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Abstract

This paper reports an experimental study of two prominent congestion and cost allocation mechanisms

for distributed networks. We study the serial (or fair queueing) and the average cost pricing (or FIFO)

mechanisms under two different treatments: a complete information treatment and a limited information

treatment designed to simulate distributed networks. Experimental results show that the serial mechanism

performs significantly better than the average cost pricing mechanism in all treatments in terms of efficiency,

predictability measured as frequency of equilibrium play, and the speed of convergence. Monte Carlo sim-

ulations of a calibrated learning model show that the results are robust to changes in the environment with

concave or linear utility functions.
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1 Introduction

There have been much interests in the problem of congestion allocation in computer networks, as the Internet

becomes increasingly important in global telecommunications and e-commerce. In distributed networks

such as the Internet, multiple agents share the same network link. Each agent controls the rate at which she

is transmitting data. If the sum of the transmission rates is greater than the total link capacity, then the link

becomes congested and the agents’ packets experience delays. Most current Internet routers use a FIFO

packet scheduling algorithm, where all packets are serviced on a first-come-first-serve basis. Each user’s

average queue is proportional to their throughput (Shenker 1990). One agent’s usage can affect the quality

of service of other agents. Aggressive users can get more than an equal share of these shared facilities. For

example, agents who modify their Transmission Control Protocol implementation to be less responsive when

congestion is detected can obtain much larger shares of the bandwidth (Demers et al., 1990). In contrast,

the Fair Queueing packet scheduling algorithm, originally proposed by Shenker (1990), leads to congestion

allocations such that an agent’s average queue is independent of transmission rates higher than her own.

For example, if each user contribute an independent Poisson input stream of packets with various rates, the

Fair Queueing algorithm allocates congestion by a preemptive priority queueing algorithm, where users are

ordered by increasing transmission rates. All of the smallest user’s packets are in the highest priority class,

and all of the other users get the same rate (as the smallest user) of packets in the highest priority class.

Similarly, the rest of the second smallest user’s packets are in the second highest priority class, and all of the

other users gets the same rate of packets in the second highest priority class; and so on. The Fair Queueing

algorithm has been proposed as an alternative to the FIFO algorithm, based on theoretical and simulation

results (Stoica, Shenker and Zhang, 1998). The new generation of Cisco 7200, 3600 and 2600 routers have

both the FIFO and Fair Queueing options. In this paper we evaluate the performance of these two algorithms

using laboratory experiments.

Congestion allocation in distributed networks is closely related to the more general class of cost sharing

problems in Economics. A cost-sharing mechanism distributes the service and allocates the correspond-

ing costs to each agent. The FIFO packet scheduling algorithm corresponds to the average cost pricing

mechanism (Shenker, 1990), where an agent’s cost share is proportional to her own demand, while the Fair

Queueing algorithm corresponds to the serial cost sharing mechanism. Variants of both mechanisms have

been used in different contexts to allocate resources and costs. In some situations, agents know the rules of

the game as well as each other’s preferences fairly well, for example, among farmers in south-central Mon-

tana who use variations of the average and serial cost sharing mechanisms to share the maintenance costs

of the irrigation ditches (Kolpin and Aadland, 2001). In other situations, there is much less information

regarding the agents’ true preferences, such as the allocation of training in the Navy.

Large and complex organizations, such as the U.S. Navy, face the same continuous challenge of allo-

cating commonly shared resources efficiently and effectively. Navy Training Programs constitute a large

expenditure component for the Navy. In 1996, the Navy spent over $13.9 billion to train in excess of 1 mil-

lion students. These students attended approximately 10,000 different courses which were offered several
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times a year at more than 300 Navy locations. The objective of such training programs is to provide the Navy

with a force qualified to perform a variety of tasks and missions. Navy Training Programs can be viewed as a

shared good that different agencies within the Navy demand and use at the same time. The decision process

regarding whether an individual should attend a training school and when this should occur is carried out

jointly by an enlisted community manager (who determines the individuals who should fill different jobs in

the Navy) and a detailer (who assigns individuals to different schools). The allocation problem is compli-

cated when these shared resources are scarce. Whenever demand exceeds supply and we have to ration the

demanders of a service, the subjects will have to wait. Such a cost for waiting will have to be divided among

the users of the service. The allocation problem can be further aggravated if demanders overstate their

case for desired resources in order to ensure access. Therefore, the two major problems facing the decision

makers are: (1) How to determine the true demand for different types of training by different users in the

Navy, and (2) how to efficiently allocate the limited supply of slots in training schools. The common first-

come-first-serve queueing algorithm, which is equivalent to the average cost pricing mechanism, relegates

all congestion control to the origin, since the order of arrival determines who goes to the training program

and when. Under this mechanism a single unit with a very high demand can capture a large fraction of the

available slots in training schools. This is a typical problem of the average cost pricing mechanism that it

tends to favor high demanders and, therefore, it could induce over-demand. Alternatively, we could divide

the total waiting cost according to the serial cost sharing mechanism, which has better theoretical properties.

For example it is in each individual’s best interest to reveal truthfully their actual demands. When choosing

the appropriate mechanism, it is important to assess the actual performance of these different mechanisms

under limited information.

The theoretical literature on cost sharing has largely focused on the axiomatic characterization of these

mechanisms (e.g., Moulin and Shenker,1994; Friedman and Moulin, 1999) and their static properties in a

complete information setting with synchronous actions. However, as Friedman and Shenker (1998) pointed

out, in a distributed system1 such as the Internet where agents have very limited a priori information about

other agents and the payoff structure, traditional solution concepts might not be able to predict the outcome

of learning. It is important to empirically study the actual learning dynamics among real players in settings

similar to distributed networks and examine whether learning will lead to the equilibrium predicted by

theory. This paper does this by investigating the learning dynamics induced by each mechanism under both

complete and limited information settings in a controlled laboratory.

We are aware of five experimental studies of cost sharing mechanisms. Chen (forthcoming) studies

the serial and average cost pricing mechanisms under complete information as well as limited information

when there are two types of agents. She found that the performance of the two mechanisms are statistically

indistinguishable under complete information. Under limited information, however, the serial mechanism

performs robustly better than the average cost pricing mechanism in terms of frequency of equilibrium play

1Following Friedman and Shenker (1998), a system is called a distributed system “because the users are geographically dispersed

and are accessing the resource through the network.” The Internet is a prominent example.
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and system efficiency. Chen and Khoroshilov (forthcoming) study the learning dynamics in these cost shar-

ing games and other games under limited information. Razzolini et al. (1999) investigate the performance of

the serial mechanism with each human subject against three computerized players, where each human player

knows his own cost share and payoff structure but has no information about the opponents’ payoff structures.

Their information condition is in between the complete information and limited information setting in Chen

(forthcoming). While in Chen’s experiment, the subjects maintain their preference parameter throughout

the entire experiment, in Razzolini et al.’s experiment, the subjects’ preference parameters change in each

period. This implies that in each period the allocation mechanism must converge to a different Nash equilib-

rium allocation. Razzolini et al. (1999) implement the serial mechansism both as a sequential game and as a

simultaneous normal form game. They found that the serial mechanism leads to almost efficient allocations,

and even though more easy to understand and implement, the simultaneous move treatment does not lead

to a better overall performance. Chen (forthcoming) uses a payoff table to explain both mechanisms, which

is feasible for the serial mechanism with only two types of players. When the number of types increase,

the serial mechanism becomes more challenging to implement in the laboratory, because the dimension of

payoff tables increases with each additional type. With more than two types one needs to find alternative

ways to implement the mechanism. Razzolini et al. (1999) has four different types, but only one of them is

a human player, thus the strategic interaction between different types are simplified. Each of the two studies

highlights different aspects of the cost sharing mechanisms. They present the first steps in understanding

how these mechanisms work.

Gailmard and Palfrey (2000) report experiments for the provision of excludable threshold public goods

and compare the serial cost sharing mechanism with voluntary cost sharing with proportional rebates and

with no rebates. They found that voluntary cost sharing with rebates outperforms serial on welfare grounds,

which in turn outperforms voluntary cost sharing with no rebates. One possible reason for the difference

between Gailmard and Palfrey’s results and the two previous studies might be that Gailmard and Palfrey

(2000) use an excludable threshold public goods, while Chen (forthcoming) and Razzolini et al. (1999)

use multiple levels of private goods. Rapoport et al. (2001) report an experimental study of a large-scale

queueing game with the FIFO queue discipline (i.e., average cost sharing mechanism). Their results show

strong support for mixed strategy equilibrium play on the aggregate level but not on the individual level.

This paper is a natural extension of Chen (forthcoming) and Razzolini et al. (1999). In this paper we

design an experiment to evaluate the serial and the average cost pricing mechanism in a baseline complete

information environment, and a more challenging environment with limited information. In our environ-

ment, there are twelve players of four different types. Thus, the environment is more complex than the

two earlier studies. The goal of this paper is to assess the performance of the two mechanisms in different

settings, to study how human subjects learn in these different settings, and whether and how the learning

dynamics leads to convergence to stage game Nash equilibrium.

The paper is organized as follows. Section 2 introduces the theoretical properties of the serial (hereafter

shortened as SRL) and average cost pricing (hereafter shortened as ACP) mechanisms. Section 3 presents the
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experimental design. Section 4 compares the performance of the mechanisms under complete information

and limited information. Section 5 discusses the robustness of the experimental results with respect to

changes in the environment by calibrating a learning model and using the calibrated model to forecast

performance in other environments. Section 6 concludes the paper.

2 Theoretical Properties of the Mechanisms

Let N = {1, · · · , i, · · · , n} be a group of agents sharing a one-input, one-output technology. Each of the n

agents announces his demand qi of output. Each agent gets her demand qi and pays a cost share, xi. Note

xi is the total cost agent i pays. In the irrigation example, qi corresponds to the total amount of maintenance

of the main ditch demanded by agent i, while xi is what agent i pays to get the maintenance done. In the

example of Internet routers, qi is agent i’s data transmission rate, while xi is the congestion, i.e., the average

queue experienced by agent i. In the example of the Navy training programs, qi is the number of seats

requested in the school, and xi is the waiting cost each unit must incur. In all three case, xi is the reduction

in agent i’s utility due to congestion. Let q1 ≤ q2 ≤ · · · ≤ qn. The cost function is denoted by C, which is

strictly convex. A cost-sharing mechanism must allocate the total cost C(
∑

i qi) among the n agents.

The serial mechanism, originally introduced by Shenker (1990), was analyzed by Moulin and Shenker

(1992) in the context of cost and surplus sharing with complete information. The mechanism can be charac-

terized by four properties: unique Nash equilibrium at all profiles2, anonymity (the name of the agents does

not matter), monotonicity (an agent’s cost share increases when she demands more output) and smoothness

(an agent’s cost share is a continuously differentiable function of the vector of demands). Among agents

endowed with convex, continuous and monotonic preferences, the serial mechanism is the only cost sharing

rule which is dominance-solvable and its unique Nash equilibrium is also robust to coalitional deviations

when agents cannot transfer outputs.

Under the serial mechanism, agent 1 (with the lowest demand) pays (1/n)th of the cost of producing

nq1, xs
1 = C(nq1)/n. Agent 2 pays agent 1’s cost share plus 1/(n − 1)th of the incremental cost from nq1

to (n − 1)q2 + q1, i.e.,

xs
2 =

C(nq1)
n

+
C(q1 + (n − 1)q2) − C(nq1)

n − 1
.

And so on. Let q0 = 0; q1 = nq1; q2 = q1+(n−1)q2; · · · ; qi = q1+· · ·+qi−1+(n+1−i)qi; · · · , qn =
∑

i qi. Then the general formula for agent i’s cost share is given below,

xs
i (c, q) =

i∑

k=1

C(qk) − C(qk−1)
n + 1 − k

, for all i = 1, · · · , n.

Therefore, an agent’s cost share under the serial mechanism is only affected by her own demand and those

whose demands are lower than hers. In other words, an agent’s cost share is independent of demands higher

than her own.
2Assume agents have convex, continuous and monotonic preferences.
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Like the serial mechanism, the average cost pricing mechanism satisfies anonymity, monotonicity and

smoothness. It is the only method that is robust to arbitrage, i.e., agents cannot benefit from merging or

splitting their demands. In contrast to the serial mechanism, the normal form game induced by the average

cost pricing mechanism is in general not dominance-solvable, nor does it have a unique equilibrium at all

profiles when agents have convex, continuous and monotonic preferences.

When agent i demands qi amount of output, the general formula for agent i’s cost share under the average

cost pricing mechanism is given by

xa
i (c, q) = (qi/

∑

k

qk) · C(
∑

k

qk), for all i = 1, · · · , n.

Therefore, under ACP an agent’s cost share is proportional to her demand. It is affected by her own

demand, and the sum of all other agents’ demands.

There is no systematic efficiency comparison between the two mechanisms. In general there exists no

differentiable and monotonic cost sharing mechanism where all Nash equilibrium outcomes are first best

Pareto optimal at all preference profiles. Moulin and Shenker (1992) provide a definition of second best

efficiency3 and show that the serial mechanism yields a second best efficient equilibrium while ACP does

not.

In distributed systems, such as the Internet where users are geographically dispersed and have little infor-

mation about other players and the payoff structure, for learning to converge to equilibrium, it is important

that strategies sampled by players are informative. In this respect, the serial mechanism has an advantage

over ACP. We first define some new concepts. In a normal form game, one action overwhelms another if

all payoffs, over all sets of other players’ actions, for the one are greater than all payoffs, over all sets of

other players’ actions, for the other4. The serially unoverwhelmed set is the set remaining after iterated

elimination of overwhelmed actions. A game is D-solvable if iterated elimination of dominated strategies

leads to a single eventual outcome. A game is O-solvable if iterated elimination of overwhelmed strategies

leads to a single eventual outcome. Friedman and Shenker (1998) prove that reasonable learners5 converge

to the serially unoverwhelmed set. In comparison, Milgrom and Roberts (1990) showed that adaptive learn-

ers converge to the serially undominated set. Among the cost sharing mechanisms, the serial mechanism is

O-solvable6 while ACP is not. If a strategy overwhelms another one, sampling is much more informative

than situations where one strategy dominates another, as the minimum payoff from the overwhelming strat-

egy is at least as large as the maximum payoff of the overwhelmed strategy. In environments with limited

information, informative sampling can significantly increase the speed of learning.

3“For an arbitrary cost sharing mechanism ξ, say that (q1, · · · , qn) is a Nash equilibrium outcome at some utility profile. We

ask if there is another vector of demands (q
′
1, · · · , q

′
n) such that at the corresponding allocation dictated by the mechanism ξ, no

one is worse off and someone is better off than at the equilibrium allocation corresponding to (q1, · · · , qn). If no such vector of

demands exists, we call our equilibrium second best efficient.” Moulin and Shenker (1992, p.1025)
4See Friedman and Shenker (1998) for a precise definition.
5The key components of a reasonable learner are optimization, monotonicity and responsiveness. See Friedman and Shenker

(1998).
6This is proved in Theorem 8 in Friedman and Shenker (1998).
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3 Experimental Design

The experimental design reflects both theoretical and technical considerations. The goal of the design is to

compare the performance of the SRL and ACP mechanisms in two different settings: a complete information

setting that tests the prediction of dominance-solvability, and a more challenging network setting to compare

the performance of the two mechanisms and to assess the plausibility of the new solution concepts. The

economic environment and experimental procedures are discussed in the sections below.

3.1 The Economic Environment

In a simple environment to test the serial and ACP mechanism under various treatments, agents are endowed

with linear preferences πi(xi, q) = αiqi + ωi − xi, where αi is agent i’s marginal utility for the output, ωi

is agent i’s lump-sum endowment and xi is her cost share. The cost function is chosen to be quadratic,

C(q) = q2. We call this environment E. In the network context with several agents sharing a network

link, αi is agent i’s value for the amount of data transmitted per unit of time, and the cost to be allocated

corresponds to the congestion experienced. Therefore, the cost should be interpreted as the reduction in

agent i’s utility due to congestion. We chose linear utility and quadratic cost functions in order to get an

interior integer Nash equilibrium. In Section 5 we present simulation results for more general utility and

cost functions.

Consider a four-player game with α1 ≤ α2 ≤ α3 ≤ α4. Under the serial mechanism, the cost share for

agent 1 is xs
1 = C(4q1)/4. Agent 2’s cost share is xs

2 = xs
1 + (C(q1 + 3q2) − C(4q1))/3. Agent 3’s cost

share is xs
3 = xs

2 + (C(q1 + q2 + 2q3) − C(q1 + 3q2))/2. Agent 4’s cost share is xs
4 = xs

3 + (C(q1 + q2 +
q3 + q4) − C(q1 + q2 + 2q3)). When agents maximize their utility over a continuous strategy space, the

unique, dominance-solvable Nash equilibrium is characterized by

qs
1 =

α1

8
, qs

2 =
α2

6
− α1

24
, qs

3 =
α3

4
− α1

24
− α2

12
, and qs

4 =
α4

2
− α1

24
− α2

12
− α3

4
.

For the ACP mechanism, the cost shares of each of the four agents are xa
i = qi∑4

i=1
qi

C(
∑4

i=1 qi) =

qi(
∑4

i=1 qi). Even though the normal form game induced by ACP is in general not dominance solvable, nor

does it have a unique equilibrium at all profiles, in our experimental environment it is dominance solvable

and has a unique equilibrium when the strategy space is continuous. The unique, dominance-solvable Nash

equilibrium is characterized by

qa
i =

4αi

5
−

∑
j �=i αj

5
,∀i.

The mechanisms are implemented as normal form games with a discrete strategy space for each player,

{0, 1, · · · , 19, 20}. Parameters are chosen to ensure: (1) With a continuous strategy space, the SRL game is

both D-solvable and O-solvable, while the ACP game is D-solvable but not O-solvable; (2) Nash equilibrium

strategies are all integers; (3) most of the payoffs are positive in both normal form games; (4) lump-sum

payments are allocated in a way that the sum of all players’ Nash equilibrium payoffs in the SRL and ACP
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games are the same with a continuous strategy space. This enables us to make efficiency comparisons

between the two mechanisms.7 (5) Within each game the lump-sum payoffs are allocated such that the

equilibrium payoffs are not too skewed among different types of players.

Based on the theoretical properties of the mechanisms and the design, we expect the performance of the

two mechanisms to be the same under complete information. Under limited information, however, we expect

SRL to have higher level of equilibrium play (and hence higher efficiency), as well as faster convergence to

equilibrium. We formally state the following hypotheses.

HYPOTHESIS 1 Under complete information, SRL and ACP will generate the same proportion of equi-

librium play.

HYPOTHESIS 2 Under limited information, SRL will generate a higher proportion of equilibrium play

than ACP.

HYPOTHESIS 3 Under complete information, the speed of convergence is the same under SRL and ACP.

HYPOTHESIS 4 Under limited information, the speed of convergence is faster under SRL than under ACP.

HYPOTHESIS 5 Under complete information, SRL and ACP will generate the same level of efficiency.

HYPOTHESIS 6 Under limited information, SRL will generate higher efficiency than ACP.

[Table 1 about here.]

Table 1 reports the parameters, equilibrium quantities and payoffs for the two mechanisms. Note that

we use Blue for player 1, Green for player 2, Red for player 3 and Yellow for player 4 in the instructions

(see Appendix A). In the columns under Equilibrium Quantities, the SRL mechanism still has a unique Nash

equilibrium as is the case with a continuous strategy space, (6, 7, 8, 9). Under ACP, however, apart from

the unique Nash equilibrium with a continuous strategy space, (4, 10, 14, 16), there are eighteen additional

Nash equilibria when the strategy space is discrete.

[Table 2 about here.]

Table 2 lists all nineteen Nash equilibria for the ACP game. They are organized by the equilibrium

quantities from the smallest demander to the largest demander. Equilibrium number 10 (in bold) is the

original Nash equilibrium of the continuous game. Note all 19 equilibria have the same aggregate demand,
∑4

i=1 qa
i = 44. The last column lists the aggregate equilibrium payoffs in decreasing order. Next we

show that multiple equilibria as a result of discretization is a generic property of the average cost pricing

mechanism, regardless of the step size for discretization. Let D be a discrete strategy space such that the

equilibrium of the continuous strategy space, {q∗i }i∈N ∈ D. Let s > 0 be the step size in D. The following

proposition characterizes the Nash equilibria of the ACP mechanism with a discrete strategy space D.
7Note that generically in the same economic environment in Nash equilibrium either the SRL or the ACP game yields higher

aggregate payoffs, making it inappropriate to do an efficiency comparison.
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PROPOSITION 1 In environment E under the ACP mechanism, if {q∗i }i∈N is the unique Nash equilibrium

of the continuous game, then {q̄1, · · · , q̄n|q̄i ∈ {q∗i − s, q∗i , q∗i + s} and
∑

i q̄i =
∑

i q
∗
i ,∀i ∈ N, ∀s > 0}

are all Nash equilibria of the discrete game.

Proof: see Appendix B.

Even though Proposition 1 only deals with our experimental environment of linear preferences and

quadratic cost functions, multiple equilibria with discretization is a generic problem with the ACP mecha-

nism. We will discuss the multiple equilibria problem in other environments in Section 5.

3.2 Experimental Procedures

We implemented a 2 × 2 design by varying the mechanisms and information conditions. We conducted

five independent sessions for each of the four treatments. Each session had twelve subjects and last for

fifty rounds. Players always kept their own type. For a baseline comparison, we conducted ten sessions of

the SRL and ACP mechanisms under complete information with the random matching protocol (hereafter

shortened as SRLc and ACPc). Under complete information, each player was informed of the payoff matrix,

the structure of the game, matching protocols, the quantities chosen and the corresponding payoffs earned

by all players in all rounds. This pair of treatments were designed to compare the performance of the

two mechanisms as one-shot games under complete information. The natural solution concept for these

treatments is dominance-solvability. To evaluate the possibility of applying these mechanisms to distributed

systems such as the Internet, we designed a pair of limited information treatments. Learning in distributed

systems is characterized by the feature that players might have extremely limited information. They often

do not know the payoff functions, nor do they know how their payoffs depend on the actions of others,

probably due to the lack of information about the detailed nature of the resources itself. Therefore, in the

limited information treatments, the only information players had was their own action and the resulting own

payoffs. In the limited information treatments, players were again randomly re-matched into groups of four

in each round (hereafter shortened as SRLl and ACPl).

Computerized experiments were conducted at the RCGD Laboratory at the University of Michigan

in July and August, 2001. We conducted twenty independent sessions. Subjects were students from the

University of Michigan. A total of 240 subjects participated in the experiment. No subject was used in more

than one session.

[Table 3 about here.]

Table 3 lists the features of each session, including session number, date experiments were conducted,

mechanisms implemented, and information conditions under each treatment. At the beginning of each

session subjects randomly drew a PC terminal number. Then each of them was seated in front of the corre-

sponding terminal, and given the instructions. After the instructions were read aloud, subjects were required

to finish the Review Questions in the complete information treatment, which were designed to test their
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understanding of the instructions. Since the instructions for the limited information case were straightfor-

ward, they were not given Review Questions. Afterwards the experimenter checked answers and answered

questions. In all complete information sessions the instruction period was within 25 minutes and the entire

session took about one hour. In all limited information sessions the instruction period was within 10 min-

utes and the entire session took approximately 40 minutes. There was no practice round in any session. The

average earning was $19.03.

Instructions for the experiments are in Appendix A. Experimental data are available from the authors

upon request. Note that in the limited information treatments, players had extremely limited information -

they were told that they were in a game, the game length and their strategy space. At the end of each round

each player was informed of his own choice in the previous round and his own payoff corresponding to his

previous round’s choice of quantity. They had no information about the payoff matrix, nor whom they were

playing with.

4 Experimental Results

In this section, we compare the performance of the two mechanisms under the complete and limited informa-

tion conditions. We first examine the level of convergence to Nash equilibrium by checking the proportion

of equilibrium play. We then investigate the speed of convergence to Nash equilibrium. Lastly, we examine

the efficiency under each treatment.

[Figures 1 and 2 about here.]

Figures 1 and 2 present the experimental data under complete and limited information respectively. In

each figure, the top four panels present the time series mean strategies (dots), standard deviation (error bars)

and equilibrium values (dashed lines) of each of the four types averaged across five independent sessions

under ACP. The bottom four panels present the same information under SRL. Note that in the ACP panels,

multiple equilibria correspond to two dashed lines representing the upper and lower bound of the equilibrium

values. Comparing the top with the bottom four panels, it seems that SRL converges to equilibrium much

faster than ACP in both figures. Another important feature is that convergence seems much faster under

complete information. In what follows, we will present statistical analysis of these patterns.

We use the proportion of Nash equilibrium play as a measure for the level of convergence. We use the

point prediction of (6, 7, 8, 9) for the SRL mechanism, and a set prediction of ({3, 4, 5}, {9, 10, 11},
{13, 14, 15}, {15, 16, 17}) for the ACP mechanism. Note that the set prediction gives ACP an advantage,

since it allows combinations of strategies that are not Nash equilibrium to be counted as equilibrium play.

[Table 5 about here.]

Table 5 tabulates the proportion of Nash equilibrium play in each treatment. We use P e to denote the

proportion of equilibrium play.
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RESULT 1 (Equilibrium Play: Comparison of Mechanisms) : Under complete information, the pro-

portion of Nash equilibrium play under SRL is significantly higher than that under ACP. Under limited

information, the proportion of Nash equilibrium play under SRL is weakly higher than that under ACP.

SUPPORT: Table 5 presents the proportion of Nash equilibrium play for each session. Permutation tests

under the null hypothesis that the proportion of Nash equilibrium play under SRL is the same as that under

ACP show that

1. P e(SRLc) > P e(ACPc) at a significance level of 0.0040 (one-tailed);

2. P e(SRLl) > P e(ACPl) at a significance level of 0.0833 (one-tailed).

Result 1 indicates that the proportion of Nash equilibrium play is higher under SRL than that under ACP

under both information conditions. This result rejects Hypothesis 1, and it is consistent with Hypothesis 2.

Under complete information, even though both mechanisms are dominance solvable and thus we expect their

performance to be the same, SRL performs significantly better than ACP. This result is also in contrast to

Chen (forthcoming), where she finds that in a two-type environment, the performance of the two mechanisms

is statistically indistinguishable under complete information, though SRL performs significantly better than

ACP under limited information. Our interpretation is that with two types, the mechanisms can be presented

as a bi-matrix game, where it is relatively easy to find Nash equilibrium. With four types, the bi-matrix

game representation is no longer feasible. As a result, the uniform dominance (or overwhelming) property

of the SRL game helps subjects to get to equilibrium even under complete information.

RESULT 2 (Equilibrium Play: Comparison of Information Conditions) : For both the SRL and ACP

mechanisms, the proportion of equilibrium play under complete information is significantly higher than that

under limited information.

SUPPORT: Table 5 presents the proportion of Nash equilibrium play for each independent observation.

Permutation tests show that

1. P e(SRLc) > P e(SRLl) at a significance level of 0.0040 (one-tailed);

2. P e(ACPc) > P e(ACPl) at a significance level of 0.0040 (one-tailed).

Result 2 indicates that the amount of information significantly impact the level of convergence, possibly

through its influence on the speed of convergence. We are interested in the speed of convergence both at

the aggregate mechanism level and at the individual level. The speed of convergence at the individual level

might provide an explanation for the dynamics we observe.

[Table 6 about here.]
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To investigate the speed of convergence and various factors that affect the speed of convergence, we use a

random-effects GLS model, where each group consists of all quantities submitted by one individual. Results

of the estimation is reported in Table 6. In six different specifications (columns (1) to (6)), the dependent

variable is the distance between actual quantity demanded and equilibrium quantity for the individual player,

|qt
i − qe

i |, which captures the convergence to equilibrium. Again, we use the equilibrium point prediction

for SRL and the set prediction for ACP. In specifications (1) and (3), we use ln(Period) as the independent

variable to investigate whether Period (or time) has a significant effect on the speed of convergence. To

examine whether the effects of learning remain constant, decreasing or increasing over time, we used Period,

ln (Period), as well as Period2 as independent variables. Since specifications with ln (Period) overall yields

the best fit, we report only these specifications. In specifications (2) and (4), we add a dummy variable

for information conditions, DummyI, which is equal to one for complete information and zero for limited

information. The interaction of DummyI and ln(Period) captures the effects of more information on the

speed of convergence. In specifications (5) and (6), we add a mechanism dummy, DummyM, which is

equal to one for SRL and zero for ACP. Compared with the coefficient of ln(Period), the coefficient for the

interaction term, DummyM × ln(Period), captures the difference between SRL and ACP on the speed of

convergence.

RESULT 3 (Speed of Convergence: Information and Mechanism Effects) : Convergence to equilib-

rium significantly increases over time. More information significantly increases the speed of convergence

for ACP. Under both information conditions, convergence is significantly more rapid under SRL.

SUPPORT: Table 6 reports results of random-effects GLS regressions. In specifications (1) and (3), the

coefficients of ln (Period) are both negative and highly significant, indicating increased convergence over

time. In specifications (2) and (4), the coefficients for DummyI × ln(Period) are both negative, but only

significant under ACP. In specifications (5) and (6), the coefficients for DummyM × ln(Period) are both

negative and highly significant, indicating more rapid convergence under SRL than under ACP.

The first part of Result 3 indicates that players learn to play equilibrium strategies over time, which is

not surprising. The second part indicates that more information increases the speed of convergence, but this

information effect is only significant for ACP, not for SRL. Unlike ACP, the speed of convergence under

SRL does not depend critically on the amount of information players have about the underlying structure of

the game. Therefore, if the SRL mechanism is used in limited information settings, such as the Internet, we

expect the same speed of convergence as in complete information settings. While the third part of Result 3

is consistent with Hypothesis 2, it rejects Hypothesis 3.

We now examine whether there exist type specific effects on the level and speed of convergence. We use

a random-effects GLS model, where the dependent variable is again the distance between actual quantity

demanded and equilibrium quantity. In each of the four specifications, the independent variables are the type

dummies (Type i Dummy, where i = 2, 3, 4), ln(Period), and interactions of type dummies and ln (Period).

The omitted dummy variable is Type 1. Therefore, the Constant measures the level of convergence of Type
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1, while the coefficient of Type i Dummy measures the difference in the level of convergence between Type

i and Type 1. Similarly, the coefficient of ln(Period) measures the speed of convergence for Type 1, while

the coefficient of Type i Dummy × ln(Period) measures the difference in the speed of convergence between

Type i and Type 1. Results of the estimation is reported in Table 7.

[Table 7 about here.]

Under SRL, while the levels of convergence, as captured by the coefficients of type dummies, do not

differ significantly across types, but the speed of convergence does.

RESULT 4 (Speed of Convergence by Type under SRL) : Under SRL complete information, the speed

of convergence follow the order of Type 1 (and 4) > Type 2 > Type 3. Under SRL limited information, the

speed of convergence follow the order of Type 1 > Type 2 > Type 4 > Type 3, with Types 3 and 4 very close

to each other.

SUPPORT: Specification (1) and (2) in Table 7 reports results of estimation under SRL complete and

limited information respectively. Coefficient of ln(Period), and coefficient of ln(Period) + coefficient of

Type i Dummy × ln(Period) measures the speed of convergence of Type 1 and Type i respectively. The

more negative a coefficient is, the faster the speed of convergence is.

Result 4 reveals beautifully how individual learning takes place under SRL and why it converges so

robustly under both complete and limited information conditions. Recall that under SRL a player’s cost

share is independent of demands higher than her own. Therefore, the smallest user solves an individual

optimization (or hill-climbing) problem. Once the smallest user finds the equilibrium, the second smallest

user’s problem also becomes an individual optimization problem rather than a game. And so on. Regardless

of information conditions, once users 1 to i finds the equilibrium quantities and settle down, the (i + 1)th

user’s problem becomes very simple. Under complete information, some players might be able to figure

out the equilibrium quantities through various degrees of introspection without waiting for smaller users

to settle down first. Therefore, while the order of settling down helps the speed of convergence, it is not

crucial. We do observe that Type 1 and Type 4 have statistically indistinguishable speed of convergence. In

limited information settings, however, this order of settling down becomes especially important, as rational

introspection is not feasible, while experimentation and hill-climbing are the key elements of learning. The

second part of Result 4 indicates that the speed of convergence by type follows essentially the same order of

settling down analyzed before, with Types 3 and 4 out of order, but the difference between types 3 and 4 is

very small. (Need test for difference!)

Under ACP, however, we do not observe any type-specific pattern of convergence.

RESULT 5 (Speed of Convergence by Type under ACP) : Under ACP complete information, the speed

of convergence follow the order of Type 1 > Type 4 > Type 3 > Type 2. Under ACP limited information, the

speed of convergence is not significantly different across types.
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SUPPORT: Specification (3) and (4) in Table 7 reports results of estimation under ACP complete and

limited information respectively. Again, coefficient of ln(Period), and coefficient of ln(Period) + coefficient

of Type i Dummy × ln(Period) measures the speed of convergence of Type 1 and Type i respectively. The

more negative a coefficient is, the faster the speed of convergence is.

As discussed in Section 2, under ACP, a player’s cost share is affected by everyone else’s demand.

There does not exist an clear order of settling down by type. With complete information, various degrees

of rational introspection might help convergence to equilibrium. Under limited information, however, as

one player’s experimentation immediately affects every other player’s payoff, this makes learning difficult.

Result 5 confirms this observation.

Although there is no systematic efficiency comparison between the two mechanisms in general, in this

experiment we can make efficiency comparison between the two mechanisms, since we give each player a

lump sum payment such that the equilibrium aggregate payoffs for both mechanisms are the same. Group

efficiency is calculated by taking the ratio of the sum of the actual earnings of all subjects in a session

and the Pareto-optimal earnings of the group without lump-sum payments. Note that in this experimental

setting the Pareto optimal payoff without lump sum payments is 881 at strategy four-tuple (0, 0, 9, 20),
which is obtained through an exhaustive grid search over the entire strategy space.8 As a benchmark, the

equilibrium aggregate payoff for both mechanisms is 850, which yields an efficiency of 96.48%. We use

Ef for efficiency.

RESULT 6 (Efficiency: Comparison of the Two Mechanisms) : The efficiency of the SRL mechanism is

significantly higher than that of the ACP mechanism under both the complete information and the limited

information treatments.

[Table 4 about here.]

SUPPORT: Table 4 reports the efficiency of each session under each treatment. Permutation tests show that

(1) Ef(SRLc) > Ef(ACPc) at a significance level of 0.0040 (one-tailed);

(2) Ef(SRLl) > Ef(ACPl) at a significance level of 0.0040 (one-tailed);

(3) Ef(SRLl) > Ef(ACPc) at a significance level of 0.0040 (one-tailed).

Result 6 says that the SRL mechanism performs robustly better than the ACP mechanism in terms of

group efficiency regardless of information conditions. The efficiency of the SRL mechanism under the lim-

ited information treatment is significantly higher than the ACP mechanism under the complete information

condition. This result is consistent with Result 1 and 3. It is not surprising that it is consistent with Hypoth-

esis 6, but rejects Hypothesis 5. Next, we compare the efficiency within each mechanism under different

information conditions.
8Given the linear utility functions used in our environment, there is no analytical solution to the joint optimization problem,

which searches for the Pareto optimal vector of demands.
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RESULT 7 (Efficiency: Comparison of Information Conditions) : For both the SRL and ACP mecha-

nisms, the efficiency under complete information is significantly higher than that under limited information.

SUPPORT: Table 4 reports the efficiency of each independent observation under each treatment. Permuta-

tion tests show

(1) Ef(SRLc) > Ef(SRLl) at a significance level of 0.0040 (one-tailed);

(2) Ef(ACPc) > Ef(ACPl) at a significance level of 0.0476 (one-tailed).

This result says that more information is advantageous for aggregate efficiency. It is consistent with

Result 2.

Experimental results indicate that under both complete and limited information settings SRL performs

robustly better than ACP in terms of proportion of Nash equilibrium play, speed of convergence and effi-

ciency. The property that a user’s cost share is independent of larger users implies an order (sorted by the

quantity demanded) of settling down to equilibrium strategies under SRL, which facilitates learning and

convergence especially under limited information settings. The uniform dominance property of SRL also

implies that sampling and experimentation are much more informative than that under ACP.

5 Simulation Results: Robustness of Experimental Results in More General Environments

In this section we assess the extent to which the experimental results in Sections 4 depend on the linearity of

the utility function and the quadratic cost function employed. Following Chen (forthcoming), we consider

nine different environments. For simplicity we use polynomial utility and cost functions. The utility function

is πi(xi, q) = αiq
b
i − xi, where αi denotes agent i’s marginal utility for the output, b = 0.5, 1, and 2, and xi

is her cost share. The cost function is chosen to be C(q) = qc, where c = 0.5, 1 and 2. Varying parameters

b and c will give us nine combinations of concave, linear and convex utility and cost functions. Note that

b = 1 and c = 2 is the original experimental design.

For the robustness check, it is crucial to use the right learning dynamics. There has been a large literature

on learning in games and a growing number of learning algorithms (see Fudenberg and Levine (1998) and

Camerer (2003), for surveys). Our interest here is not to compare the performance of various learning mod-

els. We thus looked for an algorithm which, when calibrated, closely approximates the observed dynamic

paths over fifty rounds. In the following subsections we first report the calibration results using the chosen

algorithm. We then report the forecasting results using the calibrated algorithm.

5.1 Calibration

For calibration, we choose to use the payoff assessment learning model, as it is simple, intuitive, and capable

of handling both complete and limited information treatments. Furthermore, using the experimental data on
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cost sharing games reported in Chen (forthcoming), and Van Huyck, Battalio and Rankin’s (1996) data on

coordination games, Chen and Khoroshilov (forthcoming) show that the payoff-assessment learning model

tracks the data the best among three payoff-based learning models: the payoff-assessment learning model

(Sarin and Vahid, 1999), a modified experience-weighted attraction learning model (Camerer and Ho, 1999)

and a simple reinforcement learning model.

The payoff-assessment learning model assumes that a player is a myopic subjective maximizer. She

chooses among different strategies only on the basis of the payoff she assesses she would obtain from them.

These assessments do not explicitly take into account her subjective judgements regarding the likelihood of

alternate states of the world. At each stage, the player chooses the strategy that she myopically assesses to

give her the highest payoff and updates her assessment adaptively. Let uj(t) denote the subjective assess-

ment of strategy sj at time t, and πk(t) denote the payoff from playing strategy sk at time t. The initial

assessment is denoted by uj(0). Payoff assessments are updated by taking a weighted average of her pre-

vious assessments and the objective payoff she actually obtains at time t. Let r be the discount factor. If

strategy k is chosen at time t, then

uj(t + 1) = (1 − r)uj(t) + rπk(t),∀j. (1)

Suppose that at time t the decision-maker experiences zero-mean, symmetrically distributed shocks,

Zj(t) to her assessment of the payoff she would receive from choosing strategy sj , for all sj . Denote the

vector of shocks by Z = (Z1, · · · , Z12), and their realizations at time t by z(t) = (z1(t), · · · , z12(t)).
The decision maker makes choices on the basis of her shock-distorted subjective assessments, denoted by

ũ(t) = u(t) + Z(t). At time t she chooses strategy sj if

ũj(t) > ũl(t),∀sl �= sj . (2)

Note that mood shocks only affect her choices and not the manner in which assessments are updated.

Sarin and Vahid (1999) prove that such a player converges to stochastically choose the strategy that first

order stochastically dominates another among the strategies she converges to play with positive probability.

For parameter estimation, we conduct Monte Carlo simulations designed to replicate the characteristics

of each of the experimental settings. We then compare the simulated paths with the actual paths of a subset

of the experimental data to estimate the parameters which minimize the mean-squared deviation scores.

In each simulation, 10,000 players were created. In each simulation the following steps were taken:

1. Initial values: Since Kolmogorov-Smirnov tests of the round one price distribution by experimental

subjects reject the null hypotheses of uniform distribution, we followed the convention in the literature

(e.g., Camerer and Ho, 2001) and used the actual first round empirical distribution of choices to

generate the first round choices.

2. Simulated players were randomly rematched into groups of four for each period.

3. Shocks are drawn from a uniform distribution, [−a, a].
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4. The simulated players’ strategies were determined via Eq. (2).

5. Payoffs were determined using the SRL or ACP payoff rule.

6. Assessments were updated according to Eq. (1), using discount factor, r.

[Table 8 about here.]

Table 8 reports the calibrated parameters (discount factor and the interval of mood shocks) for each

treatment. Under each mechanism, the interval of mood shocks, [−a, a] are much larger under the limited

information treatment than the corresponding complete information treatment, indicating more experimen-

tation under limited information.

5.2 Forecasting

In this subsection, we use the calibrated parameters to simulate the dynamic paths of the two mechanisms

in nine different environments. In each environment, we run 10,000 Monte Carlo simulations with the

calibrated payoff assessment learning model. Of the nine environments, we report one in each of the three

utility functions. Results of the simulation are reported in Figures 3 to 5.

[Figures 3 to 5 about here.]

Each figure consists of eight panels. The top four panels report the mean demands (diamonds), standard

deviations (error bars) and equilibrium (dark horizontal line) over fifty rounds for types 1 to 4 under ACP,

while the bottom four panels report the same information under SRL. We summarize the findings as follows.

RESULT 8 (Simulation) : With concave and linear utility function, regardless of the form of cost func-

tions, SRL performs better than ACP in terms of the level and speed of convergence. With convex utility

functions, regardless of the form of cost functions, the level and speed of convergence are indistinguishable

under SRL and ACP.

SUPPORT: Figures 3 and 4 report the dynamic paths of the two mechanisms with concave and linear utility

functions respectively. SRL converges to equilibrium faster and the error bars are smaller than ACP. Figure

5 reports the dynamic paths of the two mechanisms with convex utility function. Speed and level (error bars)

of convergence are indistinguishable between the top and lower panels in each figure.

Simulation results indicate that when there are decreasing or constant marginal utility of the quantity

demanded, SRL performs robustly better than ACP. When we have increasing returns, the performance of

the two mechanisms are similar. In our simulation, cost structure does not seem to affect the ranking of the

performance.
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6 Conclusion

Cost sharing mechanisms have many practical applications in the real world. An increasingly important

area is distributed systems like the Internet, where agents have very limited information about the payoff

structure as well as the characteristics of other agents and where there is no synchronization of actions.

Most current Internet routers use the average cost pricing mechanism, while this study suggests that the

serial mechanism might be a better choice. Similarly, in the allocation of men to training schools in the

Navy, different units may experience long waiting times and demands must be rationed. This study suggests

that a more efficient allocation of waiting times could be done by using the serial mechanism rather than

more traditional approaches such as first-in-first-out algorithm.

This paper reports experimental results on the serial and the average cost pricing mechanisms under two

different treatments. The first is a complete information treatment designed to test the basic properties of the

mechanisms. The other simulates distributed systems by giving the subjects very limited information about

the game. The latter present a more challenging and realistic setting for the cost sharing mechanisms.

Experimental results show that the serial mechanism performs significantly better than the average cost

pricing mechanism in all treatments both in terms of efficiency and predictability measured as frequency

of equilibrium play, as well as the speed of convergence. Simulation results indicate that the experimental

results holds when preferences exhibit decreasing or constant returns. The performance of the two mecha-

nisms are similar with increasing returns.
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Friedman, Eric and Hervé Moulin. “Three Methods to Share Joints Costs or Surplus.” Journal of Economic

Theory vol. 87, no. 2 (1999): p.275-312.

Friedman, Eric and Scott Shenker. “Learning and Implementation on the Internet.” Manuscript. New

Brunswick: Rutgers University, Department of Economics, 1998.

18



Gailmard, Sean and Thomas Palfrey. “An Experimental Comparison of Collective Choice Procedures for

Excludable Public Goods.” Manuscript. Pasadena: California Institute of Technology, 2000.

Greenwald, Amy, Eric Friedman and Scott Shenker. “Learning in Network Contexts: Experimental Results

from Simulations.” Games and Economic Behavior forthcoming.

Kolpin, Van and David Aadland. “Environmental Determinants of Cost Sharing: an Application to Irriga-

tion.” Manuscript. Eugene: University of Oregon, 2001.

Milgrom, Paul and John Roberts. “Rationalizability, Learning and Equilibrium in Games with Strategic

Complementarities.” Econometrica 58, no. 6 (1990): 1255-1277.
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APPENDIX A. EXPERIMENT INSTRUCTIONS

Instruction for Mechanism S corresponds to the serial mechanism under complete information. Instruc-

tion for Mechanism A corresponds to the average cost pricing mechanism under complete information.

Introduction, Procedure and Computer instructions for Mechanism A are identical to that of Mechanism S

and hence are omitted. Instruction for Mechanism XY is for both mechanisms under limited information.

Experiment Instructions – Mechanism S

Name PCLAB Total Payment

Introduction

• You are about to participate in a decision process in which one of numerous alternatives is selected

in each of 50 rounds. This is part of a study intended to provide insights into certain features of

decision processes. If you follow the instructions carefully and make good decisions you may earn a

considerable amount of money. You will be paid in cash at the end of the experiment.

• During the experiment, we ask that you please do not talk to each other. If you have a question, please

raise your hand and an experimenter will assist you.

Procedure

• At the beginning of the experiment you will be randomly assigned to one of four types: the Blue type,

the Green type, the Red type, or the Yellow type. There will be 3 participants of each type. You will

keep your type for the entire experiment.

• In each of 50 rounds, you will be randomly matched into different groups. Each group consists of

four participants - a Blue, a Green, a Red and a Yellow type. You will not know the identities of the

other participants in your group. Your payoff each round depends only on the decisions made by you

and the other participants within your group.

• In each of 50 rounds, each participant will demand a quantity, which will give you some benefit. The

total quantity within each group will be produced and the cost of production will be shared among all

four members of the group. The benefit and cost allocation method will be explained below.
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Payoffs

• Per Round Benefit: Each unit you demand will give you some benefit.

Blue′sBenefit = (48 × Blue′sQuantity) + 60
Green′sBenefit = (54 × Green′sQuantity) + 20
Red′sBenefit = 58 × Red′sQuantity
Yellow′sBenefit = 60 × Yellow′sQuantity

• Per Round Cost: Your cost share depends on your quantity as well as the quantities demanded by

others in your group that are lower than yours. We order the quantities demanded from the lowest to

the highest: Q1 ≤ Q2 ≤ Q3 ≤ Q4. The total cost of producing all demanded quantities is the sum of

all quantities squared, (Q1 + Q2 + Q3 + Q4)2. The total cost is distributed to the four participants in

the following way.

– If you demand a quantity which is the smallest in your group, Q1, your cost share only depends

on your own quantity, i.e.,

C1 =
(4Q1)2

4
= 4Q2

1.

Therefore, you pay one fourth of the cost of producing four times the smallest quantity.

– If your demand is Q2, your cost share is

C2 = C1 +
(Q1 + 3Q2)2 − (4Q1)2

3
.

Therefore, you pay the cost share of the smallest demander, plus one third of the additional cost

of producing the smallest quantity and three times your own quantity.

– If your demand is Q3, your cost share is

C3 = C2 +
(Q1 + Q2 + 2Q3)2 − (Q1 + 3Q2)2

2
.

Therefore, you pay the cost shares of the second smallest demander, plus half of the additional

cost of producing Q1 + Q2 + 2Q3.

– If you demand the highest quantity in your group, Q4, you pay the rest of the cost:

C4 = C3 + [(Q1 + Q2 + Q3 + Q4)2 − (Q1 + Q2 + 2Q3)2].

Therefore, the more you demand, the more cost you have to pay. Your cost share is only affected by

your own demand, and those whose demands are lower than yours. Your cost share is independent of

demands higher than your own.
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• Per Round Payoff = Per Round Benefit - Per Round Cost

Table 1 displays per round payoffs, which summarize both the benefit and the cost, for different types

of participants, if that participant’s demand is the lowest in his/her group. Payoff tables for participants

whose demands are not the smallest are somewhat cumbersome, and thus not displayed.

• There will be 50 rounds. There will be no practice rounds. From the first round, you will be paid for

each decision you make.

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

Information At the end of each round, you are informed of all results for the round:

• The demands of each participant in each group; and

• The corresponding payoffs of each participant in each group.

We encourage you to earn as much cash as you can. Are there any questions?

Review Questions

1. You are a (Blue, Green, Red, Yellow) type.

2. If you demand a quantity of 17 and your demand is the lowest in your group, your payoff will be

. (Check Table 1.)

3. If the smallest quantity in your group is Q1 = 3, and your demand is the second smallest, Q2 = 10,

then

your benefit = ;

your cost = 4Q2
1 + (Q1+3Q2)2−(4Q1)2

3 = ; and

your payoff = your benefit - your cost = .

4. True or false:

(a) You will keep your type for the entire experiment.

(b) You will be playing with the same three participants for the entire experiment.

(c) Your payoff depends only on your own quantity.

Computer Instructions

Process
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• At the beginning of each round, you enter your Quantity, and then click the Okay button to submit it.

• You are free to enter any integer between 0 and 20.

• Notice that if you enter a Quantity outside of 0 and 20, or do not enter an integer, the computer will

tell you that your Quantity is not valid and you need to change your selection.

• After all participants have submitted a Quantity, the computer will calculate your payoff and send this

number and other relevant information to your screen.

• This process will be repeated for each round.

Changing Your Entry

• Prior to clicking the Okay button, use the Back Space key to delete your selection, and then enter

your new selection.

• Once you have submitted your Quantity, you cannot change it.

History Box

• At any point in the experiment, you can review all of your previous choices and payoffs by reviewing

the History box.

• To view rounds that are not visible, use the scroll bar on the right of the History box.

Experiment Instructions – Mechanism A

Name PCLAB Total Payment

· · · · · ·

Payoffs

• Per Round Benefit: Each unit you demand will give you some benefit.

Blue′sBenefit = (48 × Blue′sQuantity) + 180
Green′sBenefit = (54 × Green′sQuantity) + 102
Red′sBenefit = 58 × Red′sQuantity
Yellow′sBenefit = 60 × Yellow′sQuantity

• Per Round Cost: Your cost share depends on your quantity as well as the quantities demanded by

others in your group. Cost of producing x units is x2. Your share of the cost is proportional to your

demand. Therefore,

Your Cost Share = Your Quantity
Total Quantity × (Total Quantity)2

= (Your Quantity) × (Total Quantity), where

Total Quantity = Your Quantity + Sum of Other Three Participants’ Quantities.

Therefore, the more you demand, the more cost you have to pay. Your cost share is proportional to

your quantity.
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• Per Round Payoff = Per Round Benefit - Per Round Cost

Tables 1 - 4 display per round payoffs, which summarize both the benefit and the cost, for each type

of participants. The first column is your quantity (from 0 to 20). The first row is the sum of the other

three participants’ quantities (from 0 to 60, with a step size of 2). The numbers in the table are your

payoffs corresponding to each combination of your quantity and the sum of others’ quantities.

• There will be 50 rounds. There will be no practice rounds. From the first round, you will be paid for

each decision you make.

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

Information At the end of each round, you are informed of all results for the round:

• The demands of each participant in each group; and

• The corresponding payoffs of each participant in each group.

We encourage you to earn as much cash as you can. Are there any questions?

Review Questions

1. You are a (Blue, Green, Red, Yellow) type.

2. If you demand a quantity of 17 and the sum of the others quantities is 20, your payoff will be .

(Check Tables 1 - 4, ONE of which is your payoff table.)

3. True or false:

(a) You will keep your type for the entire experiment.

(b) You will be playing with the same three participants for the entire experiment.

(c) Your payoff depends only on your own quantity.

Experiment Instructions – Mechanism XY

PCLAB Total Payment

Procedure

• You are part of a game, in which you have to make a decision in each of 50 rounds.

• In each round, you are free to enter any integer between 0 and 20.

Information

• At the end of each round, you are informed of your result for the round:

24



- your own choice

- your own payoff

Total Payoffs

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there any questions?

Computer Instructions

Process

• At the beginning of each round, you enter your Choice, and then click the Okay button to submit it.

• You are free to enter any integer between 0 and 20.

• Notice that if you enter a Choice outside of 0 and 20, or do not enter an integer, the computer will tell

you that your Choice is not valid and you need to change your selection.

• After all participants have submitted a Choice, the computer will calculate your payoff and send this

number and other relevant information to your screen.

• This process will be repeated for each round.

Changing Your Entry

• Prior to clicking the Okay button, use the Back Space key to delete your selection, and then enter

your new selection.

• Once you have submitted your Choice, you cannot change it.

History Box

• At any point in the experiment, you can review all of your previous choices and payoffs by reviewing

the History box.

• To view rounds that are not visible, use the scroll bar on the right of the History box.
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APPENDIX B. Discretization and Multiple Equilibria in ACP

Proof of Proposition 1: Let {q∗i }i be the Nash equilibrium quantities of the ACP game with a continuous

strategy space. With a quadratic cost function, C(
∑

i qi), the unique Nash equilibrium is characterized by

the solution to the following maximization problem:

max
qi

αiqi − qi∑
j qj

(
∑

j

qj)2.

The first order condition is αi−∑
j qj −qi = 0. Summing over i, we get

∑
i qi =

∑
i αi/(n+1). Therefore,

q∗i = αi −
∑

j αj

n + 1
,

∑

i

q∗i =
∑

i αi

n + 1
, and π∗

i = (q∗i )
2.

To prove that {q̄1, · · · , q̄n|q̄i ∈ {q∗i −s, q∗i , q∗i +s} and
∑

i q̄i =
∑

i q
∗
i } are all Nash equilibria of the discrete

game, we need to show that unilateral defection by any player does not improve her payoff. In equilibrium

π̄i(q̄) = αiq̄i − q̄i

∑

j

q̄j = αiq̄i − q̄i

∑

j

q∗j = q̄i(αi −
∑

i αi

n + 1
) = q̄iq

∗
i .

Case 1. q̄i = q∗i − s. In this case π̄i(q̄) = (q∗i − s)q∗i .

If player i unilaterally defects to strategy qi = q∗i − m ≡ q̄i + s − m, where m ∈ D and m �= s,

πi(qi, q̄−i) = (q∗i −m)[αi−(
∑

j q∗j +s−m)] = (q∗i −m)(q∗i +m−s) = (q∗i −s)q∗i −m(m−s) ≤ (q∗i −s)q∗i ,

since m(m − s) ≥ 0 for m ∈ D.

Case 2. q̄i = q∗i . In this case π̄i(q̄) = (q∗i )2.

If player i unilaterally defects to strategy qi = q∗i +m ≡ q̄i+m, where m ∈ D and m �= 0, πi(qi, q̄−i) =
(q∗i + m)[αi − (

∑
j q∗j + m)] = (q∗i + m)(q∗i − m) = (q∗i )2 − m2 < (q∗i )2.

Case 3. q̄i = q∗i + s. In this case π̄i(q̄) = (q∗i + s)q∗i .

If player i unilaterally defects to strategy qi = q∗i + m ≡ q̄i − s + m, where m ∈ D and m �= s,

πi(qi, q̄−i) = (q∗i +m)[αi−(
∑

j q∗j −s+m)] = (q∗i +m)(q∗i −m+s) = (q∗i +s)q∗i −m(m−s) ≤ (q∗i +s)q∗i ,

since m(m − s) ≥ 0 for m ∈ D.

Therefore, {q̄1, · · · , q̄n|q̄i ∈ {q∗i − s, q∗i , q∗i + s} and
∑

i q̄i =
∑

i q
∗
i } are all Nash equilibria of the

discrete game.

Let q̄1 ≤ q̄2 ≤ · · · ≤ q̄n. Let q̄i = q∗i + si, where si = −s, 0 or s and
∑

i si = 0. The aggregate payoffs

in equilibrium is
∑

i πi(q̄i) =
∑

i q̄iq
∗
i =

∑
i(q

∗
i )

2 +
∑

i siq
∗
i . Q.E.D.
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Subjects Parameters Equil. Quantities Equil. Payoffs

ID Label αi ωs
i ωa

i qs
i qa

i πs
i πa

i

1 (Blue) 48 60 180 6 {3, 4, 5} 204 196

2 (Green) 54 20 102 7 {9, 10, 11} 203 202

3 (Red) 58 0 0 8 {13, 14, 15} 213 196

4 (Yellow) 60 0 0 9 {15, 16, 17} 230 256

Total 220 80 282 30 44 850 850

Table 1: Parameters, Equilibrium Quantities and Payoffs. Note: bold-faced quantities and payoffs are Nash

equilibrium quantities and payoffs with a continuous strategy space. For ACP all Nash equilibrium quantities

add up to 44.

Number qa
1 qa

2 qa
3 qa

4 πa
1 πa

2 πa
3 πa

4

∑
i π

a
i

1 3 9 15 17 192 192 210 272 866

2 3 10 14 17 192 202 196 272 862

3 3 10 15 16 192 202 210 256 860

4 3 11 13 17 192 212 182 272 858

5 3 11 14 16 192 212 196 256 856

6 3 11 15 15 192 212 210 240 854

7 4 9 14 17 196 192 196 272 856

8 4 9 15 16 196 192 210 256 854

9 4 10 13 17 196 202 182 272 852

10 4 10 14 16 196 202 196 256 850

11 4 10 15 15 196 202 210 240 848

12 4 11 13 16 196 212 182 256 846

13 4 11 14 15 196 212 196 240 844

14 5 9 13 17 200 192 182 272 846

15 5 9 14 16 200 192 196 256 844

16 5 9 15 15 200 192 210 240 842

17 5 10 13 16 200 202 182 256 840

18 5 10 14 15 200 202 196 240 838

19 5 11 13 15 200 212 182 240 834

Table 2: Multiple Equilibrium Quantities and Payoffs in ACP.
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Complete Information Limited Information

Session SRLc ACPc SRLl ACPl

1 010711 010711 010824 010804

2 010713 010813 010825 010804

3 010719 010814 010825 010807

4 010723 010816 010827 010809

5 010802 010823 010828 010810

Table 3: Features and Dates (year month date) of Experimental Sessions

Information Complete Limited

Session SRLc ACPc SRLl ACPl

1 0.850 0.584 0.767 0.527

2 0.861 0.614 0.733 0.628

3 0.852 0.613 0.736 0.620

4 0.840 0.636 0.769 0.506

5 0.871 0.662 0.763 0.492

Table 4: Efficiency of Each Session

Information Complete Limited

Session SRLc ACPc SRLl ACPl

1 0.629 0.215 0.272 0.145

2 0.418 0.228 0.180 0.160

3 0.405 0.263 0.137 0.162

4 0.440 0.197 0.193 0.140

5 0.583 0.265 0.175 0.183

Table 5: Proportion of Equilibrium Play for Each Session
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Dependent Variable: Distance between actual quantity and equilibrium quantity

SRL ACP Complete Info. Limited Info.

(1) (2) (3) (4) (5) (6)

ln(Period) -1.0376 -1.0225 -0.6170 -0.5115 -0.4997 -0.7581

(0.0357)*** (0.0429)*** (0.0457)*** (0.0552)*** (0.0395)*** (0.0570)***

DummyI×ln(Period) -0.0301 -0.2110

(0.0468) (0.0619)***

DummyM×ln(Period) -0.2726 -0.5195

(0.0469)*** (0.0604)***

Constant 5.1161 5.1159 5.2243 5.2243 3.8278 6.5111

(0.1650)*** (0.1444)*** (0.1953)*** (0.1894)*** (0.1433)*** (0.1886)***

Observations 5988 5988 6000 6000 5988 6000

Number of groups 120 120 120 120 120 120
Notes:

1. Random-effects GLS regressions.

2. Standard errors in parentheses.

3. DummyI is a dummy variable for the information conditions, while DummyM is a dummy variable for the mechanisms.

4. Significant at: *** 1% level.

Table 6: Speed of Convergence
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Dependent Variable: Distance between actual quantity and equilibrium quantity

SRL ACP

Complete Info. Limited Info. Complete Info. Limited Info.

(1) (2) (3) (4)

Type 2 Dummy -0.6087 -0.6163 -5.1958 -2.7872

(0.3610)* (0.6930) (0.6561)*** (0.7674)***

Type 3 Dummy -0.6884 -0.8470 -3.3710 -1.9269

(0.3610)* (0.6930) (0.6561)*** (0.7674)**

Type 4 Dummy 0.4089 -0.1585 -1.7881 -1.2928

(0.3610) (0.6930) (0.6561)*** (0.7674)*

ln(Period) -0.7159 -1.7802 -1.0769 -0.7840

(0.0687)*** (0.1229)*** (0.1057)*** (0.1485)***

Type 2 Dummy × ln(Period) 0.1309 0.3181 0.9876 0.3991

(0.0971) (0.1738)* (0.1495)*** (0.2101)*

Type 3 Dummy×ln(Period) 0.2606 0.5355 0.5018 0.3369

(0.0971)*** (0.1738)*** (0.1495)*** (0.2101)

Type 4 Dummy×ln(Period) -0.0654 0.5117 0.2703 0.0121

(0.0971) (0.1738)*** (0.1495)* (0.2101)

Constant 3.1330 7.7223 7.3319 7.2071

(0.2553)*** (0.4900)*** (0.4640)*** (0.5426)***

Observations 2988 3000 3000 3000

Number of groups 60 60 60 60
Notes:

1. Random-effects GLS regressions.

2. Standard errors in parentheses.

3. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 7: Speed of Convergence by Type
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Session ACPc ACPl SRLc SRLl

1 0.92 0.93 0.79 0.87

2 0.93 0.92 0.75 0.90

Session Level 3 0.92 0.92 0.80 0.90

MSD 4 0.92 0.93 0.80 0.89

5 0.92 0.92 0.75 0.90

Overall MSD 0.92 0.93 0.79 0.90

Estimated a 2 10 1 10

Parameters r 0.90 0.90 0.70 0.90

Table 8: Calibration of the Payoff Assessment Model
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Experimental data: Average cost pricing
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Figure 1: Experimental Data: Complete Information
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Figure 2: Experimental Data: Limited Information
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Simulated data: Average cost pricing
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Figure 3: Simulation: b=0.5, c=0.5
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Simulated data: Average cost pricing
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Figure 4: Simulation: b=1.0, c=2.0
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Simulated data: Average cost pricing

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n
 s

tr
at

eg
y 

fo
r 

ag
en

t 
1

b
=2

, c
=2

Simulated data: Average cost pricing

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n
 s

tr
at

eg
y 

fo
r 

ag
en

t 
2

b
=2

, c
=2

Simulated data: Average cost pricing

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n
 s

tr
at

eg
y 

fo
r 

ag
en

t 
3

b
=2

, c
=2

Simulated data: Average cost pricing

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n 
st

ra
te

gy
 fo

r 
ag

en
t 4

b=
2,

 c
=2

Simulated data: Serial

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n
 s

tr
at

eg
y 

fo
r 

ag
en

t 
1

b
=2

, c
=2

Simulated data: Serial

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n
 s

tr
at

eg
y 

fo
r 

ag
en

t 
2

b
=2

, c
=2

Simulated data: Serial

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n
 s

tr
at

eg
y 

fo
r 

ag
en

t 
3

b
=2

, c
=2

Simulated data: Serial

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Round #

M
ea

n 
st

ra
te

gy
 fo

r 
ag

en
t 4

b=
2,

 c
=2

Figure 5: Simulation: b=2.0, c=2.0
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