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1 Introduction

Theoretical and experimental auction literature often assumes that bidders know the distribution of other
bidders’ valuations.1 Consequently, nearly all of the results derive from such assumptions. However, in
many real-world auctions, it is inappropriate to assume that bidders know the distribution from which op-
ponent valuations are drawn. One prominent example is Internet auctions. The online auction has become
a fascinating and fast-growing exchange mechanism (Lucking-Reiley 2000). Online auction technology
introduces several interesting features not available to traditional auctions. For example, bidders can be
geographically dispersed and bidding can be asynchronous. These conveniences make it easier to obtain a
relatively large group of bidders for an object. These, and other special features of online auctions, make
it important to re-examine the implications of some key assumptions in auction theory and experiments. In
this study, we focus on the assumption that bidders know the distribution of other bidder valuations.

The uncertainty about the probability distribution (of bidder valuations, for example) created by missing
information is often calledambiguity. Ambiguity can affect decision making in important ways, as illus-
trated by the Ellsberg (1961) paradox. Ellsberg’s two-color problem uses two urns, one containing 50 red
and 50 black balls called the known urn (or the risky urn), and one containing 100 balls in an unknown
combination of red and black called the unknown urn (or the ambiguous urn). These two urns represent two
distinct types of uncertainty. The first type of uncertainty, present in both urns, is uncertainty as to which
outcome will occur: red or black, and is termed risk. The second type of uncertainty, present only in the un-
known urn, is uncertainty about the probability of each outcome itself and is termed ambiguity. In Ellsberg
experiments, many people bet on red from the known (vs. unknown) urnandon black from the known urn.
However, they are indifferent between the two colors when betting on only one urn. This pattern of behavior
is inconsistent with any model which uses probabilities, and is calledambiguity aversion. The opposite of
ambiguity aversion is calledambiguity loving.

Apart from online auctions, ambiguity is prevalent in many other real-world situations, for example,
the success rate of some new drugs or clinical treatments (Curley, Young and Yates 1989), the insurance
of certain classes of highly ambiguous risks, such as environmental hazards (Priest 1987) and terrorist
attacks, the usefulness of new features of consumer products (Kahn and Meyer 1991), the outcomes of
R&D, incomplete contracting due to unforeseen contingencies, the audit selection procedures of the IRS
(Andreoni, Erard and Feinstein 1998), and initial public offerings (IPOs) of small privately-held firms.

In this paper, we investigate the impact of ambiguity on bidding behavior and revenue in the first and
second price sealed bid auctions in the laboratory. Our experiment compares treatments with an unknown
distribution of bidder valuations to those with a known distribution of bidder valuations. Our study extends
the large amount of research on auctions to a more realistic setting with the presence of ambiguity. Our
main finding is that, in first price auctions, bids arelower with the presence of ambiguity. This result is
consistent with ambiguity loving in a model that allows for different ambiguity attitudes. We also find that
the first price auction generates significantly higher revenue than the second price auction with and without
the presence of ambiguity.

Many researchers have studied ambiguity empirically. These studies can be broadly classified into
three categories. The first kind of empirical ambiguity research is Ellsberg’s original thought experiment
and replications of it. The second kind determines the psychological causes of ambiguity. The third kind
studies ambiguity in applied settings. While many studies of the first kind find various degrees of ambiguity
aversion, Curley and Yates (1989), and Hogarth and Einhorn (1990), among others, find ambiguity loving
when subjects face an unknown urn, and a known urn with a low probability of winning. Some studies
of ambiguity in experimental markets find mixed results. For example, Sarin and Weber (1993) study
ambiguity in an experimental asset market using a double oral auction and a multi-unit Vickrey auction.
This study finds that the market price for the unambiguous bet is considerably larger than the market price

1For a survey of the theoretical literature, see Klemperer (1999). For a survey of the experimental literature, see Kagel (1995).

2



of the ambiguous bet.2 The main lesson from past empirical studies is that ambiguity affects behavior, which
is consistent with our findings.

The paper is organized as follows. Section 2 introduces a theoretical model of sealed bid auctions with
risk and ambiguity. Section 3 presents the experimental design. Section 4 presents the main results. Section
5 concludes the paper.

2 A Model of Bidding with Ambiguity

This section develops a theoretical auction model incorporating risk and ambiguity. While we do not believe
that this equilibrium model captures all aspects of behavior in the experiment, it provides a useful benchmark
for our data analysis.

There are several different approaches to formally model ambiguity. Among them, maxmin expected
utility3 (MMEU) and Choquet expected utility4 (CEU) models are the most prominent in applications. In
this paper we use theα-MEU model, which is a natural and tractable generalization of the MMEU model.
Theα-MEU model allows for both ambiguity averse and ambiguity loving behavior.

Three theoretical studies address the role of ambiguity in auctions. Salo and Weber (1995) analyze the
first price sealed bid auction using the Choquet expected utility model with a convex capacity. In particular,
they consider the case where bidders have a constant relative risk aversion (CRRA) utility function and the
Choquet capacity has a power representation. In this case, they show that the equilibrium bidding function is
linear. In another study, Lo (1998) analyzes sealed bid auctions using the MMEU framework. Specifically,
he derives the equilibrium bidding function for linear utility functions, and compares the first and second
price auctions. Using the MMEU framework, Ozdenoren (2002) extends and generalizes the results in Lo.
He derives conditions under which risk neutral bidders increase their bids in the first price auction as they
become more ambiguity averse. He then uses this result to compare the first and second price auctions.

Our model differs from the above models in two important ways. First we use theα-MEU framework to
allow for both ambiguity averse and ambiguity loving behavior. This framework is a generalization of both
the maxmin and maxmax expected utility models. Second, we consider bidders with general concave utility
functions. As a result, previous theory cannot be directly applied to our framework.

Throughout this section, we assume that there are two biddersi = 1, 2. In addition, we assume that there
is one indivisible good for sale. In this model, we look at first and second price auctions with independent
private values with zero reserve price. Bidders submit their bids simultaneously. For simplicity, we assume
that the set of possible valuations of the bidders is[0, 1], with Vi denoting bidderi’s valuation. Only the
bidder knows his own valuation.

Our main departure from previous theoretical and experimental auction literature is the assumption that
bidders do not know the distribution of valuations. We look at the case where bidder valuations are known
to be independent draws from eitherF 1 (·) or F 2 (·), with positive anda.e.−continuous densitiesf1 (·) and
f2 (·), respectively. In our experiment, we assume thatF 2 first order stochastically dominatesF 1. Hence,
we callF 1 the low value distribution andF 2 the high value distribution. For each bidder, the probability,δ,
of the event that his opponent’s valuation is drawn from the distributionF 1 is unknown. We defineδ to be
the random variable corresponding to the probability that valuation is drawn fromF 1.

In the standard subjective expected utility (SEU) model, each bidder has a subjective prior about the
value ofδ. However, if a bidder’s information aboutδ is too vague to be represented by a single prior,
it can be represented by a set of priors. In a seminal paper, Gilboa and Schmeidler (1989) provide an
axiomatization of the maxmin expected utility model using a set of priors. Expected utility is a special case

2Note that in the Sarin and Weber experiments, ambiguity is operationalized asà la Ellsberg.
3In the maxmin expected utility model, decision makers have a set of priors and choose an action that maximizes the minimum

expected utility over the set of priors.
4In the Choquet expected utility model, decision maker’s beliefs are represented by a nonadditive probability measure (capacity).
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of MMEU, where the set of beliefs contains only a single probability measure. In this model, a bidder’s prior
on the event that his opponent’s valuation is drawn from the distributionF 1 is given by a set of probability
measures. The bidder’s utility is given by the minimum expected utility over this set of priors. Intuitively,
a set of priors reflects both ambiguity in the environment and the difficulty bidders face in forming a well-
defined single prior. The min operator, on the other hand, reflects aversion to such ambiguity. To illustrate
how MMEU explains Ellsberg type behavior, suppose a decision maker has a linear utility function and the
set of priors is{(x, 1 − x) : 0.4 ≤ x ≤ 0.6}, wherex is the probability of drawing a red ball and1 − x is
the probability of drawing a black ball from the unknown urn. The probability of drawing either color from
the known urn is 0.5. In this case, betting $1 on either color from the ambiguous urn will give an expected
utility of 0.4, whereas betting $1 on either color from the known urn will give an expected utility of 0.5.

In general, decision makers may also have preferences that represent ambiguity loving behavior (Heath
and Tversky 1991). Such behavior can be captured using the maxmax expected utility model, where the min
operator is replaced by the max operator. We do not want to restrict bidders’ ambiguity attitude a priori, and
therefore we use theα-MEU model that allows for both ambiguity averse and ambiguity loving behavior.
Theα-MEU model, axiomatized by Ghirardato, Maccheroni and Marinacci (2004), is a generalization of
both the maxmin and the maxmax expected utility models. In this model, bidders compute the utility of an
act usingα times the minimum plus1−α times the maximum expected utility over the set of priors. When
α equals1, this model reduces to MMEU. Whenα equals0, it reduces to maxmax EU. Note that the class
of preferences this model represents is more general, sinceα can take all intermediate values.

Formally, let∆ be a closed and convex subset5 of the set of distribution functions over[0, 1], representing
a bidder’s belief about the distribution ofδ. Let δ = minG∈∆

∫
δdG (δ) andδ = maxG∈∆

∫
δdG (δ) . Note

that the set∆ is subjective and the set[δ, δ] can in general be a strict subset of[0, 1]. To see this, consider
the case where the set∆ has a single element,F . In this case,δ = δ = expected value ofF . We assume
that∆ is independent of bidder valuations and is common knowledge to all bidders.

In a first price auction, the bidder with the highest bid receives the object and pays his bid to the seller.
Ties are broken with equal probability using a fair coin.6 A bid can be any number in[0,∞). The payoff for
bidderi is given by

πi(Vi, bi, bj) =





Vi − bi if bi > bj

(Vi − bi) /2 if bi = bj

0 if bi < bj

. (1)

The bidding strategy of bidderi is given bysi : [0, 1] → [0,∞), mapping own valuation into a bid. We
assume that, in equilibrium, bidderi knows both his own valuation,Vi, and bidderj’s strategy,sj , but not
j’s valuation. Bidderi best replies to bidderj’s strategy given his valuation and his beliefs∆.

In our framework, the set of priors,∆, captures the ambiguity attitude. In order to capture bidders’ risk
attitude, we use a concave utility function,u(·), with u(0) = 0, u′ > 0, andu′′ < 0. Assuming that bidding
strategies are strictly increasing in own valuation,7 given the other bidder’s strategysj and bidderi’s own
valuationVi, bidderi chooses his bid by maximizing

Ui(bi; Vi, sj) ≡ u (Vi − bi) Fα

[
s−1
j (bi)

]
, (2)

wheres−1
j (bi) is the inverse ofsj , which, in equilibrium, is bidderj’s value, andFα =

(
αδ + (1− α) δ

)
F 1+[

1− (
αδ + (1− α) δ

)]
F 2 is the bidder’s belief about his opponent’s valuation. In other words, anα-

MEU bidder will behave as if he believes that his opponent’s valuation is drawn fromF 1 with probability

5The restrictions on∆ follow Gilboa and Schmeidler (1989).
6We assume that there is no ambiguity about the fair coin and the bidder maximizes expected utility when there is no ambiguity.

Thus, a bidder’sex postpayoff in case of a tie is given by(Vi − bi)/2.
7This assumption will later be verified as shown in Eq. (4).
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αδ + (1− α) δ and fromF 2 with probability 1 − (
αδ + (1− α) δ

)
. The derivation of Eq. (2) is in the

Appendix.
Strategiess1 ands2 areequilibrium strategiesif

Ui(si(Vi);Vi, sj) ≥ Ui(bi; Vi, sj) (3)

for all Vi ∈ [0, 1], bi ∈ [0,∞), i = 1, 2, andj = 3 − i. In the following proposition, we characterize the
symmetric equilibrium strategy.

Proposition 1 The symmetric equilibrium bidding strategy,s, is characterized by

∂s

∂V
=

F ′
α(V )

Fα(V )
u [V − s(V )]
u′ [V − s(V )]

. (4)

Proof: See Appendix.
This Proposition characterizes the symmetric equilibrium bidding strategies for anα-MEU bidder.

Eq. (4) in Proposition 1 is analogous to the equilibrium characterization for the no-ambiguity case by Riley
and Samuelson (1981) and Milgrom and Weber (1982).

We use a particular specification forF 1 and F 2 to further investigate the properties of the bidding
function. We use this specification later in the experiments. To construct the low value distributionF 1, we
first choose the interval

[
0, 1

2

]
with probability 3

4 and the interval
(

1
2 , 1

]
with probability 1

4 . Subsequently, we
choose the valuation from the chosen interval uniformly. Similarly, to construct the high value distribution
F 2, we first choose the interval

[
0, 1

2

]
with probability 1

4 and the interval
(

1
2 , 1

]
with probability 3

4 . Again, we
then choose the valuation from the chosen interval uniformly. More precisely, the two distribution functions
are specified as follows:

F 1 (x) =
{

3
2x if 0 ≤ x ≤ 1

2
3
4 +

(
x− 1

2

)
1
2 if 1

2 < x ≤ 1
(5)

F 2 (x) =
{

1
2x if 0 ≤ x ≤ 1

2
1
4 +

(
x− 1

2

)
3
2 if 1

2 < x ≤ 1
. (6)

Figure 1 presents graphs of the cumulative distribution functionsF 1 andF 2. Note that neitherF 1 nor
F 2 is uniform. A non-uniform distribution in first price auctions allows separation of equilibrium bidding
functions from linear rules of thumb.

Recall thatFα =
(
αδ + (1− α) δ

)
F 1 +

[
1− (

αδ + (1− α) δ
)]

F 2. Thus,Fα can be expressed as:

Fα (x) =
{

θx if 0 ≤ x ≤ 1
2

1
2θ +

(
x− 1

2

)
(2− θ) if 1

2 < x ≤ 1

=
{

θx if 0 ≤ x ≤ 1
2

(θ − 1) + (2− θ)x if 1
2 < x ≤ 1,

(7)

where

θ =
(
αδ + (1− α) δ

) 3
2

+
[
1− (

αδ + (1− α) δ
)] 1

2

=
(
αδ + (1− α) δ

)
+

1
2
. (8)

Eq. (8) implies that the higherα is, the lowerθ will be. Recall from Eq. (2) that the higher the parameter
α is, the more weight the decision maker puts on themin functional. Thus,α measures a bidder’s ambiguity
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Figure 1: Cumulative Distribution FunctionsF 1 andF 2

attitude, where higher values ofα reflect more ambiguity aversion.8 The interval,[δ, δ], measures the amount
of ambiguity in the environment. Fixing the amount of ambiguity in the environment,[δ, δ], the parameter,
θ, also measures a bidder’s ambiguity attitude. In the analysis, as we cannot separately identifyα, δ andδ,
we will useθ as a measure of ambiguity.

In order to identify when a bidder is ambiguity averse (or loving), we first need to know when the bidder
is ambiguity neutral. This is characterized by the following proposition.

Proposition 2 When the set of priors is the convex hull of two probability measures,F 1 and F 2, and
whenα = 1

2 , the decision maker is an expected utility maximizer with beliefs given by1
2F 1 + 1

2F 2, and
consequently ambiguity neutral.

Proof: See Proposition 3 of Ghirardato, Klibanoff and Marinacci (1998).
In our case, the set of priors is indeed the convex combination of two probability distributions. This

proposition gives us a natural benchmark for the case of ambiguity neutrality, which allows us to formally
define ambiguity aversion and ambiguity loving.

Definition 1 Whenα = 1
2 , the decision maker is ambiguity neutral; whenα > 1

2 , the decision maker is
ambiguity averse; whenα < 1

2 , the decision maker is ambiguity loving.

Using the above parameterizations ofF 1 andF 2, we can extend the characterization of the bidding
function provided in Proposition 1.

Corollary 1 With the parameterized distribution functionsF 1 andF 2, the equilibrium bidding strategy is
characterized by

∂s

∂V
(V, θ) =

{
(g [V − s(V, θ)]) /V if V ≤ 1

2
g [V − s(V, θ)]h(V, θ) if 1

2 < V ≤ 1
, (9)

where

g(z) ≡ u(z)
u′(z)

andh(V, θ) ≡ 2− θ

θ − 1 + (2− θ)V
. (10)

8In fact, Siniscalchi (2002) shows that, once the set of priors∆ (or, equivalently, the interval
[
δ, δ

]
) is fixed, the indexα can be

interpreted as an ambiguity aversion parameter.
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Proof: Substituting Eq. (7) into Eq. (4), we obtain the result.
This more detailed characterization allows us to consider the impact of ambiguity on the bidding func-

tion. This issue is addressed by the following Proposition:

Proposition 3 If V ≤ 1
2 , s(V, θ) does not depend onθ. If V > 1

2 , s(V, θ) is strictly decreasing inθ.

Proof: See Appendix.
This proposition shows that, in the range whereV > 1/2, an increase in ambiguity aversion (a decrease

in θ) leads to higher bids, while an increase in ambiguity loving (an increase inθ) leads to lower bids. The
intuition is the following. When a bidder is more ambiguity averse, she is more pessimistic, which implies
that she thinks that her opponent’s valuation is more likely to be high. Therefore, she bids more.

In contrast, in a second price auction, the bidder who has the highest bid receives the object and pays
the second highest bid to the seller. Ties are broken by a random device. In this auction, bidding one’s true
valuation is a weakly dominant strategy, even with ambiguity aversion (see, e.g., Lo (1998)). This leads to
our next proposition.

Proposition 4 In a second price sealed bid auction, regardless of the bidder risk and ambiguity attitudes,
bidding one’s true valuation is a weakly dominant strategy.

All theoretical results presented in this section serve as a guidance for our experimental design and data
analysis.

3 Experimental Design

The experimental design reflects both theoretical and technical considerations. We design our experiment
to determine the effect of ambiguity on bidder behavior and to reevaluate the performance of two auction
mechanisms in the presence of ambiguity.

3.1 Economic Environments

To study the effect of ambiguity on bidder behavior and its consequences on the performance of two auction
mechanisms, we chose a2×2 design. In the information dimension, we include treatments with and without
the presence of ambiguity, while in the mechanism dimension, we use the first and second price sealed bid
auctions. The choice of the2× 2 design is based on the following considerations.

1. Known vs. unknown distributions: we use the treatment with known distributions to identify bidders’
risk attitude. Since behavior in the treatment with unknown distribution involves both the bidders’
risk attitude and their ambiguity attitude, comparing behavior in this treatment to the known treatment
isolates the effect of ambiguity.

2. First price vs. second price auctions: As the theoretical predictions for the second price auction do
not change with increased ambiguity while those for the first price auction do, we use the first price
auction to measure participant ambiguity attitude, and the second price auction as a benchmark for
detecting systematic behavioral changes with the presence of ambiguity which are unaccounted for
by theory.

Table 1 summarizes the relevant features of the experimental sessions, including information conditions,
auction mechanisms, treatment abbreviations, exchange rate and the total number of subjects in each treat-
ment. The exchange rate is set so that participant earnings in equilibrium are comparable to the average
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Table 1: Features of Experimental Sessions

Information Auction Treatment Exchange No. Subjects Total No.
Conditions Mechanisms Abbreviation Rate Per Session Subjects

Known 1st Price K1 20 8 40
Distribution 2nd Price K2 20 8 40
Unknown 1st Price U1 20 8 40

Distribution 2nd Price U2 20 8 40

earnings of past experiments conducted in the Research Center for Group Dynamics Laboratory. For each
treatment, we conducted five independent sessions using networked computers at the Research Center for
Group Dynamics Laboratory at the University of Michigan. This design gives us a total of twenty inde-
pendent sessions and 160 subjects,9 recruited from an email list of Michigan undergraduate and graduate
students.10

One crucial decision in the design was how to implement ambiguity. In many psychology experiments
designed to test the Ellsberg paradox, subjects were told nothing about the distribution of the unknown urn.
We adopted a similar design in a pilot experiment conducted in April 2001, but found no basis to infer
what prior (or set of priors) the subjects used. Thus, for analytical tractability, we narrow ambiguity to a
single parameter in this experiment. More specifically, bidder valuations are known to be independent draws
from either the low value distributionF 1 (·) or the high value distributionF 2 (·). We use theF 1 andF 2

specifications from Section 2, with two modifications. First, we re-scale the support to the interval[0, 100].
Second, we discretize the support to the set{1, 2, · · · , 100}. For each bidder, the probability,δ, of the
event that his opponent’s valuation is drawn from the distributionF 1 is unknown. Therefore, we generate
ambiguity regarding the valuation distribution throughδ.

In the experiment, each bidder’s valuation in each round is a random draw from the set{1, 2, · · · , 100}.
We chooseδ0, the true value ofδ, to be0.70 for two reasons. First, we want the compound distribution to
be non-uniform, which precludesδ0 = 0.5. We choose not to use a uniform distribution, since it might be a
focal point in the absence of knowledge about the true distribution. Furthermore, with a uniform distribution,
one cannot separate equilibrium bidding strategies from linear rules of thumb in the first price auction (Chen
and Plott 1998). Second, since most previous experiments demonstrate ambiguity aversion, we want to
create an environment which leaves room for ambiguity averse bidders to learn. This consideration precludes
δ0 < 0.5. In treatments with a known distribution,δ0 = 0.70 implies thatδ = δ = 0.7. It then follows from
Eq. (8) thatθ = θ0 = 1.2.

3.2 Experimental Procedure

At the beginning of each session, subjects randomly drew a PC terminal number. Then each subject was
seated in front of the corresponding terminal, and given printed instructions. After the instructions were read
aloud, subjects completed a set of Review Questions, to test their understanding of the instructions. After-
wards, the experimenter checked answers and answered questions. The instruction period varied between
fifteen to thirty minutes. Each round consisted of the following stages:

1. For treatments with an unknown distribution only, each bidder estimated the chance that the valuation
of the other bidder in the group was drawn from the high value distribution, i.e., an estimate of

9Despite our explicit announcement in the advertisement that subjects could not participate in the auction experiment more than
once and our screening before each session, one subject participated three times.

10Graduate students in Economics were excluded from the list.
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1− δ. The bidder also indicated his confidence in his estimate: not confident at all, slightly confident,
moderately confident, fairly confident, and very confident.11

2. Next, each bidder was informed of his own valuation. Then each bidder simultaneously and indepen-
dently submitted a bid, which could be any integer between 1 and 100, inclusive.

3. Bids were then collected in each group and the object was allocated according to the rules of the
auction.

4. Afterwards, each bidder received the following feedback on his screen: his valuation, his bid, the
winning bid, whether he received the object, and his payoff.

The subjects did not receive the entire vector of valuations and the corresponding bids to slow down
the learning ofδ and thus to preserve ambiguity for the initial rounds.

In each treatment, each session lasted thirty rounds with no practice rounds. At the end of thirty rounds,
all participants completed a questionnaire to elicit demographic information. The demographic results are
reported in Chen, Katǔsčák and Ozdenoren (2005).

Compared to Salo and Weber (1994) laboratory study of ambiguity in first price sealed bid auctions, our
design has the following characteristics. First, we study both first and second price auctions, while Salo and
Weber study only first price auctions. Second, we use a non-uniform distribution of valuations, while Salo
and Weber use the uniform distribution. Third, while Salo and Weber also examine unknown number of
competitors and dichotomous auctions, we do not. Last, we used 160 subjects, while Salo and Weber used
48 subjects. The larger number of observations enables us to obtain more precise estimates in our statistical
analysis.

The experiments were conducted from October 2001 to January 2002. Each session lasted from forty
minutes to an hour. The exchange rate was20 points to $1. The average earning was $16.20. Experimental
Instructions are posted on the first author’s website (http://www.si.umich.edu/ ∼yanchen/ ). The
data are available from the authors upon request.

4 Results

We present experimental results in this section. Figure 2 presents the cross plot of bids against values in all
four treatments. The first column presents data for the first price auction, while the second column is for the
second price auction. For each column, the top graph is for the known treatment, while the bottom graph is
for the unknown treatment. An immediate observation is that, in the first price auction, most bids are below
the value (i.e., below the diagonal), while in the second price auction, bids are often above the values. We
now proceed to analyze the difference between treatments with and without ambiguity.

We first estimate bidders’ ambiguity attitude in the first price auction by using two different approaches.
The nonparametric approach compares bids in the no-ambiguity treatments and those in the ambiguity treat-
ments, and infers bidders’ ambiguity attitude based on Proposition 3. This approach imposes minimal
assumptions on bidder behavior. The structural approach is based on the equilibrium bidding function to
be derived in Corollary 2 and explicitly estimates the ambiguity parameter. Compared to the nonparamet-
ric analysis, the structural approach requires more assumptions on the bidders’ utility function. We then
examine the effect of ambiguity on bids, revenue, earnings and efficiency. In all subsequent analysis, we
normalize the valuations, reserve prices and bids to be on the interval[0, 1], consistent with the notation in
our theoretical model.

11This confidence rating method to elicit ambiguity attitude was proposed and evaluated by psychologists Curley et al. (1989).
Among three different methods to elicit subject ambiguity attitude in decision making, they found this one to be the best.

9



0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1

B
id

Value

FPA, Known Distribution

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1

B
id

Value

SPA, Known Distribution

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1

B
id

Value

FPA, Unknown Distribution

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1

B
id

Value

SPA, Unknown Distribution

Figure 2: Raw Bids in All Treatments

4.1 Nonparametric Estimation of Ambiguity Attitude in First Price Auctions

To estimate bidders’ ambiguity attitude, we first compare the bids in the no-ambiguity treatment to those in
the ambiguity treatment. As we have a full factorial design, keeping everything else constant, any systematic
variations in bids in the ambiguity treatments compared to the no-ambiguity treatments can only be attributed
to the variation in the amount of ambiguity.

Bids being lower in the ambiguity treatment compared to the no-ambiguity treatment is consistent with
ambiguity loving under a weak assumption. Recall that both the amount of ambiguity in the environment
and bidders’ ambiguity attitude are summarized in the parameterθ. Proposition 3 implies that higherθ leads
to lower bids. In the no-ambiguity treatments,θ = 1.2 asδ = 0.7 is known. Therefore, by comparing bids
in the ambiguity treatments and those in the no-ambiguity treatments, we can determine whetherθ in the
ambiguity treatments is greater (or less) than1.2. If bids in the ambiguity treatments are lower, we can infer
thatθ > 1.2, and vice versa. To infer bidder’s ambiguity attitudes (i.e.,α) from θ, we need to assume that
the center of the interval[δ, δ] is at or below0.7. This assumption puts a weak restriction on the amount
of weight on the low value distribution relative to the high value distribution. However, it does not rule out
the possibility of putting more than 0.7 weight on the low value distribution (e.g.,[0.4, 1.0] is centered at
0.7 and thus is allowed by our assumption). A natural place where the interval might be centered is0.5, as
suggested by the “principle of insufficient reason,” which Luce and Raiffa (1957) (p. 284) attribute to Jacob
Bernoulli. This case, too, is covered by this assumption. Under this assumption, ifθ > 1.2, thenα < 1/2,
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Table 2: Comparison of Bids with and without Ambiguity

Round AllV 0 ≤ V ≤ 0.5 0.5 < V ≤ 1
1-1 0.504 (40,40) 0.204 (26,19) 0.022 (14,21)
2-30 0.133 (5,5) 0.133 (5,5) 0.183 (5,5)
1-3 0.006 (5,5) 0.062 (5,5) 0.540 (5,5)
4-30 0.310 (5,5) 0.183 (5,5) 0.133 (5,5)
1-5 0.012 (5,5) 0.038 (5,5) 0.310 (5,5)
6-30 0.242 (5,5) 0.310 (5,5) 0.133 (5,5)
1-30 0.133 (5,5) 0.183 (5,5) 0.183 (5,5)

Notes:

1. The table lists one-sided p-values for the Wilcoxon ranksum tests that bidders bid more under the known distri-
bution than under an unknown distribution of valuations.

2. To assure independence of individual observations, first-period only tests use all the observations individually,
while all the other tests use session means. Number of independent observations under the known and unknown
distribution is listed in parentheses for each test.

implying ambiguity loving.12 If θ < 1.2, then bidder ambiguity attitude cannot be determined precisely.13

We now compare the mean bids in the no-ambiguity treatment (K1) with those in the ambiguity treatment
(U1), using the Wilcoxon ranksum test. We also compare the median bids and get similar results.

Table 2 reports p-values for the Wilcoxon ranksum tests. The null hypothesis is that mean bids are the
same in treatments with and without ambiguity. The alternative hypothesis is that bids are higher in the
no-ambiguity treatment. In Round 1, all bids are independent, and therefore we use each individual bid as
an independent observation. From Round 2 on, we use a session mean as an independent observation. As
we expect the amount of ambiguity to decrease over time, we partition the data into early rounds (Round 1,
Rounds 1-3, Rounds 1-5) and later rounds. For each time interval, we compare bids over all values, as well
as those in two subranges,[0, 0.5] and(0.5, 1].

RESULT 1 (Ambiguity Attitude) In first price auctions, bids are lower in the ambiguity treatments com-
pared to the no-ambiguity treatments, which is consistent with ambiguity loving.

SUPPORT. Table 2 reports p-values for one-sided Wilcoxon ranksum tests, comparing (mean) bids for
treatments with and without ambiguity. There is a statistically significant difference in Round 1 for the
value range of(0.5, 1], for Rounds 1-3 and 1-5 for allV .

Result 1 presents a significant finding that bids are lower with the presence of ambiguity. From Propo-
sition 3 and the analysis at the beginning of this subsection, this result is consistent with the hypothesis that
bidders are ambiguity loving. This is the first main result of this paper. Result 1 is surprising, given that a
large volume of empirical studies replicating the Ellsberg urn experiment and variations confirm ambiguity
aversion. How do we reconcile our result with the “robust” ambiguity aversion finding in psychology?

Note that the interpretation of ambiguity loving in auction settings is not exactly the same as ambiguity
loving in individual choice experiments, such as the Ellsberg experiment. In our auction setting, when the
true underlying distribution is unknown, a bidder might beex antepessimistic in thinking that his own val-
uations are more likely to be drawn from the low value distribution. In a symmetric environment, since the

12To see this, note that ifθ > 1.2, thenαδ + (1 − α)δ > 0.7. Under our assumption,(δ + δ)/2 ≤ 0.7. So whenα = 1/2,
αδ + (1− α)δ ≤ 0.7. Moreover,αδ + (1− α)δ is decreasing inα. Together, these facts imply thatα < 1/2.

13To see this, suppose[δ, δ] = [0.3, 0.5], and supposeα = 0, which corresponds to ambiguity loving. Thenθ = 1 < 1.2, and
hence such a bidder would increase his bid in the ambiguity treatment, even though he is ambiguity loving.
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opponent is just like himself, the same bidder might conclude that his opponent’s values are also more likely
to be drawn from the low value distribution. This naive application of pessimistic reasoning implies ambi-
guity loving behavior.14 By contrast, in an Ellsberg urn experiment, ambiguity loving implies a preference
for the unknown urn when choosing between known and unknown urns, or optimism when missing infor-
mation. Since the literature on the psychological causes of ambiguity aversion focus almost exclusively on
individual choice experiments (see, e.g., Fox and Tversky (1995), Curley, Yates and Abrams (1986)), this
naive application of pessimistic reasoning should be verified in future experiments on ambiguity using a
variety of different contexts.

4.2 Structural Estimation of the Ambiguity Parameter in First Price Auctions

In the previous subsection, we determined that bidders are ambiguity loving from comparison of bids in the
two treatments. To get an idea of the magnitude of the ambiguity parameter,θ, we now use the structural
approach to directly estimateθ in theα-MEU framework. As is common in the structural approach, we need
additional assumptions to make the model tractable. Our first assumption is that an ambiguity neutral bidder
will use the uniform prior in the ambiguity treatment, i.e.,δ + δ = 1. As a result, Eq. (8) implies thatθ < 1
corresponds to ambiguity aversion,θ = 1 corresponds to ambiguity neutrality, andθ > 1 corresponds to
ambiguity loving. Our second assumption is that bidders have constant relative risk averse (CRRA) utility
functions of the formu(x) = xβ, whereβ > 0. While there has been no consensus on the right model
for bidder behavior in first price auctions (see Kagel (1995) and Cox (forthcoming) for surveys of this
research), we choose to use CRRA due to its analytical tractability. Because of these assumptions, results
on the magnitude ofθ should be taken with caution. We now compute the equilibrium bidding strategies for
anα-MEU bidder with a CRRA utility function, using Proposition 1.

Corollary 2 With the parameterized distribution functionsF 1 andF 2, the equilibrium bidding strategy for
a bidder with a CRRA utility function is characterized by:

s (V ) =

{
V

1+β if 0 ≤ V ≤ 1
2

V (θ−2)+β(θ−1)
(θ−2)(1+β) + β

1+β
θ−1
2−θ

(
θ
2

) 1
β [θ − 1 + (2− θ) V ]−

1
β if 1

2 < V ≤ 1
. (11)

Proof: See Appendix.
We use Corollary 2 to estimate the risk parameter,β, and ambiguity parameter,θ. In the treatment with

a known distribution (K1), ambiguity does not play a role, as bidders know the value ofδ. We use this
treatment to estimate the bidders’ risk attitude.

We make a simplifying assumption that, within the same treatment, the risk parameter is common and
known across individuals. Allowing heterogeneous risk parameters across individuals would clearly fit
the data better. However, one has to resort to the computational approach, which requires makingad hoc
assumptions about the distribution of risk parameters in the population as well as about independence across
individuals and rounds within the same session. Since our main goal is to separate the effects of risk from
ambiguity, we assume symmetric bidders to get closed form solutions without distributional assumptions.
Moreover, we believe that the main conclusions would remain unchanged even with heterogeneity in risk
preferences. Thus, we estimate the following econometric model:

bit = s(Vit, β, θ0) + ξit, (12)

wheres(·) is the bidding function characterized in Corollary 2;bit is the bid submitted by bidderi at round
t; Vit is the private valuation of bidderi at roundt; β is the risk parameter;θ0 = 1.2; andξit is the error

14We thank an anonymous referee for suggesting this explanation.
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Table 3: Estimation of Bidders’ Risk Parameter (β)
Restriction onθ Sample Obs. β Coefficient Std. Error 95% Confidence Interval
θ = 1.2 All Values 1200 0.3622 0.0242 0.3199 0.4160
N/A Vit ≤ 0.5 742 0.3573 0.0191 0.3169 0.3900
θ = 1.2 Vit > 0.5 458 0.3633 0.0262 0.3185 0.4234
Unrestricted All Values 1200 0.3313 0.0203 0.2863 0.3625

(θ = 1.288 0.0549 1.1809 1.3914)

Note: All standard errors and confidence intervals are bootstrapped with adjustment for clustering at session level.

term assumed to be orthogonal to the valuation, i.e.,E(ξit|Vit) = 0. The method of nonlinear least squares
is used for parameter estimations. In all estimations, standard errors and confidence intervals are computed
by bootstrapping and are adjusted for clustering at the session level, implying thatξit is allowed to be
heteroscedastic, and correlated across both individuals and rounds, but is independent across sessions. We
use the bootstrap procedure to avoid distributional assumptions onξit or relying on asymptotic distribution
theory.

Table 3 reports the estimates ofβ for treatmentsK1. For each treatment, we first conduct a baseline
estimation ofβ with the restriction thatθ = 1.2. We then repeat the same estimation separately for different
subranges of valuations to evaluate the sensitivity of the estimate ofβ, since the bidding function has a
different functional form for each subrange. Finally, we run a control estimation which jointly estimatesβ
andθ. In the control estimation of both treatments,θ = 1.2 lies within the 95% confidence interval, thus
justifying theθ = 1.2 restriction in the known distribution treatments. The estimated bidder risk parameter
is β = 0.3622. This estimated risk parameter is consistent with recent estimates in private-value auction
experiments, such as0.33 (Cox and Oaxaca 1996),[0.35, 0.71] (Chen and Plott 1998) and0.48 (Goeree,
Holt and Palfrey 1999).

In subsequent analysis, we use the estimatedβ = 0.3622 to isolate the effects of risk and ambiguity. As
a robustness check, we repeat all the subsequent estimation procedures forβ = 0.32 andβ = 0.42, which
are reasonable lower and upper bounds based on the estimates ofβ for different subranges of valuations and
their respective confidence intervals reported in Table 3.

We now estimateθ using Corollary 2, with the modification of allowingθ to vary over time but not over
bidders. More specifically, we letθ be a cubic polynomial of time to partially capture the effects of updating.

Figure 3 presents estimated time paths ofθ, together with their bootstrapped confidence intervals, with
adjustment for clustering at the session level in the treatment with unknown distributions (U1). The top left
graph uses the baseline estimates of the risk parameterβ from the corresponding treatments with known
distributions. The top right and bottom graph serve as robustness checks by using the corresponding lower
and upper bounds ofβ, respectively. In all three graphs, the estimated ambiguity parameterθ is at least one,
suggesting that bidders are ambiguity loving.

RESULT 2 (Estimation of the Ambiguity Parameter θ) : In all rounds, but particularly in the early
rounds (1-5), the estimated ambiguity parameterθ is at least one, with the lower boundaries of all confidence
intervals being at least one. This rejects ambiguity aversion. Starting from round 2, both ambiguity aversion
and ambiguity neutrality are rejected in favor of ambiguity loving.

SUPPORT. In all three graphs of Figure 3, we see that the estimatedθ is at least one. Furthermore, the
lower boundaries of all confidence intervals are at least one.

Result 2 confirms Result 1 that our data are consistent with ambiguity loving in first price auctions. Apart
from the two assumptions discussed earlier, the structural estimation restricts the ambiguity parameterθ to
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Figure 3: Estimated Ambiguity Parameterθ in U18 Treatments

be the same across individuals in any given round. In an exercise not presented here due to space constraints,
we also relax this assumption by modelling individual learning using the SEU model. We find that the mean
of the estimated prior distribution ofδ is 0.8438, which suggests that bidders put more than 0.5 weight on
the low value distribution.15

To summarize, we have used two different approaches to determine bidders’ ambiguity attitude. The first
approach compares the mean bids in treatments with and without ambiguity and finds that bids are lower
in treatments with ambiguity, which is consistent with ambiguity loving. The second approach estimates
the ambiguity parameter to be at least one, rejecting ambiguity aversion. Combining both approaches, we
conclude that ambiguity affects bidder behavior in the first price auction in our experimental setting, and our
data are consistent with the hypothesis that bidders are ambiguity loving.

4.3 Second Price Auctions

For the second price auction, we use a structural approach based on Proposition 4, which states that bidding
one’s true valuation is a weakly dominant strategy with or without ambiguity. To test this hypothesis, we
use an OLS regression with clustering at the session level. We use Bid as the dependent variable, and Value
as the only independent variable. We do not include a constant because of the theoretical prediction. We

15The theoretical derivation and estimation results are available from the authors upon requests.
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Table 4: Effects of Ambiguity on Bids in the Second Price Auction

Dependent Variable: Bid in Second Price Auction
Rounds 1-5 Rounds 1-10 Rounds 11-30

Value (Known Case) 1.0341 1.0589 1.0882
(0.0139)** (0.0155)*** (0.0324)***

Value (Unknown Case) 1.0269 1.0453 1.0721
(0.0154) (0.0143)*** (0.0107)***

Observations 400 800 1,600
Test of Known=Unknonwn:
P-value ofχ2(1) 0.7296 0.5172 0.6354

Notes:

1. Standard errors in parentheses are adjusted for clustering at the session level.

2. The asterisks next to the standard errors display significance in one-sided tests of the null hypothesis of the
coefficient being unity against the alternative hypothesis of the coefficient being more than unity.

3. Significant at: * 10% level; ** 5% level; *** 1% level.

conduct the estimation on treatments with known and unknown distributions for both the early (1-5, and
1-10) and later rounds (11-30). We combine both the Known and Unknown treatments in one regression to
gain additional efficiency. Results are presented in Table 4.

RESULT 3 (Effects of Ambiguity in Second Price Auctions) : Ambiguity has no significant effect on
bids in earlier rounds or later rounds. However, in rounds 1–10 of the Known treatment and rounds 11–30
of both treatments, subjects bid significantly higher than their valuations.

SUPPORT.Table 4 presents the OLS regression results for second price auctions. The coefficient estimates
show how much subjects bid compared to their valuations. The standard errors are in parentheses. The
asterisks next to the standard errors indicate the significance levels in two-sided Wald tests of the null
hypothesis of bids being equal to values against the alternative hypothesis of bids not equal to values. The
null hypothesis is rejected at the 5% significance level in rounds 1–10 of the Known treatment and rounds
11–30 of both treatments. The last line of the table displays the Waldχ2 statistics for the equality of
coefficients between the known and unknown treatments for the early and later rounds, respectively. None
of these statistics is significant at the 10% significance level.

The finding that ambiguity has no effects on bidding behavior in second price auctions confirms our
theoretical prediction. The finding that participants overbid is consistent with previous experimental findings
(Kagel, Harstad and Levin 1987). Interestingly, the extent of overbidding increases in later rounds, which
not only confirms that participants do not seem to learn the dominant strategy, but also indicates that they
depart further from the dominant strategy in later rounds.

4.4 Revenue, Earnings and Efficiency

In this subsection, we present aggregate results. Specifically, we examine the effects of the auction mecha-
nisms (first vs. second price auctions) and information conditions (ambiguity vs. no ambiguity treatments)
on revenue, bidder earnings and overall auction efficiency.

RESULT 4 (Revenue) : With or without ambiguity, FPA generates significantly higher revenue than SPA.
In the early rounds of FPA, revenue is significantly higher without ambiguity.
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Table 5: Average Revenue and Results of Permutation Tests (one-tailed)

Rounds 1-5 Session 1 Session 2 Session 3 Session 4 Session 5H1 p-value
K1 0.4665 0.4685 0.4235 0.5170 0.5485 K1 > K2 0.0040***
U1 0.3705 0.4795 0.4280 0.4420 0.3905 U1 > U2 0.0556*
K2 0.2815 0.2665 0.2600 0.3825 0.3795 K1 > U1 0.0397**
U2 0.2935 0.3870 0.4175 0.3130 0.3990 K2 < U2 0.0992*

Rounds 1-30 Session 1 Session 2 Session 3 Session 4 Session 5H1 p-value
K1 0.4459 0.3869 0.4443 0.4648 0.4559 K1 > K2 0.0079***
U1 0.3638 0.4419 0.4255 0.4277 0.4499 U1 > U2 0.0159**
K2 0.3335 0.3265 0.3423 0.3948 0.3506 K1 > U1 0.2341
U2 0.2953 0.3653 0.3628 0.3131 0.3588 K2 > U2 0.3730

Notes:

1. The null hypothesis is that the average revenue is equal in the two treatments.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

SUPPORT. Table 5 presents the average revenue in the early rounds (1-5) and over all thirty rounds for
each session in each treatment. The last two columns report the alternative hypotheses and results of the
one-tailed permutation tests for the effects of auction mechanisms and information conditions.

Result 4 is consistent with theory. The Revenue Equivalence Theorem states that, without ambiguity
and with risk neutrality, FPA and SPA generate the same expected revenue. With risk aversion, bidders bid
more in the FPA but not in the SPA; therefore, we obtain the usual result that FPA generates more revenue
than the SPA. This results also holds when ambiguity is introduced.

In addition, we also observe that, in the early rounds of FPA, revenue is significantly lower when ambi-
guity is introduced, a consequence of ambiguity-loving bidders. In SPA, ambiguity does not affect revenue
over all rounds, which is consistent with theory.

Closely related to auctioneer revenue is bidder earnings. We expect auction mechanisms and information
conditions to have opposite effects on bidder earnings compared to auctioneer revenue. Indeed, we find that
bidder earnings are significantly higher in a second price auction compared to a first price auction with or
without ambiguity (p < 0.01 for one-tailed permutation tests).16

The last group level result we examine is efficiency. Following the tradition in the auction literature, we
define efficiency as equal to one hundred percent if the object goes to the bidder with the higher valuation.
We therefore measure the frequency with which the bidder with the higher valuation wins the object.

Table 6 presents the average efficiency for each session in each treatment and the results of the one-
sided permutation tests. Theoretically, both first and second price auctions should yield one hundred percent
efficiency under a zero reserve price. We find that average efficiency is fairly close to 90%, which is largely
consistent with previous experiments.

5 Conclusions

In many real world auctions, such as Internet auctions, bidder information regarding other bidders’ valua-
tions is vague. To explore the effect of this vagueness on bidder behavior, we study the first and second price
sealed bid auctions with independent private values, where the distribution of bidder valuation isnotknown.
We derive the symmetric equilibrium using theα-MEU framework. We then test our theoretical predictions

16Details are available from the authors upon request.
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Table 6: Efficiency and Results of Permutation Tests (one-tailed)

Treatment Session 1 Session 2 Session 3 Session 4 Session 5H1 p-value
K1 0.8667 0.9083 0.9167 0.9083 0.8750K1 > K2 0.3373
U1 0.8833 0.8750 0.9000 0.8917 0.9083 U1 > U2 0.3214
K2 0.8583 0.9167 0.8917 0.8833 0.9000 K1 > U1 0.3810
U2 0.9333 0.7833 0.8250 0.9000 0.9417 K2 > U2 0.3413

Notes:

1. The null hypothesis is that efficiency is equal in the two treatments.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

to examine how ambiguity affects bidder behavior and to reassess the ranking of the first and second price
sealed bid auctions.

Previous experimental studies on ambiguity mostly focus on Ellsberg individual choice experiments,
while previous auction experiments mostly assume that the distribution of bidder valuations is common
knowledge. Our study extends the experimental auction literature to a more realistic setting with ambiguity.
It also extends studies of ambiguity to an important applied setting, to determine whether findings from
individual choice experiments are robust in the auction context.

We show that ambiguity affects bidder behavior in the first price auction. Contrary to the results of many
previous studies in Ellsberg urn experiments, in our experimental auction setting, in the first price auction,
bids are lower with the presence of ambiguity. This result is consistent with ambiguity loving in a model
which allows for different ambiguity attitudes. At the aggregate level, we also find that the first price auction
generates significantly higher revenue than the second price auction with and without ambiguity.

These findings have important implications for auction design in settings with ambiguity. Our results
suggest that from the revenue perspective, the designer ought to choose the first price auction. Another
practical implication is that a reduction in ambiguity can lead to an increase in revenue.
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APPENDIX

Derivation of Eq. (2): Conditional onδ ∈ [0, 1], the distribution of the opponent’s valuations is given by
δF 1 + (1− δ) F 2. Then, in light of theα-MEU theory, bidderi’s utility is a weighted average of the utility
of a maxmin EU bidder (weightα) and a maxmax EU bidder (weight1−α), where the set of beliefs overδ
is given by∆. Then, conditional on the opponent strategy beingsj and using the shorthand notationπi for
πi [Vi, bi, sj(Vj)], the bidderi’s payoffU(bi;Vi, sj) is given by

Ui(bi; Vi, sj) = α min
G∈∆

{∫ 1

0

∫ 1

0

u (πi) d
[
δF 1(Vj) + (1− δ) F 2(Vj)

]
dG (δ)

}

+ (1− α)max
G∈∆

{∫ 1

0

∫ 1

0

u (πi) d
[
δF 1(Vj) + (1− δ) F 2(Vj)

]
dG (δ)

}

= α min
G∈∆

{(∫ 1

0

δdG (δ)

) [∫ 1

0

u (πi) dF 1(Vj)

]
+

(∫ 1

0

(1− δ) dG (δ)

) [∫ 1

0

u (πi) dF 2(Vj)

]}

+ (1− α)

{
max
G∈∆

(∫ 1

0

δdG (δ)

) [∫ 1

0

u (πi) dF 1(Vj)

]
+

(∫ 1

0

(1− δ) dG (δ)

) [∫ 1

0

u (πi) dF 2(Vj)

]}

= α

{
δ

[∫ 1

0

u (πi) dF 1(Vj)

]
+ (1− δ)

[∫ 1

0

u (πi) dF 2(Vj)

]}

+ (1− α)

{
δ

[∫ 1

0

u (πi) dF 1(Vj)

]
+ (1− δ)

[∫ 1

0

u (πi) dF 2(Vj)

]}

=

∫ 1

0

u (πi) dFα(Vj)

= u (Vi − bi) Fα[s−1
j (bi, r)],

whereFα =
(
αδ + (1− α) δ

)
F 1 +

[
1− (

αδ + (1− α) δ
)]

F 2.

Proof of Proposition 1: By (2), bidderi solves

si(Vi) ∈ arg max
bi∈[0,∞)

u (Vi − bi)Fα

[
s−1
j (bi)

]
.

We know thatsi(0) = 0 since bidding above zero leads to negative utility forVi = 0. WhenVi > 0, we have
0 < si(V ) < Vi and the bidding function of bidderi is characterized by the following first order condition:

−u′ [Vi − si(Vi)]Fα

{
s−1
j [si(Vi)]

}
+

u [Vi − si(Vi)]F ′
α

{
s−1
j [si(Vi)]

}

∂
∂Vj

sj

(
s−1
j [si(Vi)]

) = 0.

In a symmetric equilibriumsi = sj = s, and hence if follows that ifV > 0,

−u′ [V − s(V )]Fα(V ) +
u [V − s(V )]F ′

α(V )
∂s(V )
∂V

= 0,

which can be rewritten as
∂s (V )

∂V
=

F ′
α (V )

Fα (V )
u [V − s(V )]
u′ [V − s(V )]

.

Proof of Proposition 3: First, for0 < V ≤ 1
2 , Corollary 1 shows that

∂s(V, θ)
∂V

=
g [V − s(V, θ)]

V
.
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The solution,s(V, θ), of the above differential equation does not depend onθ and hence the functional form
of s(V, θ) is independent ofθ.

Now consider allV such that12 < V ≤ 1. Corollary 1 shows that for this range of values

∂s

∂V
(V, θ) = g [V − s(V, θ)]h(V, θ). (13)

Suppose, by contradiction, that there existV0 ∈
(

1
2 , 1

]
andθ1, θ2 ∈ [0.5, 1.5], θ1 < θ2, such thats(V0, θ1) <

s(V0, θ2). Define the setM as

M ≡ {V ∈ (
1
2
, V0) : s(V, θ1) = s(V, θ2)} ∪ {1

2
}.

By continuity of s(·, θ), M is a compact set, and hencem ≡ max(M) is well-defined. Continuity also
implies thats(V, θ1) < s(V, θ2) for all V ∈ (m,V0]. But becauseg(·) is strictly increasing,h(V, θ) is
strictly decreasing inθ, and, by construction,s(m, θ1) = s(m, θ2), it follows from (13) that

s(V0, θ1) = s(m, θ1) +
∫ V0

m
g [V − s(V, θ1)]h(V, θ1)dV

> s(m, θ2) +
∫ V0

m
g [V − s(V, θ2)]h(V, θ2)dV

= s(V0, θ2),

which is a contradiction. Therefore it must be the case thats(V, θ1) ≥ s(V, θ2) for all V ∈ (
1
2 , 1

]
and

θ1, θ2 ∈ [0.5, 1.5], θ1 < θ2.
Now suppose by contradiction that there existsV0 ∈

(
1
2 , 1

]
andθ1, θ2 ∈ [0.5, 1.5], θ1 < θ2, such that

s(V0, θ1) = s(V0, θ2). Sinceh(V, θ) is continuous, positive, and strictly decreasing inθ, there must exist
ε > 0 andγ > 0 such that

h(V, θ2)
h(V, θ1)

<
1

1 + ε
for all V ∈ (V0 − γ, V0).

In addition, sinces(V, θ) is continuous inV , g(·) is continuous, positive, and strictly increasing,s(V, θ1) ≥
s(V, θ2) for all V ∈ (1

2 , V0], there must existδ > 0 such that

g [V − s(V, θ2)]
g [V − s(V, θ1)]

< 1 + ε for all V ∈ (V0 − δ, V0).

But then it follows that

g [V − s(V, θ2)]h(V, θ2) < g [V − s(V, θ1)]h(V, θ1) for all V ∈ (V0 −min(δ, γ), V0) .

This result, combined with the fact thats [V0 −min(δ, γ), θ1] ≥ s [V0 −min(δ, γ), θ2], implies that

s(V0, θ1) = s [V0 −min(δ, γ), θ1] +
∫ V0

V0−min(δ,γ)
g [V − s(V, θ1)]h(V, θ1)dV

> s [V0 −min(δ, γ), θ2] +
∫ V0

V0−min(δ,γ)
g [V − s(V, θ2)]h(V, θ2)dV = s(V0, θ2),

which is a contradiction. Therefore it must be the case thats(V, θ1) > s(V, θ2) for all V ∈ (0.5, 1] and
θ1, θ2 ∈ [0.5, 1.5], θ1 < θ2, meaning thats(V, θ1) is strictly decreasing inθ whenV ∈ (0.5, 1].
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Proof of Corollary 2: Substituting Eq. (7) into Eq. (4) gives:

∂s (V )
∂V

=

{
1
β

V−s(V )
V if 0 ≤ V ≤ 1

2
1
β [V − s (V )] 2−θ

θ−1+(2−θ)V if 1
2 < V ≤ 1

.

The solution to this differential equation is:

s (V ) =





c1V
− 1

β + V
1+β if 0 ≤ V ≤ 1

2
V (θ−2)+β(θ−1)

(θ−2)(1+β) + c2 [θ − 1 + (2− θ) V ]−
1
β if 1

2 < V ≤ 1
.

Sinces (0) = 0, we havec1 = 0. By continuity atV = 1
2 ,

1
2 (1 + β)

=
1

2 (1 + β)
+

β

1 + β

θ − 1
θ − 2

+ c2

(
θ

2

)− 1
β

implying

c2 =
β

1 + β

θ − 1
2− θ

(
θ

2

) 1
β

.

So we can write the bidding function as follows:

s (V ) =

{
V

1+β if 0 ≤ V ≤ 1
2

V (θ−2)+β(θ−1)
(θ−2)(1+β) + β

1+β
θ−1
2−θ

(
θ
2

) 1
β [θ − 1 + (2− θ) V ]−

1
β if 1

2 < V ≤ 1
.
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