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1 Introduction

There has been much interest in the problem of congestion allocation in computer networks, as the Internet

becomes increasingly important in global telecommunications and e-commerce. In distributed networks

such as the Internet, multiple agents share the same network link. Each agent controls the rate at which she

is transmitting data. If the sum of the transmission rates is greater than the total link capacity, then the link

becomes congested and the agents’ packets experience delays. Most current Internet routers use a FIFO

packet scheduling algorithm, where all packets are serviced on a first-come-first-serve basis. Each user’s

average queue is proportional to their throughput (Shenker 1990). One agent’s usage can affect the quality

of service of other agents. Aggressive users can get more than an equal share of these shared facilities.

For example, agents who modify their Transmission Control Protocol implementation to be less responsive

when congestion is detected can obtain much larger shares of the bandwidth (Demers and Shenker 1990).

In contrast, the Fair Queuing packet scheduling algorithm, originally proposed by (Shenker 1990), leads to

congestion allocations such that an agent’s average queue is independent of transmission rates higher than

her own. For example, if each user contributes an independent Poisson input stream of packets with various

rates, the Fair Queuing algorithm allocates congestion by a preemptive priority queuing algorithm, where

users are ordered by increasing transmission rates. All of the smallest user’s packets are in the highest

priority class, and all of the other users get the same rate (as the smallest user) of packets in the highest

priority class. Similarly, the rest of the second smallest user’s packets are in the second highest priority

class, and all of the other users gets the same rate of packets in the second highest priority class; and so on.

The Fair Queuing algorithm has been proposed as an alternative to the FIFO algorithm, based on theoretical

and simulation results (Stoica et al. 1998). The new generation of Cisco 7200, 3600 and 2600 routers have

both the FIFO and Fair Queuing options. In this paper, we evaluate the performance of these two algorithms

using laboratory experiments.

Congestion allocation in distributed networks is closely related to the more general class of cost sharing

problems. A cost-sharing mechanism distributes the service and allocates the corresponding costs to each

agent. The FIFO packet scheduling algorithm corresponds to the average cost pricing mechanism (Shenker

1990), where an agent’s cost share is proportional to her own demand, while the Fair Queuing algorithm

corresponds to the serial cost sharing mechanism.

The theoretical literature on cost sharing has largely focused on the axiomatic characterization of these

mechanisms (e.g., Moulin and Shenker (1994); Friedman and Moulin (1999)) and their static properties

in a complete information setting with synchronous actions. However, as Friedman and Shenker (1998)

2



point out, in adistributed system1 such as the Internet where agents have very limiteda priori information

about other agents and the payoff structure, traditional solution concepts might not be able to predict the

outcome of learning. It is important to empirically study the actual learning dynamics among real players in

settings similar to distributed networks and examine whether learning will lead to the equilibrium predicted

by theory. This paper does this by investigating the learning dynamics induced by each mechanism under

both complete and limited information settings in a laboratory environment.

We are aware of few other experimental studies of cost sharing mechanisms: Chen (2003) and Razzolini

et al. (1999).2 Chen (2003) studies the serial and average cost pricing mechanisms under complete and

limited information with only two types of agents. Razzolini et al. (1999), on the other hand, investigate

the performance of the serial mechanism with four players: one human and three computerized. The human

player knows his own cost share and payoff structure but has no information about the opponents’ payoff

structures. This information condition is in between the complete information and the limited information

setting in Chen (2003). Chen (2003) found that the performance of the two mechanisms is statistically

indistinguishable under complete information. Under limited information, however, the serial mechanism

performs robustly better than the average cost pricing mechanism in terms of frequency of equilibrium play

and system efficiency.3 Razzolini et al. (1999) implement the serial mechanism both as a sequential and

a simultaneous normal form game. They also found that the serial mechanism leads to almost efficient

allocations, and, even though more easy to understand and implement, the simultaneous move treatment

does not lead to a better overall performance.

In this paper, we design an experiment to evaluate the serial and the average cost pricing mechanisms

in a baseline complete information environment, and in a more challenging environment with limited in-

formation. In our experiment, each session has twelve players of four different types. This environment

is, therefore, much more complex than the one in the two earlier studies. Chen (2003) can use a payoff

table to explain both mechanisms, which is feasible for the serial mechanism with only two types of play-

ers. When the number of types increases, the serial mechanism becomes more challenging to implement in

1Following Friedman and Shenker (1998), a system is called adistributed system“because the users are geographically dispersed

and are accessing the resource through the network.” The Internet is a prominent example.
2In addition, Gailmard and Palfrey (2005) report experiments for the provision of excludable threshold public goods and com-

pare the serial cost sharing mechanism with voluntary cost sharing with proportional rebates and with no rebates. Rapoport et al.

(2004) report an experimental study of a large-scale queuing game with the FIFO queue discipline (i.e., average cost sharing

mechanism).
3Chen and Khoroshilov (2003) study the learning dynamics in these cost sharing games and other games under limited infor-

mation.
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the laboratory, because the dimension of the payoff tables increases with each additional type. With more

than two types one needs to find alternative ways to implement the mechanism. Razzolini et al. (1999) has

four different types, but only one of them is a human player, thus the strategic interaction between types is

simplified.

While the previous studies present the first steps in understanding how these mechanisms work, the goal

of this paper is to assess the performance of the two mechanisms in different settings and with more than

just two types; to study how human subjects learn in these different settings; whether and how the learning

dynamics leads to convergence to stage game Nash equilibrium; and ultimately test the practical imple-

mentability of the fair queuing or serial mechanism in comparison to the average cost pricing mechanism.

The earlier studies considered special cases, only two subjects or one human and three automated players,

which made it possible for the serial mechanism to be presented to subjects in a very simple way. The

environment considered in this paper with four different types interacting is more realistic and complex, and

forced us to change the way the mechanism is presented to the subjects. In contrast with previous studies,

we find that under both complete and limited information settings the serial mechanism performs robustly

better than average cost pricing in terms of the proportion of equilibrium play, speed of convergence and

efficiency. The more complex environment considered in this paper changed the relative performance of the

two mechanisms with respect to previous studies, with the serial mechanism uniformly outperforming the

average cost pricing. This is mostly due to the strategic properties of the serial mechanism, which facilitate

learning and convergence.

The paper is organized as follows. Section 2 introduces the theoretical properties of the serial (hereafter

shortened as SRL) and average cost pricing (hereafter shortened as ACP) mechanisms. Section 3 presents the

experimental design. Section 4 compares the performance of the mechanisms under complete information

and limited information. Section 5 concludes the paper.

2 Theoretical Properties of the Mechanisms

Let N = {1, · · · , i, · · · , n} be a group of agents sharing a one-input, one-output technology. Each of then

agents announces her demandqi of output. Each agent gets her demandqi and pays a cost share,xi. Note

xi is the total cost agenti pays. In the example of Internet routers,qi is agenti’s data transmission rate,

while xi is the reduction in agenti’s utility due to congestion. Letq1 ≤ q2 ≤ · · · ≤ qn. The cost function

is denoted byC, which is strictly convex. A cost-sharing mechanism must allocate the total costC(
∑

i qi)

among then agents.
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The serial mechanism, originally introduced by Shenker (1990), was analyzed by Moulin and Shenker

(1992) in the context of cost and surplus sharing with complete information. The mechanism can be charac-

terized by four properties: unique Nash equilibrium at all profiles4, anonymity (the name of the agents does

not matter), monotonicity (an agent’s cost share increases when she demands more output) and smoothness

(an agent’s cost share is a continuously differentiable function of the vector of demands). Among agents

endowed with convex, continuous and monotonic preferences, the serial mechanism is the only cost sharing

rule which is dominance-solvable, and its unique Nash equilibrium is also robust to coalitional deviations

when agents cannot transfer outputs.

Under the serial mechanism, agent 1 (with the lowest demand) pays(1/n)th of the cost of producing

nq1, xs
1 = C(nq1)/n. Agent 2 pays agent 1’s cost share plus1/(n− 1)th of the incremental cost fromnq1

to (n− 1)q2 + q1, i.e.,

xs
2 =

C(nq1)
n

+
C(q1 + (n− 1)q2)− C(nq1)

n− 1
,

and so on. Letq0 = 0; q1 = nq1; q2 = q1+(n−1)q2; · · · ; qi = q1+· · ·+qi−1+(n+1−i)qi; · · · , qn =
∑

i qi. Then the general formula for agenti’s cost share is given by

xs
i (c, q) =

i∑

k=1

C(qk)− C(qk−1)
n + 1− k

, for all i = 1, · · · , n.

Therefore, an agent’s cost share under the serial mechanism is only affected by her own demand and those

whose demands are lower than hers. An agent’s cost share is independent of demands higher than her own.

Like the serial mechanism, the average cost pricing mechanism satisfies anonymity, monotonicity and

smoothness. It is the only method that is robust to arbitrage, i.e., agents cannot benefit from merging or

splitting their demands. In contrast to the serial mechanism, the normal form game induced by the average

cost pricing mechanism is in general not dominance-solvable, nor does it have a unique equilibrium at all

profiles when agents have convex, continuous and monotonic preferences.

When agenti demandsqi amount of output, the general formula for agenti’s cost share under the average

cost pricing mechanism is given by

xa
i (c, q) = (qi/

∑

k

qk) · C(
∑

k

qk), for all i = 1, · · · , n.

Therefore, under ACP an agent’s cost share is determined by the proportion of the total demand for which

her own demand accounts. It is affected by her own demand, and the sum of all other agents’ demands.

There is no systematic efficiency comparison between the two mechanisms. In general there exists no

differentiable and monotonic cost sharing mechanism where all Nash equilibrium outcomes are first best
4Assume agents have convex, continuous and monotonic preferences.
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Pareto optimal at all preference profiles. Moulin and Shenker (1992) provide a definition of second best

efficiency5 and show that the serial mechanism yields a second best efficient equilibrium while ACP does

not.

In distributed systems, such as the Internet where users are geographically dispersed and have little infor-

mation about other players and the payoff structure, for learning to converge to equilibrium, it is important

that strategies sampled by players are informative. In this respect, the serial mechanism has an advantage

over ACP.

We first summarize several relevant concepts. In a normal form game, one actionoverwhelmsanother if

all payoffs, over all sets of other players’ actions, for the one are greater than all payoffs, over all sets of other

players’ actions, for the other action. Theserially unoverwhelmed setis the set remaining after iterated elim-

ination of overwhelmed actions. A game isD-solvableif iterated elimination of dominated strategies leads

to a single eventual outcome. A game isO-solvableif iterated elimination of overwhelmed strategies leads

to a single eventual outcome. Therefore, overwhelming implies dominance, and thus, o-solvability implies

d-solvability. Another name foroverwhelmingis uniform dominance. Huck and Sarin (2004) prove that,

for the class of uniformly dominance solvable games, i.e., O-solvable games, the unique Nash equilibrium

is a stable limited memory equilibrium regardless of evaluation rules and memory capacities. Friedman and

Shenker (1998) prove that reasonable learners6 converge to the serially unoverwhelmed set. In comparison,

Milgrom and Roberts (1990) showed that adaptive learners converge to the serially undominated set.

Among the cost sharing mechanisms studied in this paper, the serial mechanism is O-solvable7 while

ACP is not. That is, in the serial game iterated elimination of overwhelmed strategies leads to a single

eventual outcome. When a strategy overwhelms another one, sampling is much more informative than

situations where one strategy dominates another, as the minimum payoff from the overwhelming strategy

is at least as large as the maximum payoff of the overwhelmed strategy. In environments with limited

information, such as the Internet, informative sampling can significantly increase the speed of learning.

5“For an arbitrary cost sharing mechanismξ, say that(q1, · · · , qn) is a Nash equilibrium outcome at some utility profile. We

ask if there is another vector of demands(q
′
1, · · · , q

′
n) such that at the corresponding allocation dictated by the mechanismξ, no

one is worse off and someone is better off than at the equilibrium allocation corresponding to(q1, · · · , qn). If no such vector of

demands exists, we call our equilibrium second best efficient.” Moulin and Shenker (1992, p.1025)
6The key components of a reasonable learner are optimization, monotonicity and responsiveness (Friedman and Shenker 1998).
7This is proved in Theorem 8 in Friedman and Shenker (1998).
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3 Experimental Design

The goal of the experimental design is to compare the performance of the SRL and ACP mechanisms in

two different settings: a complete information setting that tests the prediction of dominance-solvability, and

a more challenging network setting to compare the performance of the two mechanisms and to assess the

plausibility of the concept of uniform dominance. The economic environment and experimental procedures

are discussed in the sections below.

3.1 Experimental Procedures

We implemented a2 × 2 factorial design by varying the mechanisms and information conditions. We con-

ducted five independent sessions for each of the four treatments. Each session had twelve subjects of four

different types and last for fifty rounds. Players always kept their own type. For a baseline comparison,

we conducted ten sessions of the SRL and ACP mechanisms under complete information with the random

matching protocol (hereafter shortened as SRLc and ACPc). Under complete information, each player was

informed of the structure of the game, matching protocols, the quantities chosen and the corresponding

payoffs earned by all players in all rounds. This pair of treatments were designed to compare the perfor-

mance of the two mechanisms as one-shot games under complete information. To evaluate the possibility

of applying these mechanisms to distributed systems such as the Internet, we designed a pair of limited

information treatments. Learning in distributed systems is characterized by the feature that players might

have extremely limited information. They often do not know the payoff functions, nor do they know how

their payoffs depend on the actions of others, probably due to the lack of information about the detailed

nature of the resources itself. Therefore, in the limited information treatments, the only information players

had was their own action and the resulting own payoffs. In these treatments, players were again randomly

re-matched into groups of four in each round (hereafter shortened as SRLl and ACPl). Table 1 summarizes

features of the experimental design.

[Table 1 about here. ]

Computerized experiments were conducted at the RCGD Laboratory at the University of Michigan in

July and August, 2001. We used z-Tree (Fischbacher 1999) to program our experiments. We conducted

twenty independent sessions. Subjects were students from the University of Michigan. A total of 240

subjects participated in the experiment. No subject was used in more than one session.
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At the beginning of each session subjects randomly drew a PC terminal number. Then each of them

was seated in front of the corresponding terminal, and given the instructions. After the instructions were

read aloud, subjects were required to finish the Review Questions in the complete information treatment,

which were designed to test their understanding of the instructions. Since the instructions for the limited

information case were straightforward, those subjects were not given Review Questions. Afterwards the

experimenter checked answers and answered questions. In all complete information sessions the instruction

period was within 25 minutes and the entire session took about one hour. In all limited information sessions

the instruction period was within 10 minutes and the entire session took approximately 40 minutes. There

was no practice round in any session. The average earning was $19.03, including a $3 show-up fee.

Instructions for the experiments are posted onhttp://www.si.umich.edu/ ∼yanchen/ . Exper-

imental data are available from the authors upon request.

3.2 The Economic Environment

Each of the four typesi = 1, 2, 3, 4 are endowed with linear preferencesπi(xi, q) = αiqi + ωi − xi, where

αi is agenti’s marginal utility for the output,ωi is agenti’s lump-sum endowment andxi is her cost share.

The cost function is chosen to be quadratic,C(q) = q2. We call this environmentE. In the network context

with several agents sharing a network link,αi is agenti’s value for the amount of data transmitted per unit

of time, and the cost to be allocated corresponds to the congestion experienced. Therefore, the cost should

be interpreted as the reduction in agenti’s utility due to congestion. The types are indexed in order of

increasing marginal utility for the output,α1 ≤ α2 ≤ α3 ≤ α4; in the instructions, we refer to player 1 as

Blue, player 2 as Green, player 3 as Red, and player 4 as Yellow. The values of these parameters used in the

experimental sessions are reported in Table 2.

[Table 2 about here.]

Under the serial mechanism, the cost share for agent 1 isxs
1 = C(4q1)/4. Agent 2’s cost share is

xs
2 = xs

1+(C(q1+3q2)−C(4q1))/3. Agent 3’s cost share isxs
3 = xs

2+(C(q1+q2+2q3)−C(q1+3q2))/2.

Agent 4’s cost share isxs
4 = xs

3 + (C(q1 + q2 + q3 + q4) − C(q1 + q2 + 2q3)). For the ACP mechanism,

the cost shares of each of the four agents arexa
i = qiP4

i=1 qi
C(

∑4
i=1 qi) = qi(

∑4
i=1 qi). In our design, the

SRL and ACP mechanisms are implemented as normal form games with a discrete strategy space for each

player,{0, 1, · · · , 19, 20}.
Using Gambit (McKelvey et al. 2006), we find that it takes five steps of iterated dominance to compute

the unique equilibrium of the SRL game:
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Step 1.No strategy overwhelms another. After elimination of dominated strategies,{ {6, 7, · · · , 20}, {7, 8,

· · · , 20}, {7, 8,· · · , 20}, {7, 8,· · · , 20} } remain.

Step 2.For player 1, 6 overwhelms every other strategy, while for player 2, 7 (weakly) overwhelms every

other strategy. After elimination of overwhelmed and dominated strategies,{ {6}, {7}, {7, 8, 9}, {7,

8, 9, 10}} remain undominated.

Step 3.No strategy overwhelms another. The remaining undominated strategies are{ {6}, {7}, {8, 9}, {8, 9,

10} }.

Step 4.For player 3, 8 overwhelms 9, while for player 4, 9 (weakly) overwhelms 10. The undominated

strategies are{{6}, {7}, {8}, {8, 9}}.

Step 5.For player 4, 9 dominates 8, leaving{{6}, {7}, {8}, {9}} as the D-solvable equilibrium.

The unique equilibrium(6, 7, 8, 9) of the SRL game remains the unique equilibrium of the game if agents

are permitted to choose from a continuum of demands. The equilibrium in the continuous version is both

D-solvable and O-solvable.

OBSERVATION 1 In environmentE under the SRL mechanism, if{q∗i }i∈N is the unique Nash equilibrium

of the continuous game, it remains the unique Nash equilibrium of the discrete game. Furthermore, the O-

solvable equilibrium with a continuous strategy space is D-solvable with a discrete strategy space.

With the discrete strategy space, no strategies in the ACP game are dominated. There are a total of 19

equilibria, all of which are in pure strategies. One equilibrium,(4, 10, 14, 16), is the unique, D-solvable

equilibrium of the ACP game with continuous demands, and is the only strict Nash equilibrium of the

discrete game. Table 3 lists all nineteen pure strategy Nash equilibria for the ACP game. They are organized

by the equilibrium quantities from the smallest demander to the largest demander. Note all 19 equilibria

have the same aggregate demand,
∑4

i=1 qa
i = 44. The last column lists the aggregate equilibrium payoffs in

decreasing order.

[Table 3 about here.]

Multiple equilibria as a result of discretization is a generic property of the average cost pricing mech-

anism, regardless of the step size for discretization. LetD be a discrete strategy space such that the equi-

librium of the continuous strategy space,{q∗i }i∈N ∈ D. Let s > 0 be the step size inD. The following

propositions characterize the Nash equilibria of the ACP mechanism with a discrete strategy spaceD.
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PROPOSITION 1 In environmentE under the ACP mechanism, if{q∗i }i∈N is the unique Nash equilibrium

of the continuous game, then the set of pure strategy equilibria in the discretized game is{q̄1, · · · , q̄n|q̄i ∈
{q∗i − s, q∗i , q

∗
i + s} and

∑
i q̄i =

∑
i q
∗
i ,∀i ∈ N,∀s > 0}.

Proof: see Appendix.

PROPOSITION 2 In environment E under the ACP mechanism, there does not exist any mixed strategy

equilibria.

Proof: see Appendix.

Based on the theoretical properties of the mechanisms and the design, we formally state the following

null hypotheses.

HYPOTHESIS 1 Under complete information, SRL and ACP will generate the same proportion of equi-

librium play.

HYPOTHESIS 2 Under limited information, SRL and ACP will generate the same proportion of equilib-

rium play.

While we expect the performance of the two mechanisms to be the same under complete information,

under limited information, however, as much the dominance (although not all) is also uniform dominance,

we expect SRL to have higher level of equilibrium play.

HYPOTHESIS 3 Under complete information, the speed of convergence is the same under SRL and ACP.

HYPOTHESIS 4 Under limited information, the speed of convergence is the same under SRL and ACP.

Again, while we expect the speed of convergence to be the same under complete information, we expect

convergence to be more rapid under SRL under limited information.

We next define an efficiency measure for the mechanisms. In general, there is no systematic efficiency

comparison between the two mechanisms, as it is possible to find preference profiles, such that either the

SRL game or the ACP game can yield higher aggregate payoffs. In the design, we give each player a lump-

sum payment, so that the equilibrium aggregate payoffs under the two mechanisms are the same as with

a continuous strategy space. Following the convention in the experimental economics literature, we define

efficiency as the ratio of the sum of the actual earnings of all subjects in a session and the maximum possible
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aggregate earnings.8 As a benchmark, if players play their Nash equilibrium strategies, the efficiency is 96%

for SRL and between 94% and 98% for ACP.

4 Results

In this section, we compare the performance of the two mechanisms under the complete and limited informa-

tion conditions. We first examine the level of convergence to Nash equilibrium by checking the proportion of

equilibrium play as well as the distance from Nash equilibria. We then investigate the speed of convergence

to Nash equilibrium. Lastly, we examine the efficiency under each treatment.

[Figures 1 and 2 about here.]

Figures 1 and 2 present the experimental data under complete and limited information respectively. In

each figure, the top four panels present the time series mean strategies (dots), standard deviation (error bars)

and equilibrium values (dashed lines) of each of the four types averaged across five independent sessions

under ACP. The bottom four panels present the same information under SRL. Note that in the ACP panels,

multiple equilibria correspond to two dashed lines representing the upper and lower bound of the equilibrium

values. Comparing the top with the bottom four panels, it seems that SRL converges to equilibrium much

faster than ACP in both figures. Another important feature is that convergence seems much faster under

complete information. In what follows, we will present statistical analysis of these patterns.

We use the proportion of Nash equilibrium play,P e, as a measure for convergence level. We use the

point prediction of(6, 7, 8, 9) for the SRL mechanism, and a set prediction of({3, 4, 5}, {9, 10, 11},
{13, 14, 15}, {15, 16, 17}) for the ACP mechanism. As this measure punishes all non-equilibrium choices

equally, we use the distance from equilibrium,9 De
i,t ≡ |qt

i − qe
i |, as a second measure of convergence level,

which rewards choices close to equilibrium.

RESULT 1 (Equilibrium Play: Comparison of Mechanisms) Under complete information, the propor-

tion of Nash equilibrium play (distance from equilibrium) under SRL is significantly higher (lower) than

that under ACP. Under limited information, the proportion of Nash equilibrium play (distance from equilib-

rium) under SRL is weakly higher (significantly lower) than that under ACP.

[Table 4 about here.]

8Note that in this experimental setting the maximum possible aggregate payoff is 881 at strategy four-tuple(0, 0, 9, 20), which

is obtained through an exhaustive grid search over the entire strategy space.
9Using alternative measures, such as the mean squared difference of choices from equilibrium, does not change the main results.
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SUPPORT: Table 4 presents the proportion of Nash equilibrium play and the average distance from equi-

librium for each session. We useP e to denote the proportion of equilibrium play. Permutation tests (one-

tailed) reject the null hypothesis that the proportion of Nash equilibrium play under SRL is the same as

that under ACP in favor of the alternative hypotheses thatP e(SRLc) > P e(ACPc) at p = 0.004, and

that P e(SRLl) > P e(ACPl) at p = 0.083. The corresponding one-tailed Wilcoxon rank sum tests

reject the null hypotheses of equal distance from equilibrium in favor of the alternative hypotheses that

De(SRLc) > De(ACPc) atp = 0.009 andDe(SRLl) > De(ACPl) atp = 0.016.

Result 1 indicates that the proportion of Nash equilibrium play is higher under SRL than that under ACP

under both information conditions. This result rejects Hypotheses 1 and 2. This result is also in contrast

to Chen (2003), where she finds that, in a two-type environment, the performance of the two mechanisms

is statistically indistinguishable under complete information, though SRL performs significantly better than

ACP under limited information. Our interpretation is that, with two types, the mechanisms can be presented

to the subjects as a bi-matrix game, where finding Nash equilibrium is relatively easy. With four types, the

bi-matrix game representation is no longer feasible. As a result, the uniform dominance (or overwhelming)

property of the SRL game helps subjects to get to equilibrium even under complete information.

RESULT 2 (Equilibrium Play: Comparison of Information Conditions) For both the SRL and ACP mech-

anisms, the proportion of equilibrium play (distance from equilibrium) under complete information is sig-

nificantly higher (lower) than that under limited information.

SUPPORT:Using the session level statistics in Table 4, one-tailed permutation tests reject the null hypothe-

ses of equal proportion in favor of the alternative hypotheses thatP e(SRLc) > P e(SRLl) at p = 0.004,

and thatP e(ACPc) > P e(ACPl) at p = 0.004. The corresponding one-tailed Wilcoxon rank sum tests

reject the null hypotheses of equal distance from equilibrium in favor of the alternative hypotheses that

De(SRLc) > De(SRLl) atp = 0.009, and thatDe(ACPc) > De(ACPl) atp = 0.016.

Result 2 indicates that the amount of information significantly impacts the convergence level, possibly

through its influence on convergence speed. We are interested in the speed of convergence both at the

aggregate mechanism level and at the individual level, as the latter might provide an explanation for the

dynamics we observe.

To investigate convergence speed and various factors affecting it, we use a random-effects GLS model,

where each group consists of all quantities submitted by one individual. Results of the estimation are

reported in Table 5. In six different specifications (columns (1) to (6)), the dependent variable isDe
i,t, the

distance from equilibrium for the individual player. Again, we use the equilibrium point prediction for SRL
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and the set prediction for ACP. In specifications (1) and (3), we useln(Period) as the independent variable

to investigate whether Period (or time) has a significant effect on convergence speed (Chen and Gazzale

2004). To examine whether the effects of learning remain constant, decreasing or increasing over time, we

used Period,ln(Period), as well as Period2 as independent variables. Since specifications withln(Period)

overall yields the best fit, we report only these specifications. In specifications (2) and (4), we add a dummy

variable for the information conditions, CompleteInfo, which is equal to one for complete information and

zero for limited information. The interaction of CompleteInfo andln(Period) captures the effects of more

information on convergence speed. In specifications (5) and (6), we add a mechanism dummy, SRL, which

is equal to one for SRL and zero for ACP. Compared with the coefficient ofln(Period), the coefficient for the

interaction term, SRL× ln(Period), captures the difference between SRL and ACP on convergence speed.

RESULT 3 (Convergence Speed: Information and Mechanism Effects)Convergence to equilibrium sig-

nificantly increases over time. More information significantly increases convergence speed for ACP. Under

both information conditions, convergence is significantly more rapid under SRL.

[Table 5 about here.]

SUPPORT: Table 5 reports results of random-effects GLS regressions. In specifications (1) and (3), the

coefficients ofln (Period) are both negative and highly significant, indicating increased convergence over

time. In specifications (2) and (4), the coefficients for CompleteInfo× ln(Period) are both negative, but only

significant under ACP. In specifications (5) and (6), the coefficients for SRL× ln(Period) are both negative

and highly significant, indicating more rapid convergence under SRL than under ACP.

The first part of Result 3 indicates that players learn to play equilibrium strategies over time, which is

not surprising. The second part indicates that more information increases the speed of convergence, but this

information effect is only significant for ACP, not for SRL. Unlike ACP, the speed of convergence under

SRL does not depend critically on the amount of information players have about the underlying structure of

the game. Therefore, if the SRL mechanism is used in limited information settings, such as the Internet, we

expect the same convergence speed as in complete information settings. By Result 3, we reject Hypotheses

3 and 4.

We now examine whether there exist type specific effects on the level and speed of convergence. We

use a random-effects GLS model, where the dependent variable is againDe
i,t, the distance between actual

quantity demanded and equilibrium quantity. In each of the four specifications, the independent variables are

the type dummies (Typei, wherei = 2, 3, 4), ln(Period), and interactions of type dummies andln(Period).
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The omitted dummy variable is Type 1. Therefore, the Constant measures the convergence level of Type

1, while the coefficient of Typei measures the difference in convergence level between Typei and Type 1.

Similarly, the coefficient ofln(Period) measures the convergence speed for Type 1, while the coefficient of

Type i × ln(Period) measures the difference in convergence speed between Typei and Type 1. Results of

the estimation are reported in Table 6.

[Table 6 about here.]

Under SRL, while the convergence levels, as captured by the coefficients of type dummies, do not differ

significantly across types at the conventional level,10 convergence speed does.

RESULT 4 (Convergence Speed by Type under SRL)Under SRL complete information, convergence speed

follows the order of Type 1∼ Type 2∼ Type 4> Type 3. Under SRL limited information, convergence speed

follows the order of Type 1> Type 2> Type 3∼ Type 4.

SUPPORT: Specification (1) and (2) in Table 6 reports results of estimation under SRL complete and

limited information respectively. Coefficient ofln(Period), and coefficient ofln(Period)+ coefficient of

Typei × ln(Period) measures the convergence speed of Type 1 and Typei respectively. The more negative

a coefficient is, the faster the convergence speed is.

Result 4 reveals how individual learning takes place under SRL and why it converges so robustly under

both complete and limited information conditions. Recall that under SRL a player’s cost share is independent

of demands higher than her own. Therefore, once users1 to i find the equilibrium quantities and settle down,

the(i + 1)th user’s problem becomes simple. Under complete information, some players might be able to

find the equilibrium quantities through various degrees of introspection without waiting for smaller users to

settle down first. Therefore, while the order of settling down helps the speed of convergence, it is not crucial.

We do observe that Type 1, 2 and Type 4 have statistically indistinguishable speeds of convergence. In

limited information settings, however, this order of settling down becomes especially important, as rational

introspection is not feasible, while experimentation and hill-climbing are the key elements of learning. The

second part of Result 4 indicates that the speed of convergence by type follows essentially the same order of

settling down analyzed before, with the speed of Types 3 and 4 statistically indistinguishable (p > 0.10).

Under ACP, the Type 1 convergence level is significantly lower than those of the other types under both

complete and limited information. This pattern is also confirmed from Figures 1 and 2. The convergence

10We use a 5% statistical significance level to claim existence of any causal effects. Note that under SRL, convergence levels for

types 2 and 3 are weakly higher (p < 0.10) than those for types 1 and 4 under complete information.
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speed, on the other hand, does not exhibit any type-specific pattern as in SRL.

RESULT 5 (Convergence Speed by Type under ACP)Under ACP complete information, the convergence

speed follows the order of Type 1> Type 4> Type 3> Type 2. Under ACP limited information, however,

convergence speed is not significantly different across types.

SUPPORT: Specifications (3) and (4) in Table 6 reports results of estimation under ACP complete and

limited information respectively. Again, coefficient ofln(Period), and coefficient ofln(Period)+ coefficient

of Type i × ln(Period) measures Types 1 andi’s convergence speed respectively. The more negative a

coefficient is, the faster the convergence speed is.

As discussed in Section 2, under ACP, a player’s cost share is affected by everyone else’s demand,

thus, we do not expect a clear order of settling down by type. With complete information, various degrees

of rational introspection might help convergence to equilibrium. Under limited information, however, as

one player’s experimentation immediately affects every other player’s payoff, this makes learning difficult.

Result 5 confirms this observation.

We now compare the efficiency of the mechanisms. LetEf denote efficiency.

[Table 7 about here.]

RESULT 6 (Efficiency: Comparison of the Two Mechanisms)The efficiency of the SRL mechanism is

significantly higher than that of the ACP mechanism under both the complete and the limited information

treatments.

SUPPORT: Table 7 reports the efficiency of each session under each treatment. Permutation tests rejects

the null hypotheses of equal efficiency in favor of the alternative hypotheses that Ef(SRLc) > Ef(ACPc) at a

significance level of 0.004 (one-tailed); Ef(SRLl) > Ef(ACPl) at a significance level of 0.004 (one-tailed);

and Ef(SRLl) > Ef(ACPc) at a significance level of 0.004 (one-tailed).

Result 6 indicates that the SRL mechanism performs robustly better than the ACP mechanism in terms

of group efficiency regardless of information conditions. The efficiency of the SRL mechanism under the

limited information treatment is significantly higher than the ACP mechanism under the complete informa-

tion condition. This result is consistent with Results 1 and 3. Next, we compare the efficiency within each

mechanism under different information conditions.

RESULT 7 (Efficiency: Comparison of Information Conditions) For both the SRL and ACP mechanisms,

the efficiency under complete information is significantly higher than that under limited information.
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SUPPORT: Table 7 reports the efficiency of each independent observation under each treatment. Permuta-

tion tests reject the null hypotheses of equal efficiency in favor of the alternative hypotheses that Ef(SRLc)

> Ef(SRLl) at a significance level of 0.004 (one-tailed), and that Ef(ACPc) > Ef(ACPl) at a significance

level of 0.048 (one-tailed).

Result 7 indicates that more information is advantageous for aggregate efficiency, which is consistent

with Result 2.

Experimental results indicate that under both complete and limited information settings SRL performs

robustly better than ACP in terms of proportion of Nash equilibrium play, convergence speed and efficiency.

The property that a user’s cost share is independent of larger users implies an order (sorted by the quantity

demanded) of settling down to equilibrium strategies under SRL, which facilitates learning and convergence

especially under limited information settings. The uniform dominance property of SRL also implies that

sampling and experimentation are much more informative than that under ACP.

To check robustness of the experimental results in different environments, we conducted Monte Carlo

simulations using a payoff-assessment learning model (Sarin and Vahid 1999) (Kirman and Vriend 2001),

calibrated against experimental data. We then use the calibrated parameters to simulate the dynamic paths

in nine different environments. Simulation results indicate that, while the experimental results hold when

preferences exhibit decreasing or constant returns, the performance of the two mechanisms is similar with

increasing returns. Simulation results are not reported here due to space limitations, but are available from

the authors upon request.

5 Conclusion

Cost sharing mechanisms have many practical applications in the real world. An increasingly important

area is distributed systems like the Internet, where agents have very limited information about the payoff

structure as well as the characteristics of other agents. Most current Internet routers use the FIFO or average

cost pricing mechanism, while this study suggests that the fair queuing or serial mechanism might be a better

choice.

This paper reports experimental results on the serial and the average cost pricing mechanisms under two

information conditions. The first is a complete information condition designed to test the basic properties

of the mechanisms. The other simulates distributed systems by giving the subjects very limited information

about the game. The latter present a more challenging and realistic setting for the cost sharing mechanisms.

Experimental results show that the serial mechanism performs significantly better than the average cost
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pricing mechanism in all treatments in terms of efficiency and predictability measured as frequency of

equilibrium play, as well as the speed of convergence.

APPENDIX. Discretization and Multiple Equilibria in ACP

Proof of Proposition 1: Let {q∗i }i be the Nash equilibrium quantities of the ACP game with a continuous

strategy space. With a quadratic cost function,C(
∑

i qi), the unique Nash equilibrium is characterized by

the solution to the following maximization problem:

max
qi

αiqi − qi∑
j qj

(
∑

j

qj)2.

The first order condition isαi−
∑

j qj−qi = 0. Summing overi, we get
∑

i qi =
∑

i αi/(n+1). Therefore,

q∗i = αi −
∑

j αj

n + 1
,

∑

i

q∗i =
∑

i αi

n + 1
, andπ∗i = (q∗i )

2.

To prove that{q̄1, · · · , q̄n|q̄i ∈ {q∗i − s, q∗i , q
∗
i + s} and

∑
i q̄i =

∑
i q
∗
i } are all Nash equilibria of the

discrete game, we need to show that unilateral defection by any player does not improve her payoff. In

equilibrium

π̄i(q̄) = αiq̄i − q̄i

∑

j

q̄j = αiq̄i − q̄i

∑

j

q∗j = q̄i(αi −
∑

i αi

n + 1
) = q̄iq

∗
i .

Case 1.q̄i = q∗i − s. In this casēπi(q̄) = (q∗i − s)q∗i .

If player i unilaterally defects to strategyqi = q∗i − m ≡ q̄i + s − m, wherem ∈ D andm 6= s,

πi(qi, q̄−i) = (q∗i −m)[αi−(
∑

j q∗j +s−m)] = (q∗i −m)(q∗i +m−s) = (q∗i −s)q∗i −m(m−s) ≤ (q∗i −s)q∗i ,

sincem(m− s) ≥ 0 for m ∈ D.

Case 2.q̄i = q∗i . In this casēπi(q̄) = (q∗i )
2.

If playeri unilaterally defects to strategyqi = q∗i +m ≡ q̄i+m, wherem ∈ D andm 6= 0, πi(qi, q̄−i) =

(q∗i + m)[αi − (
∑

j q∗j + m)] = (q∗i + m)(q∗i −m) = (q∗i )
2 −m2 < (q∗i )

2.

Case 3.q̄i = q∗i + s. In this casēπi(q̄) = (q∗i + s)q∗i .

If player i unilaterally defects to strategyqi = q∗i + m ≡ q̄i − s + m, wherem ∈ D andm 6= s,

πi(qi, q̄−i) = (q∗i +m)[αi−(
∑

j q∗j−s+m)] = (q∗i +m)(q∗i −m+s) = (q∗i +s)q∗i −m(m−s) ≤ (q∗i +s)q∗i ,

sincem(m− s) ≥ 0 for m ∈ D.

Therefore,{q̄1, · · · , q̄n|q̄i ∈ {q∗i − s, q∗i , q
∗
i + s} and

∑
i q̄i =

∑
i q
∗
i } are all Nash equilibria of the

discrete game.

Let q̄1 ≤ q̄2 ≤ · · · ≤ q̄n. Let q̄i = q∗i + si, wheresi = −s, 0 or s and
∑

i si = 0. The aggregate payoff

in equilibrium is
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∑
i πi(q̄i) =

∑
i q̄iq

∗
i =

∑
i(q

∗
i )

2 +
∑

i siq
∗
i .

We now show that there are no other equilibria in pure strategies. The argument is in two cases, both

established by contradiction.

Case A. To show there are no other equilibria in which
∑

i q̄i =
∑

i q
?
i , suppose that for playeri,

q̄i = q?
i + ks for k ≥ 2. Then, it must be that

∑
j 6=i q̄j =

∑
j 6=i q

?
i − ks. But inspection of the reaction

function shows that for everyks the quantity chosen by players other thani is decreased, the best reply for

playeri increases byks
2 . Therefore,q?

i + (k − 1)s is strictly better for playeri thanq?
i + ks, and so this

cannot be an equilibrium. The symmetric argument covers the case ofq̄i = q?
i − ks for k ≥ 2.

Case B. To show that there can be no equilibrium in which
∑

i q̄i 6 =
∑

i q
?
i , write q̄i = q?

i + kis for all i;

then
∣∣∣∑j kjs

∣∣∣ ≥ 1 by assumption. The best reply for each playeri, not restricted to the discrete grid, is to

choose

qBR
i =

1
2


αi −

∑

j 6=i

qj


 =

1
2


αi −

∑

j 6=i

q?
i −

∑

j 6=i

kjs


 .

Note that if theq̄i form an equilibrium, then|q̄i − qBR
i | ≤ s

2 . Summing over all players and manipulating

gives

∑

j

qBR
j =

1
2


∑

j

αj − (n− 1)
∑

j

q?
j − (n− 1)

∑

j

kjs




=
1
2


(n + 1)

∑

j

q?
j − (n− 1)

∑

j

q?
j − (n− 1)

∑

j

kjs




=
∑

j

q?
j − (n− 1)

∑

j

kjs

∑

j

qBR
j −

∑

j

q̄j =
∑

j

q?
j − (n− 1)

∑

j

kjs−
∑

j

q̄j

=
∑

j

q?
j − (n− 1)

∑

j

kjs−
∑

j

(q?
j + kjs)

=
n + 1

2

∑

j

kjs.

However,
∣∣∣∑j qBR

j −∑
j q̄j

∣∣∣ ≤ n
2 s and

∣∣∣n+1
2

∑
j kjs

∣∣∣ ≥ n+1
2 s, so this last equation cannot hold, and the

contradiction is established.

Proof of Proposition 2: Begin by assuming w.l.o.g. that the possible quantitiesqi are integers; if not,

change units. Further assume that the unique equilibrium obtained by elimination of dominated strategies

in the continuous game is in integers. By inspection of the payoff function, theαi must be integers in order
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for playeri to be indifferent between two quantities. The payoff function for each playeri is quadratic in

qi, holding fixed the other players’ behavior. Therefore, if two quantitiesqi < q′i are both best responses,

it must be thatq′i = qi + 1, and that the unrestricted best response isqi + 1
2 . Let I be the set of indices of

players who are indifferent in equilibrium between two such quantities; each playeri ∈ I playsqi + 1 with

probabilitypi andqi with probability1 − pi. All other playersi 6 ∈I play their strict best reply quantityqi

with probability one. For these playersi 6 ∈I,

qi =
1
2


ai −

∑

j 6=i

qj −
∑

j∈I
pj


 ,

which can be rearranged to
∑

j∈I
pj = αi −

∑

j

qj − qi. (1)

For playersi ∈ I, the best-reply condition is

qi +
1
2

=
1
2


ai −

∑

j 6=i

qj −
∑

j∈I,j 6=i

pj


 ,

which rearranges to
∑

j∈I,j 6=i

pj = αi − 1−
∑

j

qj − qi. (2)

The argument proceeds in three steps, each of which is established by contradiction.

Step 1.No equilibrium in which some players randomize and others have a strict best reply.

If there is some playerj 6 ∈I andi ∈ I, then subtracting (2) from (1) gives

pi = αj − αi − 1− qj + qi.

Since the right side is an integer,pi ∈ {0, 1}, and thus playeri does not randomize. Therefore, if there are

any equilibria in which players randomize, it must be that all players are indifferent between two quantities

qi andqi + 1, and have a best reply satisfying (2). That is to say, all players are inI, but it remains possible

that some actively randomize while others play a pure strategy which is only a weak best reply.

Step 2.No equilibrium in which all players randomize.

For any two playersi andk, equation (2) implies by subtraction

pi − pk = αi − αk − qi + qk.

Since the right side is an integer,pi − pk is an integer. If both players actively randomize, the only way for

this to hold is forpi − pk = 0, or pi = pk. Since this is true for anyi andk, it must be that all thepi are
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identical; letp ≡ pi for all i. Then (2) becomes

(n− 1)p = αi − 1−
∑

j

qj − qi. (3)

Since the right side of this is an integer, it must be thatp = K
n−1 for someK ∈ {1, 2, · · · , n− 2}. With this

substitution, summing (3) over all players then gives

nK =
∑

j

αj − n− (n + 1)
∑

j

qj

or
∑

j

qj =

∑
j αj − n[K + 1]

n + 1
.

The left side of this must be an integer. While
P

j αj

n+1 is an integer by assumption, since it is the total quantity

in the unique equilibrium in the continuous version,n[K+1]
n+1 cannot be, since0 < K < n + 1 by definition;

therefore, there is a contradiction.

Step 3.No equilibrium in which more than one player randomizes.

From Step 1, it is already known that all players must be indifferent between two quantitiesqi and

qi + 1. Of these players, letH be the set of players who play the larger quantity of the two over which

they are indifferent,L be the set of players playing the lower of the quantities, andR being the set who

randomize. For playersi ∈ H, the best-reply condition implies

∑

j∈R,j 6=i

pj = αi + 1−
∑

j

qj − qi.

The same argument from Step 2 applies to show that all players who randomize do so with the same prob-

ability p on the higher quantity, and thatp = K
n−1 for someK ∈ {1, 2, · · · , |R| − 2}. Summing over all

players gives

(|R| − 1)p =
∑

j

αj + (|H| − |R| − |L|)− (n + 1)
∑

j

qj

∑

j

qj =

∑
j αj + K − (|H| − |R| − |L|)

n + 1

Since|H| + |R| + |L| = n, and0 < k < |R| − 1, the right side cannot be an integer, and thus there is a

contradiction.
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Table 1: Features of Experimental Treatments

Information Conditions

Complete Information Limited Information

SRL SRLc SRLl

(5 sessions) (5 sessions)

ACP ACPc ACPl

(5 sessions) (5 sessions)

Table 2: Parameters, Equilibrium Quantities and Payoffs

Subjects Parameters Equil. Quantities Equil. Payoffs

Type Label αi ωs
i ωa

i qs
i qa

i πs
i πa

i

1 (Blue) 48 60 180 6 {3, 4, 5} 204 196

2 (Green) 54 20 102 7 {9, 10, 11} 203 202

3 (Red) 58 0 0 8 {13, 14, 15} 213 196

4 (Yellow) 60 0 0 9 {15, 16, 17} 230 256

Total 220 80 282 30 44 850 850
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Table 3: Multiple Equilibrium Quantities and Payoffs in ACP

Number qa
1 qa

2 qa
3 qa

4 πa
1 πa

2 πa
3 πa

4

∑
i π

a
i

1 3 9 15 17 192 192 210 272 866

2 3 10 14 17 192 202 196 272 862

3 3 10 15 16 192 202 210 256 860

4 3 11 13 17 192 212 182 272 858

5 3 11 14 16 192 212 196 256 856

6 3 11 15 15 192 212 210 240 854

7 4 9 14 17 196 192 196 272 856

8 4 9 15 16 196 192 210 256 854

9 4 10 13 17 196 202 182 272 852

10 4 10 14 16 196 202 196 256 850

11 4 10 15 15 196 202 210 240 848

12 4 11 13 16 196 212 182 256 846

13 4 11 14 15 196 212 196 240 844

14 5 9 13 17 200 192 182 272 846

15 5 9 14 16 200 192 196 256 844

16 5 9 15 15 200 192 210 240 842

17 5 10 13 16 200 202 182 256 840

18 5 10 14 15 200 202 196 240 838

19 5 11 13 15 200 212 182 240 834
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Table 4: Proportion of Equilibrium Play and Distance from Nash Equilibrium for Each Session

Metric Proportion of NE
∑12

i=1

∑50
t=1 |qt

i − qe
i |/(600)

Information Complete Limited Complete Limited

Session SRLc ACPc SRLl ACPl SRLc ACPc SRLl ACPl

1 0.629 0.215 0.272 0.145 0.861 2.592 2.458 3.850

2 0.418 0.228 0.180 0.160 1.040 3.143 3.578 3.392

3 0.405 0.263 0.137 0.162 1.123 2.710 3.082 4.042

4 0.440 0.197 0.193 0.140 1.222 3.412 2.650 4.438

5 0.583 0.265 0.175 0.183 0.652 2.152 2.887 3.707

Table 5: Convergence Speed

Dependent Variable: Distance from equilibrium,|qt
i − qe

i |
SRL ACP Complete Info. Limited Info.

(1) (2) (3) (4) (5) (6)

ln(Period) -1.0376 -1.0225 -0.6170 -0.5115 -0.4997 -0.7581

(0.0357)*** (0.0429)*** (0.0457)*** (0.0552)*** (0.0395)*** (0.0570)***

CompleteInfo×ln(Period) -0.0301 -0.2110

(0.0468) (0.0619)***

SRL×ln(Period) -0.2726 -0.5195

(0.0469)*** (0.0604)***

Constant 5.1161 5.1159 5.2243 5.2243 3.8278 6.5111

(0.1650)*** (0.1444)*** (0.1953)*** (0.1894)*** (0.1433)*** (0.1886)***

Observations 5988 5988 6000 6000 5988 6000

Number of groups 120 120 120 120 120 120

Notes:

1. Random-effects GLS regressions.

2. Standard errors in parentheses.

3. Significant at: *** 1% level.

4. The program failed to record the last round data in SRLc, session 2. Thus, we have 5988 observations for (1), (2) and (5).
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Table 6: Convergence Speed by Type

Dependent Variable: Distance from equilibrium,|qt
i − qe

i |
SRL ACP

Complete Info. Limited Info. Complete Info. Limited Info.

(1) (2) (3) (4)

Type 2 -0.6087 -0.6163 -5.1958 -2.7872

(0.3610)* (0.6930) (0.6561)*** (0.7674)***

Type 3 -0.6884 -0.8470 -3.3710 -1.9269

(0.3610)* (0.6930) (0.6561)*** (0.7674)**

Type 4 0.4089 -0.1585 -1.7881 -1.2928

(0.3610) (0.6930) (0.6561)*** (0.7674)*

ln(Period) -0.7159 -1.7802 -1.0769 -0.7840

(0.0687)*** (0.1229)*** (0.1057)*** (0.1485)***

Type 2× ln(Period) 0.1309 0.3181 0.9876 0.3991

(0.0971) (0.1738)* (0.1495)*** (0.2101)*

Type 3×ln(Period) 0.2606 0.5355 0.5018 0.3369

(0.0971)*** (0.1738)*** (0.1495)*** (0.2101)

Type 4×ln(Period) -0.0654 0.5117 0.2703 0.0121

(0.0971) (0.1738)*** (0.1495)* (0.2101)

Constant 3.1330 7.7223 7.3319 7.2071

(0.2553)*** (0.4900)*** (0.4640)*** (0.5426)***

Observations 2988 3000 3000 3000

Number of groups 60 60 60 60

Notes:

1. Random-effects GLS regressions.

2. Standard errors in parentheses.

3. Significant at: * 10% level; ** 5% level; *** 1% level.
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Table 7: Efficiency of Each Session

Information Complete Limited

Session SRLc ACPc SRLl ACPl

1 0.850 0.584 0.767 0.527

2 0.861 0.614 0.733 0.628

3 0.852 0.613 0.736 0.620

4 0.840 0.636 0.769 0.506

5 0.871 0.662 0.763 0.492
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ACP Complete Info: Player 3 (Red)
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SRL Complete Info: Player 1 (Blue)
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Figure 1: Experimental Data: Complete Information
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Figure 2: Experimental Data: Limited Information
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