land. The costs associated with the main ditch are shared among the

ranchers. Kolpin and Aadland (2001) find that the cost sharing rules employed on these ditches

are variations of the average and serial cost sharing mechanisms. A rule is in the average class if

all agents pay according to an identical fixed “rate”, which may be defined on a per capita basis,

per irrigated acre basis, etc. A serial rule partitions the ditch into “a sequence of segments such

that all agents require the first segment to be operational in order to receive water, all but the first

agent on the ditch additionally require the second segment to be operational, ... . Each segment is

then treated like a separate ditch whose costs are covered by having all agents requiring its use pay

an identical fixed rate.” (Kolpin and Aadland (2001)) An agent’s total cost share is the sum of his

obligations on each of these individual segments. This example provides a more traditional setting

where the ranchers know the rules of the game as well as each other’s demand fairly well.

A more recent example is provided by the Internet, which has becoming increasingly important

in global telecommunications. In the context of several agents sharing a network link, the cost to be

shared is congestion experienced. Each agent controls the rate at which she is transmitting data. If

the sum of the transmission rates is greater than the total link capacity, then the link becomes con-

gested and the agents’ packets experience delays. Most current Internet routers use a FIFO packet

scheduling algorithm, which results in each agent’s average queue proportional to her transmis-

sion rate. This corresponds to the average cost pricing mechanism (Shenker (1990)). In contrast,

1A formal definition of each mechanism is provided in Section 2.
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the Fair Queueing packet scheduling algorithm, which corresponds to the serial mechanism, leads

to congestion allocations such that an agent’s average queue is independent of transmission rates

higher than her own. The latter has been proposed as an alternative to the former, based on theoret-

ical and simulation results (Stoica, Shenker and Zhang (1998)). The new generation of Cisco 7200,

3600 and 2600 rounters have both the FIFO and Fair Queueing options.2 This paper presents the

first experimental study of the performance of the two mechanism in both the traditional complete

information setting and the Internet setting.

Most of the theoretical literature has focused on the axiomatic characterization of these mech-

anisms (e.g., Moulin and Shenker (1994), Friedman and Moulin (1999)) and their static properties

in a complete information setting with synchronous actions. However, as Friedman and Shenker

(1998) pointed out, in adistributed system3 such as the Internet where agents have very limiteda

priori information about other agents and the payoff structure and where there is no synchroniza-

tion of actions, traditional solution concepts that we use to characterize these mechanisms, such

as Nash equilibrium or even the serially undominated set4, might not be achieved as a result of

learning. They propose new solution concepts for distributed systems describing convergence for

learning algorithms satisfying certain theoretical properties.

Although Friedman and Shenker (1998) used the Internet as the context for their new theory,

limited information and asynchrony are more realistic assumptions than complete information and

synchronous play in many real economic situations. To my best knowledge there have not been

experimental studies that incorporate both limited information and asynchrony to study implemen-

tation. The average cost pricing mechanism has not been studied in the laboratory either. The

only other experimental study of the serial mechanism is by Dorsey and Razzolini (1999). They

investigate the performance of the serial mechanism with each human subject against three com-

puterized players, where each human player knows his own cost share and payoff structure but has

no information about the opponents’ payoff structures. Their information condition is in between

the complete information and limited information setting in this study. They do not consider the

performance of the mechanism under limited information or asynchrony.

In this paper I design an experiment to evaluate the serial and the average cost pricing mecha-

nism in an easy environment with complete information, and more challenging environments with

2http://www.cisco.com/warp/public/121/7200per-vc-CBWFQ.htm
3Following Friedman and Shenker (1998), a system is called adistributed system“because the users are geograph-

ically dispersed and are accessing the resource through the network.” The Internet is a prominet example.
4Serially undominated set is the set of outcomes of a strategic game that survives iterated elimination of strictly

dominated actions.
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extremely limited information and asynchronous moves. The goal of this paper is to compare the

performance of the two mechanisms in various settings and to assess the plausibility of the new

solution concepts.

The paper is organized as follows. Section 2 introduces the theoretical properties of the serial

(sometimes shortened as SER) and average cost pricing (hereafter shortened as ACP) mechanisms.

Section 3 presents the experimental design. Section 4 compares the performance of the mecha-

nisms under complete information. Section 5 presents results in distributed systems with limited

information and asychrony. Section 6 discusses the robustness of the experimental results with

respect to changes in the environment. Section 7 concludes the paper.

2 The Serial and ACP Mechanisms - Theoretical Properties

Suppose a group ofn agents share a one-input, one-output technology with decreasing returns.

Each of then agents announces his demandqi of output. Each agent gets her demandqi and pays a

cost share,xi. Notexi is the total cost agenti pays. In the irrigation example,qi corresponds to the

total amount of maintenance of the main ditch demanded by agenti, while xi is what agenti pays

to get the maintenance done. In the example of Internet routers,qi is agenti’s data transmission

rate, whilexi is the congestion, i.e., the average queue experienced by agenti. Therefore,xi is

the reduction in agenti’s utility due to congestion. Letq1 ≤ q2 ≤ · · · ≤ qn. The cost function

is denoted byC, which is strictly convex. A cost-sharing mechanism must allocate the total cost

C(
∑

i qi) among then agents.

The serial mechanism, originally introduced by Shenker (1990), was analyzed by Moulin and

Shenker (1992) in the context of cost and surplus sharing with complete information. The mecha-

nism can be characterized by four properties: unique Nash equilibrium at all profiles5, anonymity

(the name of the agents does not matter), monotonicity (an agent’s cost share increases when she

demands more output) and smoothness (an agent’s cost share is a continuously differentiable func-

tion of the vector of demands). Among agents endowed with convex, continuous and monotonic

preferences, the serial mechanism is the only cost sharing rule which is dominance-solvable and

its unique Nash equilibrium is also robust to coalitional deviations when agents cannot transfer

outputs.

Under the serial mechanism, agent 1 (with the lowest demand) pays(1/n)th of the cost of

producingnq1. Agent 2 pays agent 1’s cost share plus1/(n − 1)th of the incremental cost from

5Assume agents have convex, continuous and monotonic preferences.
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nq1 to (n− 1)q2 + q1, i.e.,

xS
1 (c, q1) = C(nq1)/n; andxS

2 (c, q1, q2) =
C(nq1)

n
+

C(q1 + (n− 1)q2)− C(nq1)

n− 1
.

And so on. Therefore, an agent’s cost share under the serial mechanism is only affected by her own

demand and those whose demands are lower than hers. That is, an agent’s cost share is independent

of demands higher than her own.

Like the serial mechanism, the average cost pricing mechanism satisfies anonymity, monotonic-

ity and smoothness. It is the only method that is robust to arbitrage, i.e., agents cannot benefit from

merging or splitting their demands. In contrast to the serial mechanism, the normal form game

induced by the average cost pricing mechanism is in general not dominance-solvable, nor does

it have a unique equilibrium at all profiles when agents have convex, continuous and monotonic

preferences.

When agenti demandsqi amount of output, the general formula for agenti’s cost share under

the average cost pricing mechanism is given by

xA
i (c, q) = (qi/

∑

k

qk) · C(
∑

k

qk), for all i = 1, · · · , n.

Therefore, under ACP an agent’s cost share is proportional to her demand. It is affected by her

own demand, and the sum of all other agents’ demands.

There is no systematic efficiency comparison between the two mechanisms. In general there

exists no differentiable and monotonic cost sharing mechanism where all Nash equilibrium out-

comes are first best Pareto optimal at all preference profiles. Moulin and Shenker (1992) provide

a definition of second best efficiency6 and show that the serial mechanism yields a second best

efficient equilibrium while ACP does not.

A particularly interesting question is the performance of the two mechanisms in distributed sys-

tems where users are geographically dispersed and are accessing the resource through the network.

Friedman and Shenker (1998) address the issue of learning and implementation in distributed sys-

tems. They argue that when agents have very limiteda priori information about the other players

6“For an arbitrary cost sharing mechanismξ, say that(q1, · · · , qn) is a Nash equilibrium outcome at some utility

profile. We ask if there is another vector of demands(q
′
1, · · · , q

′
n) such that at the corresponding allocation dictated

by the mechanismξ, no one is worse off and someone is better off than at the equilibrium allocation corresponding to

(q1, · · · , qn). If no such vector of demands exists, we call our equilibrium second best efficient.” Moulin and Shenker

(1992, p.1025)
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and the payoff structure, standard solution concepts like Nash equilibrium or even the serially un-

dominated set are not necessarily achieved as a result of learning in the network setting. Therefore,

new solution concepts, such as the serially unoverwhelmed set and the Stackelberg undominated

set are proposed. Loosely speaking, one actionoverwhelmsanother if all payoffs, over all sets of

other players’ actions, for the one are greater than all payoffs, over all sets of other players’ actions,

for the other7. Therefore, if action U overwhelms action D, then U dominates D, but the converse

is not true.

Player 2

L R

Player 1 U π1(UL), π2(UL) π1(UR), π2(UR)

D π1(DL), π2(DL) π1(DR), π2(DR)

For example, in the above2× 2 game, action U dominates D ifπ1(UL) ≥ π1(DL) andπ1(UR) ≥
π1(DR); action U overwhelms D ifmin{π1(UL), π1(UR)} ≥ max{π1(DL), π1(DR)}. Theseri-

ally unoverwhelmed setis the set remaining after iterated elimination of overwhelmed actions. One

main result of Friedman and Shenker (1998) is that reasonable learners8 converge to the serially

unoverwhelmed set. In comparison, Milgrom and Roberts (1990) showed that adaptive learners

converge to the serially undominated set. A game isD-solvableif iterated elimination of domi-

nated strategies leads to a single eventual outcome. A game isO-solvableif iterated elimination of

overwhelmed strategies leads to a single eventual outcome. Among the cost sharing mechanisms,

the serial mechanism is O-solvable9 while ACP is not.

3 Experimental Design

The experimental design reflects both theoretical and technical considerations. The goal of the

design is to compare the performance of the serial and ACP mechanisms in two different set-

tings: a complete information setting that tests the prediction of dominance-solvability, and a more

challenging network setting to compare the performance of the two mechanisms and to assess the

plausibility of the new solution concepts. The economic environment and experimental procedures

are discussed in the sections below.
7See Friedman and Shenker (1998) for a precise definition.
8The key components of a reasonable learner are optimization, monotonicity and responsiveness. See Friedman

and Shenker (1998).
9This is proved in Theorem 8 in Friedman and Shenker (1998).
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3.1 The Economic Environment

In a simple environment to test the serial and ACP mechanism under various treatments, agents

are endowed with linear preferencesπi(xi, q) = αiqi − xi, whereαi is agenti’s marginal utility

for the output, andxi is her cost share. The cost function is chosen to be quadratic,C(q) = q2. In

the network context with several agents sharing a network link,αi is agenti’s value for the amount

of data transmitted per unit of time, and the cost to be allocated corresponds to the congestion

experienced. Therefore, the cost should be interpreted as the reduction in agenti’s utility due to

congestion. I chose linear utility and quadratic cost functions in order to get a unique interior Nash

equilibrium. In Section 6 I present simulation results for more general utility and cost functions.

Consider a two-player game withα1 ≤ α2. Then under the serial mechanism, the cost share

for agent 1 isxS
1 = C(2q1)/2 = 2q2

1. Agent 2 picks up the remaining cost,xS
2 = C(q1 + q2) −

C(2q1)/2 = (q1 + q2)
2 − 2q2

1. The unique, dominance-solvable Nash equilibrium is thus charac-

terized by

qS
1 =

α1

4
, andqS

2 =
1

4
(2α2 − α1).

The Stackelberg equilibrium for the serial game coincides with the above Nash equilibrium10.

For the ACP mechanism, the cost shares of the two agents arexA
1 = q1

q1+q2
· C(q1 + q2) =

q1(q1 + q2), andxA
2 = q2

q1+q2
· C(q1 + q2) = q2(q1 + q2) respectively. Therefore, the unique

dominance-solvable Nash equilibrium is characterized by

qAn
1 =

2α1 − α2

3
, andqAn

2 =
2α2 − α1

3
.

Note that the Stackelberg equilibria under ACP usually differ from the Nash equilibrium. The

Stackelberg equilibrium with player 2 as the leader is

qAs2
1 =

3α1

4
− α2

2
, andqAs2

2 = α2 − α1

2
.

In the asynchronous treatment discussed in Section 3.2 player 2 will be the Stackelberg leader.

The mechanisms are implemented as normal form games with a discrete strategy space,Si =

{1, 2, · · · , 11, 12} for eachi. Parameters are chosen to ensure: (1) the serial game is both D-

solvable and O-solvable, while the ACP game is D-solvable but not O-solvable; (2) the Stackelberg

equilibrium and Nash equilibrium under ACP are sufficiently far away from each other; (3) the

10This is a general property of the SER mechanism (Corollary 1 to Theorem 1 in Moulin and Shenker (1992)).
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normal form games with a discrete strategy space has a unique Nash equilibrium under ACP11; (4)

most of the payoffs are positive in both normal form games. Note that since the stage game under

SER and ACP are both dominance-solvable, the equilibrium of the complete information repeated

game is simply repeated play of the static equilibrium.

[Table 1 about here.]

Table 1 reports the parameters and equilibrium quantities for each type of equilibrium for the

two mechanisms. In the second column we letα1 = 16.1 and α2 = 20.1. Under the serial

mechanism the Nash as well as the Stackelberg equilibrium quantities are(4, 6). Under ACP, the

Nash equilibrium quantities are(4, 8), while the Stackelberg equilibrium quantities with player 2

as the leader are(2, 12). Note that we use Blue for player 1 and Red for player 2 in the instructions

(see Appendix).

3.2 Experimental Procedures

I implement five different treatments. For a baseline treatment I conducted twelve sessions of the

serial and ACP mechanisms under complete information with the round robin design (hereafter

shortened asRound Robin). Each session has eight pairs of players. Each of the player 1’s is

matched with each of the player 2’s only once. The entire session lasts for eight rounds. Under

the Round Robin treatment, each player is given complete information about the payoff matrix

and the structure of the game. They are also given information about quantities chosen and the

corresponding payoffs of all players. This treatment is designed to compare the performance of

the two mechanisms as one-shot games under complete information. The natural solution concept

for this treatment is dominance-solvability.

To evaluate the possibility of applying these mechanisms to distributed systems such as the

Internet, I designed four treatments with limited information and various degrees of asynchrony.

Learning in distributed systems is characterized by two features. First, players have extremely

limited information - they often do not know the payoff functions, nor do they know how their

payoffs depend on the actions of others, probably due to the lack of information about the detailed

nature of the resources itself. Therefore, in the experimental setup the only information players

11I thank Scott Shenker for suggesting using non-integer{αi}i to avoid the multiple equilibria problem in ACP. In

environments with linear preferences and quadratic cost functions even though there exists a unique Nash equilibrium

in a continuous strategy space under the ACP mechanism, there are multiple equilibria when the strategy space is

discrete and the preference parameters,{αi}i, are integers. The proof is available from the author upon request.
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have is their own action and the resulting own payoffs. Second, there is no synchronization. The

rate at which updating occurs can vary by many orders of magnitude. This feature is reflected by the

following design: two treatments with synchronous play and updating, two with asynchronous play

and updating. In the synchronous treatments (hereafter shortened asSYN) every player receives

his own payoff feedback after each round. In the asynchronous treatments (hereafter shortened

asASYN) player 1 submits a demand and gets a payoff feedback after each round, but player 2

submits a demand which is matched with his opponents’ demands for the next five rounds and gets

a cumulative payoff feedback every five rounds. Therefore, in the asynchronous treatment player

2 acts five times slower than player 1 and becomes thede factoStackelberg leader12.

With both synchronous and asynchronous play, I designed one treatment where players are

randomly re-matched into pairs in each of the 150 rounds, and another treatment where players

are matched into fixed pairs at the beginning of each session, and play the same partner for 150

rounds. The former captures the inherent randomness in many network settings, while the latter

reflects situations with fixed sets of players, such as cost sharing in irrigation ditches (Aadland and

Kolpin (1995)). In all four treatments the game lasts for 150 rounds (30 rounds for player 2 in

ASYN) and the players always keep their own type. To summarize, I implement the following five

different treatments.

1. Round Robin: complete information, round robin;

2. SYNr: limited information, synchronous play, with random re-matching for each of the 150

rounds;

3. SYNf : limited information, synchronous play, with repeated fixed pairs for 150 rounds;

4. ASYNr: limited information, asynchronous play, with random re-matching for each of the

150 rounds; and

5. ASYNf : limited information, asynchronous play, with repeated pairs for 150 rounds.

Computerized experiments were conducted by the author at the EEPS Laboratory at the Cali-

fornia Institute of Technology (hereafter shortened as CIT) in June and July, 1997, and the RCGD

12Asynchrony as defined by Friedman and Shenker (1998) requires the ratio of expected reaction time of different

players to be fixed. Therefore, there can be two different implementations of asynchrony in the experimental setting:

a fixed ratio as described above, or more random speed differentials with fixed expected ratio. Both implementation

of asynchrony are faithful to the theoretical model. I chose the former because of its simplicity.
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Laboratory at the University of Michigan in November, 1999 and January, 2000. Subjects were stu-

dents and staff from CIT, Pasadena City College (hereafter shortened as PCC) and the University

of Michigan (hereafter shortened as UM)13. A total of 484 subjects participated in the experiment.

No subject was used in more than one session.

[Table 2 about here.]

Table 2 lists the features of each session, including session number and subject pool, number

of subjects in each session, mechanisms implemented, and game length under each treatment. At

the beginning of each session subjects randomly drew an identification number. Then each of

them was seated in front of the corresponding terminal, with a folder containing the instructions

and record sheets. After the instructions were read aloud, subjects were required to finish the

Review Questions, which were designed to test their understanding of the instructions. Afterwards

the experimenter checked answers and answered questions. In all sessions the instruction period

was within 20 minutes. There was no practice round in any session. The Round Robin sessions

consisted of 8 rounds and typically lasted for 40 minutes. The SYN and ASYN sessions consisted

of 150 rounds and typically lasted for one and a half hours. The average earnings of experimental

subjects was $20.16, not including the $8 participation fee for PCC subjects14.

Instructions for the experiments are in the Appendix. Note that in both the SYN and ASYN

treatments players had extremely limited information - they were told that they were in a game, the

game length and their strategy space. At the end of each round each player was informed of his

own choice in the previous round and his own payoff corresponding to his previous round’s choice

of quantity. They had no information about the payoff matrix, nor whom they were playing with.

13I checked the subject pool effects by using the data from the fixed-pairs and Round Robin treatments. In the fixed

pairs treatments, one-tailed t-tests show that the difference in the proportion of equilibrium play are not significant at

the 10% level (z = 2.32 for CIT vs. PCC,z = 1.22 for CIT vs. UM, andz = 1.02 for UM vs. PCC), and that

the difference in efficiency are not significant between CIT and UM (z = 1.88), PCC and UM (z = 0.12). The only

significant difference in efficiency is CIT> PCC, withz = 2.63 (p < 0.05). Under Round Robin, CIT subjects

played Nash equilibrium strategy significantly more than those from PCC (p < 0.01, one-tailed permutation test)

while efficiency difference is weakly significant (p = 0.768, one-tailed permutation test).
14The participation fee was used to compensate the PCC subjects for transportation costs. Since the experiment was

conducted on the CIT and UM campuses, subjects from CIT and UM did not receive a participation fee.
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4 Performance of the Mechanisms Under Complete Information

In this section I compare the performance of the two mechanisms under the Round Robin treatment,

using two criteria - the proportion of Nash equilibrium play and the system efficiency.15 Under the

Round Robin treatment, the theoretical prediction for both mechanisms is the dominance-solvable

Nash equilibrium.

[Table 3 about here.]

Table 3 tabulates the proportion of Nash equilibrium play in each round under the Round Robin

treatment, as well as the proportion of equilibrium play in all rounds. The last row presents the

p-values for one-tailed permutation tests under the null hypothesis that the proportion of Nash

equilibrium play is the same under both mechanisms.

RESULT 1 (Equilibrium Play under Round Robin) : In the Round Robin treatment, at the 8th

round an average of 88.6% of the subjects played the unique Nash equilibrium strategy under

SER; while an average of 80.9% of the subjects played the unique Nash equilibrium strategy under

ACP. The proportion of the Nash equilibrium play under the two mechanisms is not significantly

different.

SUPPORT.Table 3 presents the proportion of Nash equilibrium play for each round. Permutation

tests under the null hypothesis that the proportion of Nash equilibrium play under SER is the same

as that under ACP for roundt, wheret = 1, 2, · · · , 8, show that none of the p-values is significant at

the five percent level. The overall proportion of Nash equilibrium play under the two mechanisms

is not significantly different either (p = .456, one-tailed).

Result 1 is not surprising since both games are dominance-solvable, and the presentation in the

form of bimatrix games is fairly transparent. Under complete information we expect that adaptive

learning converge to the unique Nash equilibrium.

Although there is no theoretical systematic efficiency comparison between the two mechanisms

in general, it is informative to check the actual efficiency of the system in this particular experi-

ment. Group efficiency is calculated by taking the ratio of the sum of the actual earnings of all

subjects in a session and the Pareto-optimal earnings of the group. Note that in this experimental

setting the Pareto optimal payoff is 970 at strategy two-tuple(1, 9) in both SER and ACP. As a

15A complete set of the data is available from the author upon request.

11



benchmark, the efficiency of Nash (and Stackelberg) equilibrium under the serial mechanism is

87.63%. Under ACP the efficiency of Nash equilibrium is 83.71%, while the efficiency of the

Stackelberg equilibrium with player 2 as leader is 79.71%.

RESULT 2 (Efficiency under Round Robin) : The efficiency of the serial mechanism is signif-

icantly higher than that of the ACP mechanism under the Round Robin treatment.

[Table 4 about here.]

SUPPORT. The last column of Table 4 shows the efficiency of each session under the Round

Robin treatment. Permutation tests show that the efficiency of SER> ACP at a significance level

of .023 (one-tailed).

Therefore, under Round Robin although the amount of Nash equilibrium play is not signifi-

cantly different between the two mechanisms, the serial mechanism generated significantly higher

system efficiency than ACP.

5 Performance of the Mechanisms in Distributed Systems

Although the proportion of Nash equilibrium play was not significantly different under the two

mechanisms under complete information, the performance of the two mechanisms differed dra-

matically in distributed systems. In this section I will evaluate the two mechanisms under SYN

and ASYN in terms of the proportion of equilibrium play and efficiency, and the plausibility of

new solution concepts proposed for distributed systems.

[Table 5 about here.]

Table 5 presents the proportion of Nash and Stackelberg equilibrium play for each independent

observation16 under each of the four different treatments in distributed systems.

RESULT 3 (Equilibrium Play under SER and ACP) : Under all four treatments the ranking

of the proportion of equilibrium play is highly significant: SER> ACP.

16Note under the random matching treatment each session is an independent observation, while under the fixed pair

treatment each pair is an independent observation.
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SUPPORT. Table 5 presents the proportion of Nash and Stackelberg equilibrium play for each

independent observation. One-tailed permutation tests show that the proportion of equilibrium

play under SER is greater than the proportion of equilibrium play under ACP, withp = 0.05 under

SYNr, p = 0.05 under ASYNr, p < 0.01 under SYNf , andp < 0.01 under ASYNf .

Therefore, in contrast to Result 1 where the proportion of Nash equilibrium play are not signifi-

cantly different under the Round Robin treatment, the proportion of Nash and Stackelberg equilib-

rium play do differ significantly in distributed systems. The SER mechanism induces significantly

more equilibrium play than the ACP mechanism.

RESULT 4 (Efficiency under SER and ACP) : Under all four treatments the ranking of group

efficiency is highly significant: SER> ACP.

[Table 6 about here.]

SUPPORT.Table 6 presents the efficiency of each independent observation under SER and ACP.

One-tailed permutation tests show that the efficiency under SER is greater than the efficiency under

ACP, with p = 0.05 under SYNr, p = 0.05 under ASYNr, p < 0.01 under SYNf , andp < 0.01

under ASYNf .

Although both games are dominance-solvable and the amount of equilibrium play is not sta-

tistically different under complete information, their performance does differ dramatically in dis-

tributed settings with limited information and asynchrony: the serial mechanism performs robustly

better than the ACP mechanism both in terms of Nash and Stackelberg equilibrium play and system

efficiency.

One of the characteristics of distributed systems is the asynchrony of actions. In the following

result I examine the effects of asynchrony on the proportion of equilibrium play and efficiency.

RESULT 5 (Effects of Asynchrony) : The proportion of Nash equilibrium play under SYN is

significantly higher than the proportion of Stackelberg equilibrium play under ASYN. Efficiency

under SYN and ASYN is not significantly different.

SUPPORT. Table 5 presents the proportion of Nash and Stackelberg equilibrium play for each

independent observation. One-tailed t-test (H0: SYN = ASYN; H1: SYN > ASYN) yieldsz =

2.18 (p < 0.05). Table 6 presents the efficiency of each independent observation under SYN and

ASYN. One-tailed t-test yieldsz = 1.26 (p > 0.10).
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Intuitively, under the asynchronous treatments the Stackelberg leaders moved five times slower

than the followers. Therefore they did not have the same opportunity to learn the equilibrium

strategies. It is interesting to note that even though we observe significantly more equilibrium

play in the synchronous case, the presence of asynchrony does not reduce the system efficiency

significantly.

Results in this section lend support for the following result:

RESULT 6 (O-solvable vs. D-solvable Mechanisms): The SER mechanism, which is O-solvable,

performs significantly and robustly better than the ACP mechanism, which is D-solvable but not

O-solvable, in terms of efficiency and the proportion of equilibrium play.

Results in Sections 4 and 5 provide empirical support for Friedman and Shenker’s (1998) ar-

gument that traditional solution concepts such as Nash equilibrium or dominance-solvability are

not adequate for predicting what can happen in distributed systems. Analysis of experimental data

shows that O-solvable games exhibited rapid and robust convergence to the unique Nash equilib-

rium regardless of the degree of asynchrony, while D-solvable games did not converge as well. In

Chen and Khoroshilov (2000) we examine the learning dynamics induced by the two mechanisms

by comparing the explanatory power of three learning models. In Section 6 I examine whether the

experimental results in the last two sections are robust in more general environments.

6 Robustness of Experimental Results in More General Environments

In this section I assess the extent to which the experimental results in Sections 4 and 5 depend

on the linearity of the utility function and the quadratic cost function employed. I consider nine

different environments. For simplicity I use polynomial utility and cost functions. The utility

function isπi(xi, q) = αiq
b
i − xi, whereα1 = 16.1, α2 = 20.1 are agents’ marginal utility for the

output,b = 0.5, 1, and2, andxi is her cost share. The cost function is chosen to beC(q) = qc,

wherec = 0.5, 1 and2. Varying parametersb andc will give us nine combinations of concave,

linear and convex utility and cost functions. Note thatb = 1 andc = 2 is the original experimental

design.

[Table 7 about here.]

Table 7 presents the Nash equilibrium quantities and payoffs for the two types of players under

each of the nine environments. Note that all 14 boundary Nash equilibrium,(12, 12), and one
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interior Nash equilibrium under SER,(2, 2), are dominant strategy Nash equilibrium, whereas the

other three interior Nash equilibria are dominance solvable.

For the complete information, Round Robin treatment, I expect Result 1 to hold in each of the

nine environments, i.e., the proportion of Nash equilibrium play will be indistinguishable between

SER and ACP, since both games have either a dominance-solvable or a dominant strategy equilib-

rium in each of the nine environments, and the presentation in the form of bimatrix games is fairly

transparent. Under complete information I expect that adaptive learning leads to convergence to

the unique Nash equilibrium.

Note that in Table 7 the Nash equilibrium payoffs for the players are the same under the two

mechanisms in eight out of nine environments, where the Nash equilibria are symmetric. This is

because SER and ACP allocate the same cost share to each player when they demand the same

quantity. Indeed, the only environment where the payoffs differ is the experimental environment

(b = 1 and c = 2). Therefore, I expect that the efficiency will be indistinguishable between

SER and ACP in each of these eight environments under complete information and Round Robin

treatment. That is, Result 2 might not hold in these eight environments. This is not surprising,

since in general there is no systematic efficiency comparison between the two mechanisms, as I

discussed in Section 2. Therefore, any efficiency comparison between the two mechanisms will

necessarily depend on the environment.

To assess how robust the experimental results are in distributed systems in different environ-

ments, I conduct Monte Carlo simulations for each of the nine environments. Since Chen and

Khoroshilov (2000) study the learning dynamics induced by the SER and ACP mechanisms, I use

the learning algorithm that performs the best on these data set and the calibrated parameters in

Chen and Khoroshilov (2000) to conduct simulations.

Chen and Khoroshilov (2000) study how human subjects learn under extremely limited infor-

mation. They use experimental data on cost sharing games reported in this paper, and Van Huyck,

Battalio and Rankin’s (1996) data on coordination games to compare three payoff-based learning

models: the payoff-assessment learning model (Sarin and Vahid 1999), a modified experience-

weighted attraction learning model (Camerer and Ho 1999) and a simple reinforcement learning

model. They show that the payoff-assessment learning model tracks the data the best in both the

cost sharing games as well as the coordination games. Therefore, I use the payoff-assessment

learning model and the parameters calibrated on the cost sharing games to conduct simulation

in other environments. Admittedly, even though the payoff-assessment learning model performs

the best in capturing how human subjects learn under limited information in one environment
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(b = 1 andc = 2), it is possible that it might not be the best learning model when the environ-

ment changes. However, this is the best approximation we have. At least, the simulation results

can show us the relative performance of the two mechanisms in other environmentsif agents are

myopic maximizers described by the payoff-assessment algorithm.

The payoff-assessmentlearning model assumes that a player is a myopic subjective maxi-

mizer. She chooses among alternate strategies only on the basis of the payoff she assesses she

would obtain from them. These assessments do not explicitly take into account her subjective

judgements regarding the likelihood of alternate states of the world. At each stage, the player

chooses the strategy that she myopically assesses to give her the highest payoff and updates her as-

sessment adaptively. Letuj(t) denote the subjective assessment of strategysj at timet. The initial

assessments are denoted byuj(0). Payoff assessments are updated by taking a weighted average

of her previous assessments and the objective payoff she actually obtains at timet. If strategyk is

chosen at timet, then

uj(t + 1) = (1− rfjk(h, t))uj(t) + rfjk(h, t)πk(t),∀j. (1)

Suppose that at timet the decision-maker experiences zero-mean, symmetrically distributed shocks,

Zj(t) to her assessment of the payoff she would receive from choosing strategysj, for all sj.

Denote the vector of shocks byZ = (Z1, · · · , Z12), and their realizations at timet by z(t) =

(z1(t), · · · , z12(t)). The decision maker makes choices on the basis of her shock-distorted subjec-

tive assessments, denoted byũ(t) = u(t) + Z(t). At time t she chooses strategysj if

ũj(t) > ũl(t), ∀sl 6= sj. (2)

Note that mood shocks only affect her choices and not the manner in which assessments are up-

dated. Sarin and Vahid (1999) prove that such a player converges to stochastically choose the

strategy that first order stochastically dominates another among the strategies she converges to

play with positive probability.

For parameter estimation, Chen and Khoroshilov (2000) conducte Monte Carlo simulations

designed to replicate the characteristics of each of the experimental settings. They then compare

the simulated paths with the actual paths of a subset of the experimental data to estimate the

parameters which minimize the mean-squared deviation scores. I use these estimated parameters

to conduct Monte Carlo simulations for each of the nine environments.

In each simulation, 10,000 pairs of players were created17. In each simulation the following

steps were taken:
17This yields a statistical accuracy of 1%.
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1. Initial values: Since Kolmogorov-Smirnov tests of the initial choice distribution by experi-

mental subjects cannot reject the null hypothesis of uniform distribution. I setuj(0) = 200

for all players whenb = 0.5 and1, since in the experimental data the average first-round

payoffs was around 200 which also result in a probability predictions around the centroid,

(1/12, · · · , 1/12), for the first round. With concave (b = 0.5) and linear (b = 1) utility

functions, the magnitude of payoffs are similar to the experimental setting. With convex

utility function (b = 2), the payoffs are about two orders of magnitude larger than the payoff

matrices in the experiment, therefore I setuj(0) = 3000 for all players whenb = 2.

2. Simulated players were matched into fixed pairs, or randomly rematched pairs for each pe-

riod, depending on the treatment.

3. Shocks are drawn from a uniform distribution,[−a, a], wherea is estimated18 in Chen and

Khoroshilov (2000).

4. The simulated players’ strategies were determined via Eq. (2).

5. Payoffs were determined using the SER or ACP payoff rule for each(b, c) parameter combi-

nation.

6. Assessments were updated according to Eq. (1), using discount factor,r, estimated19 in Chen

and Khoroshilov (2000). Updating occurs every period under SYN for both players, every

period for player 1 in ASYN and every five periods for player 2 in ASYN.

[Figures 1, 2 and 3 about here.]

Figure 1 shows the simulated time series paths for player 1 in an environment with concave util-

ity function (b = 0.5) under SERSYNf (left column) and ACPSYNf (right column) respectively.

Simulated paths for player 2 exhibit similar patterns, therefore are not displayed. The first row

presents the simulated paths under concave utility (b = 0.5) and concave cost function (c = 0.5).

The second row presents the same information under a linear cost function (c = 1). The last row

presents the same information under a convex cost function (c = 2). Each graph presents the mean

18The best fit parameters area = 3 for SER SYN,a = 2 for SER ASYN,a = 50 for ACP SYN, anda = 45 for

ACP ASYN. The largera in ACP reflects the relatively volatile paths of the ACP data.
19The best fit parameters arer = 0.2 for SER SYN,r = 0.0 for SER ASYN,r = 0.6 for ACP SYN, andr = 0.2

for ACP ASYN.
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(the black dots), standard deviation (the grey error bars) and stage game equilibria (the dashed

lines) for each mechanism. Larger error bars indicate more variance in the choice of strategies

and thus worse convergence to the mean. Figures 2 and 3 present the simulated time series paths

for player 1 under SERSYNf (left column) and ACPSYNf (right column) in environments with

linear (b = 1) and convex (b = 2) utility functions respectively. Simulation results for the random

matching treatments display similar patterns. Therefore they are not displayed.

Based on the Monte Carlo simulation I have the following results:

1. With concave (b = 0.5, e.g. figure 1) and linear (b = 1, e.g. figure 2) utility functions,

regardless of the forms of the cost function, simulated players converge much more quickly

to the stage game equilibrium under SER than under ACP. As a result the proportion of

equilibrium play is significantly larger under SER than under ACP.

2. With convex (b = 2, e.g. figure 3) utility function, regardless of the forms of the cost func-

tion, simulated players under both mechanisms converge quickly to the stage game equilib-

rium. Convergence under SER is slightly more quickly than that under ACP. As a result the

proportion of equilibrium play is weakly larger under SER than under ACP.

3. As a result of the different speed of convergence to equilibrium, with concave and linear

utility functions, efficiency under SER is significantly high than that under ACP. With convex

utility functions, efficiency under SER is weakly higher than that under ACP.

Simulation results for nine different environments suggest that the experimental results on the

proportion of equilibrium play are robust to variations in the environment, while experimental re-

sults on efficiency might depend on variations in the environment. In other words, even though

efficiency comparison might be sensitive to the environment, the SER mechanism is more pre-

dictable than ACP because it induces robustly quicker convergence to the stage game equilibrium.

7 Conclusion

Cost sharing mechanisms have many practical applications in the real world. An increasingly

important area is distributed systems like the Internet, where agents have very limited information

about the payoff structure as well as the characteristics of other agents and where there is no

synchronization of actions. Most current Internet routers use the average cost pricing mechanism,

while this study suggests that the serial mechanism might be a better choice.
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This paper reports experimental results on the serial and the average cost pricing mechanisms

under five different treatments. The first is a complete information treatment designed to test the

basic properties of the mechanisms. The other four treatments simulate distributed systems by giv-

ing the subjects very limited information about the game and by imposing two levels of asynchrony.

The latter present a more challenging and realistic setting for the cost sharing mechanisms.

The experimental data show that under the complete information treatment both mechanisms

converge well to the Nash equilibrium prediction and their performances are statistically indis-

tinguishable. Under the limited information treatments, however, the serial mechanism performs

significantly and robustly better than the average cost pricing mechanism, in terms of efficiency

and convergence to equilibrium predictions regardless of the level of asynchrony. To test the ro-

bustness of the results, I conduct Monte Carlo simulation using calibrated learning algorithms in

nine different environments. Simulation results indicate that the experimental results on the pro-

portion of equilibrium play are robust to variations in the environment, while experimental results

on efficiency might depend on variations in the environment.

Since both the serial and average cost pricing games are dominance-solvable in our design,

these results indicate that traditional solution concepts such as Nash equilibrium or dominance-

solvability might not be so useful in distributed systems. Experimental data provide empirical

support for Friedman and Shenker’s (1998) serially unoverwhelmed set.
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APPENDIX. EXPERIMENT INSTRUCTIONS

Instruction for Mechanism S corresponds to the serial mechanism under Round Robin. Instruc-

tion for Mechanism A corresponds to the average cost pricing mechanism under Round Robin.

Instruction for Mechanism XY is for SYN for both mechanisms, as well as for player 1 in ASYN.

Instruction for Mechanism XYZ is used for player 2 in ASYN for both mechanisms.

Experiment Instructions – Mechanism S ID=

Procedure

• Each participant has to make a decision in each ofrounds.

• There are two different types:participants are Blue players andare Red players.

• The small envelope has your type and ID number. Your type remains the same for the entire

experiment.

• A Blue player always meets a Red player and a Red player always meets a Blue player.

• In each round, a Blue is matched with a Red. You will be matched with each participant of

the other type only once.

• In each round, a Blue and a Red simultaneously choose a number out of the following num-

bers:{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, which denotesYour Demand of output.

• Your Payoff = (Your Valuation - Your Share of the Cost)×10.

• One unit of output is worth 16.1 points (Unit Value) to a Blue player, and 20.1 points (Unit

Value) to a Red player. Therefore,

Your Valuation = (Your Unit Value) × (Your Demand)

• Cost of producingx units isx2. The smaller demander will pay half of the cost of producing

twice the amount of the smaller demand, i.e., you pay the per capita cost of production as if

everyone demanded the same amount as you did. Therefore, if your demand is smaller than your

opponent’s demand, your share of the cost is the following

Smaller Demander’s Cost = 1
2
× (2× Smaller Demand)2

= 2× (Smaller Demand)2

If you demand a larger amount than your opponent, you are the larger demander. You will pay

the rest of the cost of production. Therefore,

Larger Demander’s Cost= (Smaller + Larger Demand)2

︸ ︷︷ ︸
Total Cost of Production

− 2× (Smaller Demand)2

︸ ︷︷ ︸
Smaller Demander’s Cost
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• For example, if a Blue demands 2 unit and a Red demands 1 units, then the total demand is 3

units. The calculation of payoffs for the two types are tabulated as follows:
Blue Red

Your Demand 2 (Larger) 1 (Smaller)

Your Valuation 16.1× 2 = 32.2 20.1× 1 = 20.1

Your Share of the Cost (1 + 2)2 − 2× 12 = 7 2× 12 = 2

Your Payoff (32.2− 7)× 10 = 252 (20.1− 2)× 10 = 181
• The above information is summarized by the Payoff Tables in your folder.

Payoff Table

• The Payoff Table summarizes both your payoff and your opponent’s payoff. A Blue player

chooses which row to play. A Red player chooses which column to play. Your payoff is determined

by both your choice and your opponent’s choice. The first number in each cell (in blue) denotes

the payoff to a Blue player. The second number in each cell (in red) denotes the payoff to a Red

player.

• For example, if a Blue demands 2 unit, and a Red demands 1 unit, you can find the payoff

to each participant on the second row and the first column of the payoff matrix. The cell contains

two numbers: the first number is 252, which is Blue’s payoff; the second number is 181, which is

Red’s payoff.

Information

• At the end of each round, each participant is informed of the following results of the round:

- your own demand

- your opponent’s demand

- your own payoff

- the distribution of demands of the other type in the last round.

• You will not know who your opponent was.

Total Payoff

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

Record Sheet: you are required to record your demand, your opponent’s demand and your payoff

each round.

Review Questions(Write down your answers on top of your Record Sheet.)

1. You are a (Blue or Red) player.

2. If you demand 2 units and your opponent demands 10 units, your payoff is; your oppo-

nent’s payoff is . Find it from your payoff table.
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Mechanism S

Red’s Choices

123456789101112

1141181141332141463141574141665141736141787141818141829141820141791141742

2252181242322242433242524242595242646242677242688242679242650242601242532

3343181313322303423303494303545303576303587303578303549303500303431303342

4414181364322334423324484324515324526324517324488324439324370324281324172

Blue’s 546518139532234542331548430550530549630546730541830534930526030515130522

Choices649618140632233642328648425650524648624643724636824627924617024641246-108

7507181397322307423237484187505157486147427147338147229147100147-49147-218

8498181368322258423168484985054848618427832881998508-1198-308

946918131932218942379484-11505-81486-131427-161328-171189-17120-171-169-171-378

10420181250322100423-30484-140505-230486-300427-350328-380189-39010-390-199-390-428

11351181161322-9423-159484-289505-399486-489427-559328-609189-63910-649-209-649-458

1226218152322-138423-308484-458505-588486-698427-788328-858189-90810-938-209-948-468

Page 1
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Experiment Instructions – Mechanism A ID=

Procedure

• Each participant has to make a decision in each ofrounds.

• There are two different types:participants are Blue players andare Red players.

• The small envelope has your type and ID number. Your type remains the same for the entire

experiment.

• A Blue player always meets a Red player and a Red Player always meets a Blue player.

• In each round, a Blue is matched with a Red. You will be matched with each participant of

the other type only once.

• In each round, a Blue and a Red simultaneously choose a number out of the following num-

bers:{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, which denotesYour Demand of output.

• Your Payoff = (Your Valuation - Your Share of the Cost)×10.

• One unit of output is worth 16.1 points (Unit Value) to a Blue player, and 20.1 points (Unit

Value) to a Red player. Therefore,

Your Valuation = (Your Unit Value) × (Your Demand)

• Cost of producingx units is x2. Your share of the cost is proportional to your demand.

Therefore,

Your Share of the Cost = Your Demand
Total Demand× (Total Demand)2

= (Your Demand)× (Total Demand),

where Total Demand = Your Demand + Your Opponent’s Demand.

• For example, if a type A demands 2 unit and a type B demands 1 units, then the total demand

is 3 units and the total cost of producing 3 units is 9. The calculation of payoffs for the two types

are tabulated as follows:
Blue Red

Your Demand 2 1

Your Valuation 16.1× 2 = 32.2 20.1× 1 = 20.1

Your Share of the Cost 2
3
× 9 = 6 1

3
× 9 = 3

Your Payoff (32.2− 6)× 10 = 262 (20.1− 3)× 10 = 171
• The above information is summarized by the Payoff Table in your folder.
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Payoff Table

• The Payoff Table summarizes both your payoff and your opponent’s payoff. A Blue player

chooses which row to play. A Red player chooses which column to play. Your payoff is determined

by both your choice and your opponent’s choice. The first number in each cell (in blue) denotes

the payoff to a Blue player. The second number in each cell (in red) denotes the payoff to a Red

player.

• For example, if a Blue demands 2 unit, and a Red demands 1 unit, you can find the payoff

to each participant on the second row and the first column of the payoff matrix. The cell contains

two numbers: the first number is 262, which is Blue’s payoff; the second number is 171, which is

Red’s payoff.

Information

• At the end of each round, each participant is informed of the following results of the round:

- your own demand

- your opponent’s demand

- your own payoff

- the distribution of demands of the other type in the last round.

• You will not know who your opponent was.

Total Payoff

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

Record Sheet

• You are required to record your demand, your opponent’s demand and your payoff each

round.

Review Questions(Write down your answers on top of your Record Sheet.)

1. You are a (Blue or Red) player.

2. If you demand 2 units and your opponent demands 10 units, your payoff is; your oppo-

nent’s payoff is . Find it from your payoff table.
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Mechanism A

Red’s Choices

123456789101112

114118113134212148311160410170591786818477188861909519104189131852

2262171242322222453202564182655162726142777122808102819828106278142732

3363161333302303423273524243605213666183707153728123729937106367133612

444415140428236439332448428455524460620463716464812463984610445614492

Blue’s5505141455262405363355444305505255546205567155568105549555105451-45372

Choices6546131486242426333366404306455246486186497126488664596410-54341-114252

7567121497222427303357364287405217426147427774087369-63310-133231-203132

8568111488202408273328324248355168366883578328-72279-152210-232121-31212

9549101459182369243279284189305993069287-81248-171189-261110-35111-441-108

105109141016231021321024411025510246-90217-190168-29099-39010-490-99-590-228

114518134114223118312120411205-99186-209147-31988-4299-539-90-649-209-759-348

123727125212213215312164-108155-228126-34877-4688-588-81-708-190-828-319-948-468

Page 1
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Experiment Instructions – Mechanism XY ID=

Procedure

• You are part of a game, in which you have to make a decision in each of 150 rounds.

• In each round, you will choose a number out of the following numbers:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Information

• At the end ofeach round, you are informed of your result of the round:

- your own choice

- your own payoff

Total Payoffs

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

Record Sheet: you are required to record your choice and your payoff each round.

Experiment Instructions – Mechanism XYZ ID=

Procedure

• You are part of a game, in which you have to make a decision in each of 30 rounds.

• In each round, you will choose a number out of the following numbers:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Information

• At the end ofeach round, you are informed of your result of the round:

- your own choice

- your own payoff

Total Payoffs

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

Record Sheet: you are required to record your choice and your payoff each round.
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Equilibrium Quantities

ID Parameters SER ACP

αi Nash Stackelberg Nash Stackelberg

(Leader: 1 or 2) (Leader: 2)

1 (Blue) 16.1 4 4 4 2

2 (Red) 20.1 6 6 8 12

Table 1: Parameters and Equilibrium Quantities

# of Subjects Game

Treatments Session # (Subject Pool) Per Session Mechanisms Length

1, 2, 3 (CIT) 16, 16, 16 SER

Round 4, 5, 6 (PCC) 16, 16, 16 SER

Robin 7, 8, 9 (CIT) 16, 16, 16 ACP 8

10, 11, 12 (PCC) 16, 16, 16 ACP

Synchronous 13 (CIT), 14 (PCC), 15 (UM) 16, 12, 12 SER

(fixed pair) 16 (CIT), 17 (PCC), 18 (UM) 14, 12, 12 ACP

Synchronous 19, 20, 21(UM) 12, 12, 12 SER

(random match) 22, 23, 24 (UM) 12, 12, 12 ACP

Asynchronous 25 (CIT), 26 (PCC), 27 (UM) 10, 12, 12 SER 150

(fixed pair) 28 (CIT), 29 (PCC), 30 (UM) 12, 12, 12 ACP

Asynchronous 31, 32, 33 (UM) 12, 12, 12 SER

(random match) 34, 35, 36 (UM) 12, 12, 12 ACP

Table 2: Features of Experimental Sessions
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Session Mechanism Round # All

# (Subj. Pool) 1 2 3 4 5 6 7 8 Rounds

1 SER (CIT) .625 .688 .938 1.000 .938 1.000 1.000 1.000 .899

2 SER (CIT) .688 .750 .938 .938 .938 .938 1.000 1.000 .899

3 SER (CIT) .750 .938 .825 .938 1.000 1.000 1.000 1.000 .931

4 SER (PCC) .188 .313 .438 .625 .750 .625 .825 .813 .572

5 SER (PCC) .313 .375 .438 .313 .375 .625 .625 .688 .469

6 SER (PCC) .125 .313 .313 .438 .500 .750 .688 .813 .493

7 ACP (CIT) .438 .438 .688 .688 .813 .813 .825 .825 .691

8 ACP (CIT) .375 .500 .688 .625 .750 .813 .813 .750 .664

9 ACP (CIT) .688 1.000 1.000 .938 .938 1.000 .825 .813 .900

10 ACP (PCC) .250 .375 .688 .625 .813 .813 .813 .825 .650

11 ACP (PCC) .313 .438 .375 .563 .625 .813 .688 .825 .580

12 ACP (PCC) .500 .563 .563 .750 .813 .813 .938 .813 .719

Perm. tests p-value .461 .484 .549 .481 .667 .656 .323 .083 .456

Table 3: Proportion of Subjects Choosing Nash Equilibrium Strategies under the Round Robin

Treatment and Results of Permutation Tests (H0: SER= ACP;H1: SER> ACP.)

Session # Mechanism Subj. Pool Efficiency

1. SER CIT .8669

2. SER CIT .8655

3. SER CIT .8696

4. SER PCC .8241

5. SER PCC .8069

6. SER PCC .8206

7. ACP CIT .8066

8. ACP CIT .7809

9. ACP CIT .8326

10. ACP PCC .7788

11. ACP PCC .8070

12. ACP PCC .8310

Table 4: Efficiency of Each Session Under the Round Robin Treatment
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SER ACP

# of Sessions SYNr ASYNr SYNr ASYNr

1 0.529 0.544 0.166 0.051

2 0.669 0.447 0.149 0.045

3 0.468 0.596 0.174 0.066

# of Pairs SYNf ASYNf SYNf ASYNf

1 0.873 0.683 0.197 0.077

2 0.343 0.383 0.207 0.003

3 0.893 0.480 0.383 0.393

4 0.710 0.687 0.400 0.040

5 0.937 0.737 0.743 0.053

6 0.760 0.553 0.610 0.123

7 0.883 0.363 0.180 0.030

8 0.657 0.477 0.117 0.007

9 0.937 0.367 0.200 0.120

10 0.773 0.630 0.110 0.117

11 0.133 0.327 0.067 0.043

12 0.683 0.677 0.167 0.050

13 0.380 0.637 0.107 0.077

14 0.283 0.317 0.160 0.020

15 0.690 0.557 0.143 0.087

16 0.767 0.647 0.047 0.363

17 0.503 0.703 0.147 0.040

18 0.590 0.170 0.027

19 0.847 0.060

20 0.737

Table 5: Proportion of Nash/Stackelberg Equilibrium Play in Distributed Systems
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SER ACP

# of Sessions SYNr ASYNr SYNr ASYNr

1 0.800 0.797 0.607 0.690

2 0.821 0.779 0.612 0.690

3 0.793 0.799 0.658 0.625

# of Pairs SYNf ASYNf SYNf ASYNf

1 0.853 0.829 0.709 0.688

2 0.524 0.797 0.670 0.761

3 0.851 0.789 0.844 0.772

4 0.788 0.841 0.778 0.653

5 0.858 0.817 0.787 0.708

6 0.859 0.776 0.765 0.729

7 0.845 0.710 0.640 0.682

8 0.812 0.769 0.600 0.729

9 0.847 0.733 0.587 0.700

10 0.831 0.789 0.562 0.572

11 0.779 0.767 0.520 0.709

12 0.821 0.785 0.600 0.760

13 0.742 0.790 0.567 0.697

14 0.683 0.768 0.648 0.693

15 0.827 0.795 0.474 0.777

16 0.832 0.848 0.489 0.552

17 0.784 0.797 0.515 0.689

18 0.803 0.711 0.712

19 0.817 0.301

20 0.832

Table 6: Efficiency in Distributed Systems
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SER ACP

Parameters c = 0.5 c = 1 c = 2 c = 0.5 c = 1 c = 2

q (12, 12) (12, 12) (2, 2) (12, 12) (12, 12) (1, 3)

b = .5 π (533,672) (438,576) (148,204) (533,672) (438,576) (148,204)

q (12, 12) (12, 12) (4, 6) (12, 12) (12, 12) (4, 8)

b = 1 π (1908,2388) (1812,2292) (324,526) (1908,2388) (1812,2292) (164,648)

q (12, 12) (12, 12) (12, 12) (12, 12) (12, 12) (12, 12)

b = 2 π (23160,28920) (23064,28824) (20304,26064)(23160,28920) (23064,28824) (20304,26064)

Table 7: Nash equilibrium quantities (q) and payoffs (π) for utility function αiq
b
i − xi and cost

functionC(q) = qc.
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Figure 1. Simulation results with concave utility function, 
concave, linear, and convex cost functions.
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Figure 2. Simulation results with linear utility functions,
concave, linear, and convex cost functions.
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Figure 3. Simulation results with convex utility functions,
concave, linear, and convex cost functions.
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