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Abstract

This study presents a laboratory experiment of the first and secoredggated bid auctions with inde-
pendent private values, where the distribution of bidder valuatiomskaown In our experimental setting,
in first price auctions, bids are lower with the presence of ambiguity. Thidtres consistent with ambi-
guity loving in a model which allows for different ambiguity attitudes. Alternaiiverpretations of this
result, such as the hostile nature hypothesis proposed by psycholagistiscussed in the paper. Another
departure from previous experimental studies is the use of subjectstamnaers. We find that compared
to zero reserve prices the presence of auctioneers significadiicesrevenue in first price auctions. It
also significantly reduces bidder earnings and efficiency. Without ladmye of the distribution of bidder
valuations and with auctioneers, the first and second price auctionsaggetiee same amount of revenue.
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1 Introduction

Theoretical and experimental auction literature often assumes that bottrdimlad auctioneers know the
distribution of bidder valuations. Consequently, nearly all of the results derive from such assumptions.
However, in many real-world auctions, it is inappropriate to assume thaefsiddhow the distribution
from which opponent valuations are drawn. One prominent example isitemeét auctions. The online
auction has become a fascinating and fast-growing exchange mechanisking-Reiley (2000a)). Online
auction technology introduces several interesting features not avéaieipéalitional auctions. For example,
bidders can be geographically dispersed and bidding can be asgnokroThese conveniences make it
easier to obtain a relatively large group of bidders for an object. Tlaeskother special features of online
auctions, make it important to re-examine the implications of some key assumptianstion theory and
experiments. In this study, we focus on the assumption that bidders knatisthibution of other bidder
valuations.

To select the right auction mechanism for environments such as the tteneeneeds to answer two
fundamental questions: how the absence of the knowledge of the distnilmftlmidder valuations affects
bidder and auctioneer behavior, and how this change in behaviotsaffecperformance of various auction
mechanisms. To address these questions, we conduct laboratoryrexgercomparing treatments with an
unknown distribution of bidder valuations to those with a known distributioridddr valuations.

The uncertainty about the probability distribution (of bidder valuationsgxample) created by missing
information isambiguity Not knowing important information can affect decision making, as illustrated
the Ellsberg (1961) paradox. Ellsberg’s two-color problem uses tws, wne containing 50 red and 50
black balls called the known urn (or the risky urn), and one containingba0® in an unknown combination
of red and black called the unknown urn (or the ambiguous urn). Thesertys represent two distinct types
of uncertainty. The first type of uncertainty, present in both urns, ¢@dainty as to which outcome will
occur: red or black, and is termed risk. The second type of uncertpneisent only in the unknown urn, is
uncertainty about the probability of each outcome itself and is termed ambiguiBilsberg experiments,
many people bet on red from the known (vs. unknown)amdon black from the known urn. However, they
are indifferent between the two colors when betting on only one urn. Htienm of behavior is inconsistent
with any model which uses probabilities, and is caledbiguity aversion The opposite of ambiguity
aversion is calle@mbiguity loving

Apart from online auctions, ambiguity is prevalent in many other real-watl@tons, for example, the
success rate of some new drugs or clinical treatments (e.g., Curley, gadriates (1989)), the insurance of
certain classes of highly ambiguous risks, such as environmental Bgeagd Priest (1987)) and terrorist
attacks, the usefulness of new features of consumer products (Kahkleyer, 1991), the outcomes of
R&D, incomplete contracting due to unforeseen contingencies, the auditisel@rocedures of the IRS
(Andreoni, Erard and Feinstein (1998)), and initial public offeringsJ$) of small privately-held firms.

Many researchers have studied ambiguity empirically. They can be brokdlsified into three cate-
gories. The first kind of empirical ambiguity research is Ellsberg’s orlgimaught experiment and repli-
cations of it. The second kind determines the psychological causes of @itgbighe third kind studies
ambiguity in applied settings. While many studies of the first kind find variousegsgof ambiguity aver-
sion, Curley and Yates (1989), and Hogarth and Einhorn (1990), quoitvers, find ambiguity loving when
subjects face an unknown urn, and a known urn with a low probability ofivgn Some studies of ambigu-
ity in experimental markets find mixed results. For example, Sarin and Wek668) study of ambiguity
in an experimental asset market uses a double oral auction and a multiakngyauction. This study finds
that the market price for the unambiguous bet is considerably larger thanatket price of the ambiguous

For surveys of the theoretical literature see McAfee and McMillan (188@)Klemperer (1999). For a survey of the experi-
mental literature, see Kagel (1995).



bet? The main lesson from past empirical studies of ambiguity is that ambiguity afietivior. In this
paper, we investigate how agents react to ambiguity in one important claetsings, namely first price and
second price sealed bid auctions.

There are several different approaches to formally model ambiguity. nggntieem, maxmin expected
utility® (MMEU) and Choquet expected utilitf CEU) models are the most prominent in applications. In
this paper we use the-MEU model which is a natural and tractable generalization of the MMEU model.
Thea-MEU, as we discuss in Section 2, allows for both ambiguity averse and aitydigring behavior.

Our experiment serves two purposes. First, we extend the large anioeséarch on auctions to a more
realistic setting with the presence of ambiguity, to study how ambiguity affec@vimhand to reassess
the ranking of first and second price sealed bid auctions in this settingpn&ewe study how subjects
as auctioneers affect bidder behavior, auctioneer revenue, l@dd@ngs and auction efficiency. The latter
also serves as a robustness check for the results of bidding behéwithewpresence of ambiguity. We must
note, on the other hand, that the purpose of this paper is not to proudtusve evidence of ambiguity
attitude of bidders (as in the Ellsberg paradox). Rather we analyze tharfdsecond price auctions using
a model of preferences more general than expected utility that allowsffiaredit ambiguity attitudes and
see within this framework if one can explain bidding behavior without assuthizigbidders’ beliefs are
biased one way or the other. It will become clear in what follows that therebd bidding behavior can be
explained with different models (including expected utility) if one allows biddethold very biased beliefs
(and in fact we provide one such model in Section 4.3). Yet we believéhtbatvidence here supports that
ambiguity affects bidding behavior in the first price auction.

The paper is organized as follows. Section 2 introduces a theoretical nfakaled bid auctions with
risk and ambiguity. Section 3 presents the experimental design. Sectiosehfgéhe main results. Section
5 concludes the paper.

2 A Model of Bidding with Ambiguity

This section develops a theoretical auction model incorporating risk anigiaityb While we do not believe
that this equilibrium model captures all aspects of behavior in the experimgmyides a useful benchmark
for our data analysis.

Three theoretical studies address the role of ambiguity in auctions. SalWelmer (1995) analyze the
first price sealed bid auction using the Choquet expected utility model withveeg@apacity. In particular,
they consider the case where bidders have a constant relative riskiocaMgCRRA) utility function and the
Choquet capacity has a power representation. In this case, they shtahelequilibrium bidding function is
linear. In another study, Lo (1998) analyzes sealed bid auctions usngMEU framework. Specifically,
he derives the equilibrium bidding function for linear utility functions, andhpares the first and second
price auctions. Using the MMEU framework, Ozdenoren (2002) extandgyeneralizes the results in Lo.
He derives conditions under which risk neutral bidders increase thusri the first price auction as they
become more ambiguity averse. He then uses this result to compare thedisstcamd price auctions.

Our model differs from the above models in two important ways. First wehese-MEU framework to
allow for both ambiguity averse and ambiguity loving behavior. This frameugakgeneralization of both
the maxmin and maxmax expected utility models. Second, we consider bidderewirabconcave utility
functions. As a result, previous theory cannot be directly applied toraordwork.

Throughout this section, we assume that there are two bidderk 2. In addition, we assume that there
is one indivisible good for sale. In this model, we look at first and secoiteé puctions with independent

2Note that in the Sarin and Weber experiments, ambiguity is operationalizethdIsberg.

3In the maxmin expected utility model, decision makers have a set of pridrshkose an action that maximizes the minimum
expected utility over the set of priors.

4In the Choquet expected utility model, decision maker’s beliefs aresepted by a nonadditive probability measure (capacity).



private values with a reserve prige,Bidders send their bids simultaneously. For simplicity, we assume that
the set of possible valuations of the bidderfidl], with V; denoting biddei’s valuation. Only the bidder
knows his own valuation.

Our main departure from previous theoretical and experimental auctiocatliteris the assumption that
bidders do not know the valuation distribution. We look at the case, whedeibvaluations are known to
be independent draws from eithBf () or F2 (-), with positive andz.e.—continuous densitieg! (-) and
f?(+), respectively. In our experiment, we assume tfiafirst order stochastically dominatéd . Hence,
we call F'! the low value distribution an@™ the high value distribution. For each bidder, the probabifity,
of the event that his opponent’s valuation is drawn from the distribuibiis unknown. We definé to be
the random variable corresponding to the probability that valuation is ditammZ™.

In the standard subjective expected utility (SEU) model, each bidder halgjectve prior about the
value of§. However, if a bidder’s information abouatis too vague to be represented by a single prior,
it can be represented by a set of priors. In a seminal paper, Gilbo&emudeidler (1989) provide an
axiomatization of the maxmin expected utility model using a set of priors. Expattigis a special case
of MMEU, where the set of beliefs contains only a single probability measatbis model, a bidder’s prior
on the event that his opponent’s valuation is drawn from the distributibis given by a set of probability
measures. The bidder’s utility is given by the minimum expected utility over thisfg@iors. Intuitively,

a set of priors reflects both ambiguity in the environment and bidder difficalfgrming a well-defined
single prior. The min operator, on the other hand, reflects bidder ameisiguch ambiguity. To illustrate
how MMEU explains Ellsberg type behavior, suppose a decision makex lvasar utility function and the
set of priorsis{(z,1 — z) : 0.4 < x < 0.6}, wherex is the probability of drawing a red ball arid— x is
the probability of drawing a black ball from the unknown urn. The prdiglof drawing either color from
the known urn is 0.5. In this case, betting $1 on either color from the ambsguauwill give a maxmin
expected utility of 0.4, whereas betting $1 on either color from the knowmilhigive an expected utility
of 0.5.

In general, decision makers may also have preferences that rejpmesgaguity loving behavior (Heath
and Tversky 1990). Such behavior can be captured using the maxmaegted utility model, where the
min operator is replaced by the max operator. We do not want to restrictrsidembiguity attitude a priori,
therefore, we use the-MEU model that allows for both ambiguity averse and ambiguity loving behavior
The a-MEU model, axiomatized by Ghirardaét al. (forthcoming), is a generalization of both the maxmin
and maxmax expected utility models. In this model, bidders compute the utility of arsigta times
the minimum plusl — « times the maximum expected utility over the set of priors. Wheagualsl, this
model reduces to MMEU. When equalsD, it reduces to maxmax EU. Note that the class of preferences
this model represents is more general, sinaan take all intermediate values.

Formally, letA be a closed and convex sulisetthe set of distribution functions ovér, 1], representing
a bidder’s belief about the distribution &fLet§ = mingea [ §dG (§) andd = maxgea [ ddG (6) . Note
that the sef\ is subjective and the sét, §] can in general be a strict subset[0f1]. To see this, consider
the case where the sét has a single elemen;. In this casey = § = expected value of’. We assume
that A is independent of bidder valuations and is common knowledge to all bidd&rsen there is no
ambiguity, the common knowledge assumption reduces to the standard commdadgmassumption in
auction theory.

In a first price auction, the bidder with the higher bid above the reseiue mceives the object and
pays his bid to the seller. However, if both bids are below the reserve fine®bject is not sold. Ties are
broken by a random device. A bid can be any numbé,inc). A reserve price can be any numbeifan1].
The payoff for biddei is given by

5The restrictions om\ follow Gilboa and Schmeidler (1989).



Vi —b; ifbi>bjandb,~2r
ﬂ'i(‘/;,bi,bj,’l“): Vi—15b;0r0 if bZ:b] >r . (l)
0 ifbi<bjorbi<r.

The bidding strategy of bidderis given bys; : [0,1]> — [0, o), mapping own valuation and reserve
price into a bid. We assume that, in equilibrium, bidd&nows both his own valuatiory;;, and bidder;’s
strategy.s;, but notj’s valuation. Bidder best replies to biddej’s strategy given his valuation, the reserve
price and his beliefa\.

In our framework, the set of priord), captures the ambiguity attitude. In order to capture bidders’ risk
attitude, we use a concave utility functiar(; ), with «(0) = 0, ' > 0, andu” < 0. Assuming that bidding
strategies are strictly increasing in own valuatfagiyen the other bidder’s strategy, the reserve price,
and bidder’s own valuationV;, bidderi chooses his bid by maximizing

Ui(bs: Vi, 7, 85) = u (V; — by) Fy [Sgl(bi,r)} : )

wheresjfl(bi, r) is the partial inverse of; with respect to its first argument, which, in equilibrium, is bidder
j's value, andF, = (ad + (1 —a)d) F' + [1— (ad + (1 — ) §)] F? is the bidder’s belief about. In
other words, am-MEU bidder will behave as if he believes that his opponent’s valuatioraiwmalfrom F'!
with probabilityad + (1 — «) § and fromF2 with probability1 — (ad + (1 — «) 6) . The derivation of Eq.
(2) is in Appendix A.

Strategies; andsy areequilibrium strategie$f

U'L(S'L<‘/l77a)7 ‘/;7 r, 3]) > Uz(bly %7“ sj)

forall (V;,7) € [0,1]%, b; € [0,00),4 = 1,2, andj = 3 — i. In the following proposition, we characterize
the symmetric equilibrium strategy.

Proposition 1 The symmetric equilibrium bidding strategy is characterized by the following:
(@) if V< r, thens(V,r) € [0,r);
(b) if V =r,thens(V,r) € [0,r]; and
(c) if V> r, thenr < s(V,r) <V, ands is characterized by

ds E(V)ul[V —s(V,r)]

v = B W v sV ®)

Proof: See Appendix A. |

This Proposition characterizes the symmetric equilibrium bidding strategies fetMEU bidder. Eq.
(3) in Proposition 1 is analogous to the equilibrium characterization for tremgiguity case by Riley and
Samuelson (1981) and Milgrom and Weber (1982). In Section 4.2, vegglosed form solution of the
equilibrium bidding function for a special class of utility function. We now ag®&rticular specification for
F! andF? in order to investigate further properties of the bidding function. We usespigsification later
in the experiments. In Section 3, we discuss why we choose these fuhétiona.

We use the following specifications @' and 2. The low value distribution®"! corresponds to the
case where we first choose the inter{@l ] with probability 2 and the interval(3, 1] with probability
%. Subsequently, we choose the valuation from the chosen interval unifoi@itgilarly, the high value

5This assumption will later be verified as shown in Equation 3.



distribution 2 corresponds to the case where we first choose the intEﬁ,vé] with probability% and the
interval (%, 1] with probability%. Again, we then choose the valuation from the chosen interval uniformly.
More precisely, the two distribution functions are specified as follows:

3 H 1

1 . §CC if OSQTSQ
Po={y @y beeed
1 H 1

2 _ 51’ |f 0§l’§§
F (@) {iw—;)z it l<a<l

[Figure 1 about here.]

Figure 1 presents graphs of the cumulative distribution functiochand F2. Note that neithe#! nor
F? is uniform. A non-uniform distribution in first price auctions allows separatibequilibrium bidding
functions from linear rules of thumb. We elaborate on this issue in Section 4.

Recall thatF,, = (ad + (1 — a)d) F' 4+ [1 — (ad + (1 — ) §)| F?. Thus,F, can be expressed as:

0z if 0<z<i
Fa(x)={§9+(x_;)(2_9) if %<$§i
Ox if o<z<li
:{(9—1)+(2—0)x if %<x§127 (4)
where
_ 3 . 1
9:(aé+(1—a)5)§+[1—(a§+(1_a)5)]§
= (a8 +(1-a)3) + 5. ©

Eq. (5) implies that the higher is, the lowerd will be. Recall from Eqg. (2) that the higher the
parametery is, the more weight the decision maker puts onitfie functional. In this sense, higher values
of « reflect more ambiguity aversidnConsequently, lower values 6freflects more ambiguity aversion.
To summarize, the parameter, measures a bidder's ambiguity attitude. The inte@aﬁ], measures the
amount of ambiguity in the environment. Fixing the amount of ambiguity in the envieom, [, ], the
parameterd, also measures a bidder’'s ambiguity attitude. In the analysis, as we capacately identify
a, § andd, we will used as a measure of ambiguity.

In order to identify when a bidder is ambiguity averse (or loving), we fiestchto know when the bidder
is ambiguity neutral, which is characterized by the next proposition.

Proposition 2 When the set of priors is the convex hull of two probability measurésand F2, and
whena = 1, the decision maker is an expected utility maximizer with beliefs givejfBy+ 1 F2, and
consequently ambiguity neutral.

Proof: See Proposition 3 of Ghirardato, Klibanoff and Marinacci (1998). |

In our case, the set of priors is indeed the convex combination of twaapilitly distributions. This
proposition gives us a natural benchmark for the case of ambiguity figiitndnich allows us to formally
define ambiguity aversion and ambiguity loving.

"In fact, Siniscalchi (2002) shows that, once the set of pri(sr, equivalently, the interva{lﬁ,ﬂ) is fixed, the indexx can be
interpreted as an ambiguity aversion parameter.
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Definition 1 Whena = % the decision maker is ambiguity neutral; when> 3, the decision maker is

ambiguity averse; when < % the decision maker is ambiguity loving.

Using the above parameterizations 6t and F2, we can extend the characterization of the bidding
function provided in Proposition 1.

Corollary 1 With the parameterized distribution functiof® and 2, the equilibrium bidding strategy is
characterized by

0s olV=s(Vor)] ifr <V <

1
gy Vim0 = { gV —s(V,r)| h(V,0) if max {r, f} <V <1, ©)
where
9= 55
and 0 o
M9 = e
Proof: Substituting Eq. (4) into Eq. (3), we obtain the result. |

This more detailed characterization allows us to consider the impact of ambiguitedidding func-
tion. This issue is addressed by the following Proposition:

Proposition 3 If r < V < 1, s(V,r,0) is independent of. If max {r,1} < V; < 1, s(V,r,0) is strictly
decreasing ird.

Proof: See Appendix A. |

This proposition shows that, in the range wherex {r, %} < V <1, anincrease in ambiguity aversion
(a decrease ifi) leads to higher bids, while an increase in ambiguity loving (an increa®daads to lower
bids. The intuition is the following. When a bidder is more ambiguity averse, sheris pessimistic, which
implies that she thinks that her opponent’s valuation is more likely to be highrefidre, she bids more.

In contrast, in a second price auction, the bidder who has the highedtlbakaas large as the reserve
price receives the object and pays the maximum of the second highesidhildeareserve price to the seller.
If both bids are below the reserve price, the object is not sold. Tiesraket by a random device. In this
auction, bidding one’s true valuation is a weakly dominant strategy, everawitliguity aversion (see, e.g.,
Lo (1998)). This leads to our next proposition.

Proposition 4 In a second price sealed bid auction, regardless of the bidder risk amulguity attitudes,
bidding one’s true valuation is a weakly dominant strategy when the valuaigreater than the reserve
price. When the valuation is less than or equal to the reserve price, angdbiav the reserve price is a
weakly dominant strategy.

All theoretical results characterized in this section serve as a guidanoarfexperimental design and
data analysis.

3 Experimental Design

The experimental design reflects both theoretical and technical coasises: The design addresses the
following objectives: to determine the effect of ambiguity on bidder and ane@pbehavior, to reevaluate
the performance of two auction mechanisms in the presence of ambiguity, @earzh for factors not
considered in the theoretical framework which might also affect biddgaactioneer behavior.
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3.1 Economic Environments

To study the effect of ambiguity on bidder and auctioneer behavior, weect x 2 x 2 design. In the first
four treatments - first price auctions with known and unknown distributiodssacond price auctions with
known and unknown distributions, each session consists of eight bidaleomly re-matched into groups
of two each round. In the other four treatments, each session cons@ghobidders and four auctioneers,
each of whom is randomly re-matched into a group of three each roundeagtihgroup consisting of one
auctioneer and two bidders.

[Table 1 about here.]

Table 1 summarizes the relevant features of the experimental sessidudirigéinformation conditions,
number of subjects per session, auction mechanisms, treatment abbreyieticimange rates and the total
number of subjects in each of the eight treatments. The exchange rases smeh that participant earnings
in equilibrium are comparable to the average earnings of past experinmrdsated in the RCGD lab.
For each treatment, we conducted five independent sessions usingkeetwomputers at the Research
Center for Group Dynamics Laboratory at the University of MichiganisTesign gives us a total of forty
independent sessions and four hundred subfessruited from an email list of Michigan undergraduate
and graduate studertsThe choice of th@ x 2 x 2 design is based on the following considerations.

1. Known vs. unknown distributions: we use the treatments with known digtii®ias a baseline to
isolate the effects of ambiguity.

2. Eight-subject vs. twelve-subject treatments: In most previous expeisexperimenters act as auc-
tioneers. To check the robustness of the results, we use subjectdiaseers in the twelve-subject
treatments. This feature marks a major departure from previous experinteadsls robustness to a
number of results.

3. First price vs. second price auctions: As the theoretical predictmrsetond price auctions do not
change with increased ambiguity while those for first price auctions dose¢he first price auction
to measure participant ambiguity attitude, and the second price auction ashartzek for detecting
systematic behavioral changes with the presence of ambiguity which azeaumded by theory.

One crucial decision in the design was how to implement ambiguity. In many pl®gshexperiments
designed to test the Ellsberg paradox, subjects were told nothing abalisttieution of the unknown urn.
We adopted a similar design in a pilot experiment conducted in April 2001folountd no basis to infer
what prior (or set of priors) the subjects used. Thus, for analytieatability, we narrow ambiguity to
a single parameter in this experiment. More specifically, bidder valuationknaren to be independent
draws from either the low value distributiafi' (-) or the high value distributiod? (-). We use thef!
and F? specifications from Section 2, with two modifications. First, we re-scale theostito the interval
[0,100]. Second, we discretize the support to the{de®, --- ,100}. For each bidder, the probability
of the event that his opponent’s valuation is drawn from the distribufibris unknown. Therefore, we
generate ambiguity regarding the valuation distribution thraugh

In the experiment, each bidder’s valuation in each round is a randomfovawthe set{1, 2, - -- , 100}.
We chooséjy to be0.70 for two reasons. First, we want the compound distribution to be non-umjfor
which precludeg, = 0.5. We choose not to use a uniform distribution, since it might be a focal foint
the absence of knowledge about the true distribution. Furthermore, withiam distribution, one cannot

8Despite our explicit announcement in the advertisement that subjedtsramtiparticipate in the auction experiment more than
once and our screening before each session, nine subjects parti¢ipiat
Graduate students in Economics were excluded from the list.



separate equilibrium bidding strategies from linear rules of thumb in firsé @ictions (Chen and Plott
(1998)). Second, since most previous experiments demonstrate ambiggritjoa, we want to put more
weight on the low distribution to create an “optimistic” environment, which leaeesnrfor ambiguity
averse bidders to learn. This consideration precluges: 0.5. In treatments with known distribution,
8o = 0.70 implies thats = § = 0.7. It then follows from Eq. (5) tha#t = 6, = 1.2.

3.2 Experimental Procedure

At the beginning of each session, subjects randomly drew a PC terminalenuifiiien, each subject was
seated in front of the corresponding terminal, and given printed instngctidfter the instructions were read
aloud, subjects completed a set of Review Questions, to test their undémgtafthe instructions. After-
wards, the experimenter checked answers and answered questienssifuction period varied between
fifteen to thirty minutes depending on the treatment. In the eight-subject sgsalbaight subjects were
seated in the same room. In the twelve-subject sessions, the four aucdiorese to an adjacent lab after
the instruction period while the bidders remained in the original lab. In the tregsméth unknowry, the
auctioneers were privately informed of the valueyain their screen at the beginning of each round. Each
round consisted of the following stages:

1. In each of the twelve-subject treatments, each auctioneer set gergsire, which could be any
integer between 1 and 100, inclusive.

2. Meanwhile, for treatments with an unknown distribution only, each bidskEmated the chance that
the valuation of theother bidder in the group was drawn from the high value distribution, i.e., an
estimate ofl — §. The bidder also indicated his confidence in his estimate: not confidetlf at a
slightly confident, moderately confident, fairly confident, and very cemtidThis confidence rating
method to elicit ambiguity attitude was proposed and evaluated by psychologidty,Cfoung and
Yates (1989). Among three different methods to elicit subject ambiguity attitudecision making,
they found this one to be the best.

3. Next, each bidder was informed of the reserve price of his auctidingbe twelve-subject treatments)
and his own valuation. Note that, in the eight-subject treatments, the resa®evas implicitly set
to zero. Then each bidder simultaneously and independently submitted ahiidh ®@ould be any
integer between 1 and 100, inclusive. Bidders were instructed that ifdideyot want to buy they
could submit any positive integer below the reserve price.

4. Bids were then collected in each group and the object was allocatettiexgeto the rules of the
auction.

5. Afterwards, each bidder received the following feedback on hisesc his valuation, his bid, the
reserve price, the winning bid, whether he received the object, andidfp

Each auctioneer received the following feedback: whether the obgssald, his reserve price, the
bids in his group, and his payoff.

The subjects did not receive the entire vector of valuations and thesponding bids, as in some
previous studies, to slow down the learningyand thus preserve ambiguity for the initial rounds.

In each treatment, each session lasted thirty rounds with no practice rd\tiitie end of thirty rounds,
all participants completed a questionnaire to elicit demographic informationd@imegraphic results are
reported in a companion papetr.

Compared to Salo and Weber’s (1994) laboratory study of ambiguity inpfiise sealed bid auctions,
our design has the following characteristics. First, we study both firstsanohd price auctions, while Salo
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and Weber study first price auctions. Second, we have treatments withitiodit auctioneers, while Salo
and Weber do not have treatments with auctioneers. Third, we use anifomudistribution of valuations,
while Salo and Weber use the uniform distribution. Fourth, while Salo anceWabo examine unknown
number of competitors and dichotomous auctions, we do not. Last, we useluiodred subjects, while
Salo and Weber used forty-eight subjects. The larger number of\altgers enables us to obtain more
precise estimates in our statistical analysis.

The experiments were conducted from October 2001 to January 2@@h dession lasted from forty
minutes to an hour. The exchange rates are presented in Table 1. Thgeagarning was $18.78. Instruc-
tions are included in Appendix B. Data are available from the authors gzprest.

4 Results

We present experimental results in this section. Due to space limitationsy sestéts are presented in a
companion paper. Figure 2 presents the cross plot of bids againss iakleeight treatments. The first two
columns are for the first price auctions, while the second two columns iattesfgecond price auctions. For
each column, the top graph is for the known treatment, while the bottom grapttiefunknown treatment.
In all twelve-subject treatments, we exclude observations where valugt®Ess than or equal to the reserve
price. An immediate observation is that in first price auctions most bids are iedovalue (i.e., below the
diagonal), while in second price auctions, bids are often above the vaNeesow proceed to analyze the
difference between treatments with and without ambiguity.

[Figure 2 about here.]

We first estimate bidders’ ambiguity attitude in first price auctions by using tlifieeent approaches.
The nonparametric approach compares bids in the no-ambiguity treatmeti®aadh the ambiguity treat-
ments, and infers bidders’ ambiguity attitude based on Proposition 3. Thisagpimposes minimal
assumptions on bidder behavior. The structural approach is baseé equhibrium bidding function to
be derived in Corollary 2 and explicitly estimates the ambiguity parameter. Cedhfiathe nonparametric
analysis, the structural approach requires more assumptions on biiditiefunction. In the third approach,
we extend the structural approach by using an individual learning médiele the first two approaches are
based on the-MEU model, the third approach is based on the SEU model.

We then examine the effects of ambiguity on bids, reserve prices, reveammngs and efficiency. Note
that, in all subsequent analysis, we normalize the valuations, reseres jarid bids to be on the interval
[0, 1], consistent with the notation in our theoretical model.

4.1 Nonparametric Estimation of Ambiguity Attitude in First Price Auctions

To estimate bidders’ ambiguity attitude, we first compare the bids in the no-ambligasitynent and those in
the ambiguity treatment. As we have a full factorial design, keeping evegyéhée constant, any systematic
variations in bids in the ambiguity treatments compared to the no-ambiguity treatmewtdgae attributed
to the variation in the amount of ambiguity. In other words, in both treatmentsgbaidbiguity preference,
«, remains the same, while the intervdl, 6], changes.

Recall that both the amount of ambiguity in the environment and bidder’s aipagtitude are sum-
marized in the paramet#r Proposition 3 implies that highérleads to lower bids. In the no-ambiguity
treatmentsf = 1.2 asé = 0.7 is known. Therefore, by comparing bids in the ambiguity treatments and
those in the no-ambiguity treatments, we can determine whétinghe ambiguity treatments is greater (or
less) thanl.2. If bids in the ambiguity treatments are lower, we can infer that 1.2, and vice versa. To

infer bidder’s ambiguity attitudes (i.ex) from 6, we need to assume that the center of the intef¥al] is at
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or below0.7. This assumption puts a weak restriction on the amount of weight on the loe dasiiibution
relative to the high value distribution. However, it does not rule out thsipiisy of putting more than 0.7
weight on the low value distribution, e.d0,4, 1.0] is centered at 0.7 and thus is allowed by our assumption.
A natural place where the interval might be centered.is as suggested by the “principle of insufficient
reason,” which Luce and Raiffa (1957, p. 284) attribute to Jacobd#lin This case, too, is covered by
this assumption. Under this assumptiord it 1.2, thena: < 1/2, implying ambiguity loving!© If # < 1.2,

then bidder ambiguity attitude cannot be determined preciddtpr treatments withouti{ 1g andU 1g) and

with auctioneers K112 andU142) respectively, we compare the mean bids in the no-ambiguity treatment
with those in the ambiguity treatment, using the Wilcoxon ranksum test. We also oethpanedian bids
and get similar results.

[Table 2 about here.]

Table 2 reports p-values for the Wilcoxon ranksum tests. The null hgpilis that mean bids are the
same in treatments with and without ambiguity. The alternative hypothesis is tlsasfgichigher in the
no-ambiguity treatment. In Round 1, all bids are independent, thereferese each individual bid as an
independent observation. From Round 2 on, we use a session meaimds@endent observation. As we
expect the amount of ambiguity to decrease over time, we partition the data ihta@ads (Round 1,
Rounds 1-3, Rounds 1-5) and later rounds. For each time interval, mypare bids over all values, as well
as those in two subrangd8, 0.5] and (0.5, 1].

RESULT 1 (Ambiguity Attitude) In first price auctions, bids are lower in the ambiguity treatments com-
pared to the no-ambiguity treatments, which is consistent with ambiguity loving.

SUPPORT.The last two columns in Table 2 reports p-values for one-sided Wilcoxudstem tests, compar-
ing (mean) bids for treatments with and without ambiguity, for the value rang@®fl]. For the 8-subject
treatments, it is significant in Round 1. For the 12-subject treatments, it ificggm for Rounds 2-30, and
weakly significant for Rounds 1-3, 4-30, 6-30 and 1-30. |

Result 1 presents a significant finding that bids are lower with the presdranbiguity. From Propo-
sition 3 and the analysis at the beginning of this subsection, this result istrisvith the hypothesis that
bidders are ambiguity loving. This is the first main result of this paper.

Result 1 is surprising, given that a large volume of empirical studies réiplicéhe Ellsberg urn experi-
ment and variations confirm ambiguity aversion. How do we reconcile guttnwith the “robust” ambiguity
aversion finding in psychology? We turn to the literature on the psycholagicaes of ambiguity aversion.

Note that the interpretation of ambiguity loving in auction settings is not exactlyatime sis ambiguity
loving in individual choice experiments such as the Ellsberg experimenturlawction setting, ambiguity
loving implies that bidders put more weight on the low value distribution when tieeunderlying weight
is unknown. This, in turn, implies that a bidder is pessimistic in thinking that hisvaiuations are more
likely to be low, but optimistic in thinking that his opponent’s valuations are alsatikely to be low. By
contrast, in an Ellsberg urn experiment, ambiguity loving implies a preferamdéé unknown urn when
choosing between known and unknown urns, or pessimism when missimmatfon.

Fox and Tversky (1995) propose the comparative ignorance hygistlaecording to which “ambiguity
aversion is driven primarily by a comparison between events or betwegidunals, and it is greatly reduced
or eliminated in the absence of such a comparison.” Since our experinenaumetween-subjects design,
where subjects participated in a treatment with either known or unknown disrils, not both, this could

1To see this, note that & > 1.2, thenad + (1 — «)d > 0.7. Under our assumptiorf§ + )/2 < 0.7. So whena = 1/2,
ad + (1 — a)é < 0.7. Moreover,ad + (1 — «)é is decreasing iv. Together, these facts imply that< 1/2.

To see this, suppogé, 5] = [0.3,0.5], and suppose = 0, which is ambiguity loving, thef = 1 < 1.2, such a bidder would
increase his bid in the ambiguity treatment, even though he is ambiguity loving.
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have contributed to the reduction of ambiguity aversion. In other wordsesults are consistent with the
comparative ignorance hypothesis. However, this hypothesis doexplain why bidders are ambiguity
loving.

Curley, Yates and Abrams (1986) investigate the plausibility of six hypositegmarding the psychologi-
cal sources of ambiguity aversion in a series of urn experiments. Of thgygotheses, the other-evaluation
hypothesis and the hostile nature hypothesis are most relevant for perniragnt. The other-evaluation
hypothesis states that a decision maker, in making a choice, anticipates #vatwilh evaluate his deci-
sion, and therefore, makes the choice that is perceived to be most jlsttbiatthers. The hostile nature
hypothesis conjectures that subjects perceive that the process bytivhicutcomes are determined for the
ambiguous option is antagonistic, or at least competitive, towards thems€&lgagaring our experiment
to previous individual choice experiments, we note that ambiguity is partigdalient in the Ellsberg urn
experiments, where a decision maker’s only influence on the outcome isdiee af the urn. However,
in the auction context, ambiguity is not as salient. If we extend the other-¢ieadusnd hostile nature hy-
potheses to auctions, the outcome to be evaluated is affected by the urglditibution, as well as by
bidder and auctioneer strategies. In this complex environment, the priojustable to others could well
be such that the experimenter puts more weight on the low value distribution,img@lynore competitive
outcome-generating process.

In order to get an idea of the magnitude of the ambiguity parameter and theignaf ambiguity atti-
tude, we proceed to estimate the ambiguity parameter using a structuralcpprtaec-MEU framework
and an individual learning model in the SEU framework.

4.2 Structural Estimation of Ambiguity Parameter in First Pr ice Auctions

In the previous subsection, we determined that bidders are ambiguity leeimgcbmparison of bids in the
two treatments. To get an idea of the magnitude of the ambiguity pararfieteg, now use the structural
approach, to directly estimate As is common in the structural approach, we need additional assumptions
to make the model tractable. Our first assumption is that an ambiguity neutrar bidtluse the uniform
prior in the ambiguity treatment, i.e§,+ § = 1. As a result, Eq. (5) implies th@ < 1 corresponds to
ambiguity aversiong = 1 corresponds to ambiguity neutrality, afid> 1 corresponds to ambiguity loving.
Our second assumption is that bidders have constant relative rislegd@RRA) utility functions of the
formu(z) = 2%, where3 > 0. While there has been no consensus on the right model for bidderibetmav
first price auctions (see Kagel (1995) and Cox (forthcoming) foreses of this research), we choose to use
CRRA due to its analytical tractability. Because of these assumptions, resulie magnitude of should
be taken with caution.

We now compute the equilibrium bidding strategies fonaWEU bidder with a CRRA utility function,
using Proposition 1.

Corollary 2 With the parameterized distribution functioR$ and F2, the equilibrium bidding strategy for
a bidder with a CRRA utility function is characterized by:

v B -5 i 1
m—f‘mrﬁv B |f'f’<V§§
1% B o-1, B [.22o1  e-1] (0\5 -1 - 1
s(V,r) = m+mm+m[r ’ 2‘“%?} (3)70-1+@2-0)V]s ifr<g<Vs<l
148 1.
Tttt e 0 -1+ Q=07 I-1+2-0V] 5 fij<r<V<l
Proof: See Appendix A. |

We use Corollary 2 to estimate the risk parameterand ambiguity parameteff, In the two control
treatments with a known distributio(ls and K1,5), ambiguity does not play a role, as bidders know
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the value of5. While treatment{' 13 most closely approximates previous experimental studies of first price
sealed bid auctions, treatmefitl1» serves as a robustness check of whether previous experimentts resu
are sensitive to auctioneers. We use these two treatments to estimate bidd#itudks.

We make the simplifying assumption that, within the same treatment, the risk parametenisn
and known across individuals. Allowing heterogeneous risk paramatesss individuals would clearly fit
the data better. However, one has to resort to the computational appvdaich requires makingd hoc
assumptions about the distribution of risk parameters in the population assve¢lbat independence across
individuals and rounds within the same session. Since our main goal is tasefee effects of risk from
ambiguity, we assume symmetric bidders to get closed form solutions withoubugligtnal assumptions.
Moreover, we believe that the main conclusions would remain unchangedvath heterogeneity. Thus,
we estimate the following econometric model:

bir = s(Vig, it B, 60) + &it,

wheres(-) is the bidding function characterized in Corollarybg;is the bid submitted by bidderat round

t; Vi is the private valuation of biddérat roundt; r;; is the reserve price faced by biddeat roundt; 3

is the risk parameterj, = 1.2; and¢;; is the error term assumed to be orthogonal to both the valuation
and the reserve price, i.€5(&;¢|Vit, 7i:) = 0. The method of nonlinear least squares is used for parameter
estimations. In all estimations, standard errors and confidence intereataputed by bootstrapping
and are adjusted for clustering at the session level, implyingsth& allowed to be heteroscedastic, and
correlated across both individuals and rounds, but is independergsasessions. We use the bootstrap
procedure to avoid distributional assumptionstgror relying on asymptotic distribution theory.

[Table 3 about here.]

Table 3 reports the estimates @ffor treatments1g and K115, respectively. In each estimation, we
use only those observations whéfg > r;;. For each treatment, we first conduct a baseline estimation of
(8 with the restriction tha# = 1.2. We then repeat the same estimation separately for different subranges o
valuations and reserve prices to evaluate the sensitivity of the estiméiesioice the bidding function has
a different functional form for each subrange. Finally, we run ambmrestimation which jointly estimates
(3 andé. In the control estimation of both treatmemiss= 1.2 lies within the 95% confidence interval, thus
justifying thed = 1.2 restriction in the known distribution treatments. The estimated bidder risk paramete
is fg = 0.3622 for treatmentK'1g, and12 = 0.5651 for treatmenti(115.

We find that our estimated risk parametdds3622 and 0.5651, are consistent with recent estimates
in private-value auction experiments, such0a&3 (Cox and Oaxaca (1996))).35,0.71] (Chen and Plott
(1998)) and0.48 (Goeree, Holt and Palfrey (2002)). However, the estimated risk paeanse is signif-
icantly different in treatments with auctioneers. Specifically, bidders sede fess risk averse in the
presence of auctioneers. There could be two reasons for this difir&irst, bidders might have perceived
the games with and without auctioneers as different games. Indeed re&rs@nd, hence, positive reserve
prices cause nearly half the valuations to be below the correspondenyeqsices? It is possible that a
bidder whose valuation is above the reserve price might take more riskuoesgame aspiration level of
payoffs. Second, we cannot rule out the possibility that CRRA doefuliptcapture bidder behavior, and
therefore, leading to these two different estimates.

In subsequent analyses, we use the estimaied 0.3622 for the eight-subject treatments, afigh =
0.5651 for the twelve-subject treatments to isolate the effects of risk and ambiguitg.rélsustness check,
we repeat all the subsequent estimation procedureggfcn& 0.32 and 33 = 0.42 for the eight-subject

treatments, and,, = 0.40 andg3,, = 0.66 for the twelve-subject treatments. These alternative valugs of

2In treatmentk 1, only 637 values out of 1200 observations are above the correisppreserve prices. We discuss the high
reserve prices and its consequences in more detail after Result 5.
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are reasonable lower and upper bounds based on the estimgtaadtheir respective confidence intervals
reported in Table 3.

We now estimaté@ using Corollary 2, with the modification of allowirgto vary over time but not over
bidders. More specifically, we Iétbe a cubic polynomial of time to partially capture the effects of updating.

[Figure 3 about here.]

Figure 3 presents estimated time pathg abgether with their bootstrapped confidence intervals, with
adjustment for clustering at the session level in treatments with unknown digirib (/ 1g andU1;2). The
top row presents the results for the eight-subject treatnd&hf)( while the bottom row presents the results
for the twelve-subject treatment/{,2). For each treatment, the first column uses the baseline estimates
of the risk parametef from the corresponding treatments with known distributions. The secahthan
columns serve as robustness checks by using the correspondingalosvapper bounds gf respectively.
In all six graphs, the estimated ambiguity paraméterat least one, suggesting that bidders are ambiguity
loving.

RESULT 2 (Estimation of the Ambiguity Parameter §) : In all rounds, but particularly in the early
rounds (1-5), the estimated ambiguity paraméterat least one, with the lower boundaries of all confidence
intervals for the eight-subject treatments being at least one, and with the lmuadaries of all confidence
intervals for the twelve-subject treatments being approximately one oreafyo®. This rejects ambiguity
aversion in both the eight- and twelve-subject treatments. In the eightesulgatments, starting from
round 2, both ambiguity aversion and ambiguity neutrality are rejected inrfavambiguity loving.

SUPPORT. In all six graphs of Figure 3, we see that the estimdtad at least one. Furthermore, the
lower boundaries of all confidence intervals for the eight-subject treasfthe top row) are at least one,
while the lower boundaries of all confidence intervals for the twelve-stibjeatments (the bottom row) are
approximately one or above one. |

Result 2 confirms Result 1 that our data are consistent with ambiguity lovingtipfice auctions. Apart
from the two assumptions discussed earlier, the structural estimation re$teietsbiguity parametérto
be the same across individuals in any given round. In the next subsesgowill relax this assumption by
modelling individual learning.

4.3 Learning in First Price Auctions

In this subsection, we extend the structural approach by explicitly allowithdebs to individually update
their priors about the ambiguity parametebased on past observations of their own valuations and the
auction outcomes. This third approach is mainly used for robustnessschéen we partially relax the
symmetry assumption in the equilibrium model. Unlike mainstream learning literathiehiocuses on
short, intermediate and long-run learning dynamics, the objective of thigséés to verify Result 2 by
using the entire set of time series data to infer a bidder’s prior distribbédorethe auction. Since there

is no consensus on the appropriate updating rule imtEU or CEU framework, we use a standard
SEU framework with Bayesian updating, a benchmark in learning modelsth&beetical derivation of this
updating rule is in Appendix A. Here, we outline the theory and the corre$ipg estimation procedure for
our updating rule.

1. We assume that bidders start with some identical prior distribution overatiaengtew, which can
be parameterized using a beta distribution. A beta distribution incorporatesabkpases of inter-
ests, such as uniform, unimodal, and bimodal distributions, and has onlyanampters, facilitating
computation.
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2. In each round, each bidder generates his Bayesian posteriorBasyeg rule based on the following
signals about either his own valuation or his opponent’s valuation.

(a) A bidder observes his own valuation.

(b) In the case where he does not get an object and the object is soladtter is informed of the
winning bid in his group and hence infers his opponent’s valuation by timgethe symmetric
bidding function.

(c) In the case where he does not get an object and the object isldptreobidder infers that his
opponent’s valuation is below the reserve price.

(d) In the case where the bidder gets the object, he infers that his apfsomaluation does not
exceed his own valuation.

3. Each bidder’s actual posterior is a weighted average of his priohiargknerated Bayesian posterior.
Note that this approach incorporates Bayesian updating and no updsatipgeial cases. We allow
different posterior weights for the first type of signal (based on adyid@dbservation of his own valu-
ation) and for the other three types of signals (based on the biddegsvaltion of auction outcomes),
referred to as Weight 1 and Weight 2, respectively.

4. For each parameter combination (two parameters of the beta distributiaghtWeand Weight 2),
we use the entire time series data set for each bidder to generate predistbdded on the updating
theory outlined above. Then we search for the parameter combination thatirgis the sum of
squared deviationd between the actual and generated bids. Weights 1 and 2 are searcfied]on
with a step size of 0.2. For each combination of Weights 1 and 2, we use anttatgaimilar
to hill-climbing to locate the minimum of the objective function over the two parametdatedeta
distribution. Our computation shows that, conditional on the two weights, tredine®f the objective
function is single-peaked in the two parameters of the beta distribution.

Recall that in a standard SEU framework, a bidder has a single prior, iEg,.if5)d = 6. Therefore,
in a SEU framework, bidders put less weight on the low value distribution iéstienated mean af < 0.5,
equal weight on the low and high value distributions if the estimated meé&nr=08.5, and more weight on
the low value distribution if the estimated mearnjof 0.5.

[Table 4 about here.]

Table 4 presents the results of the updating analysis for the eight-subjestileas the twelve-subject
treatments with unknown distributions. In each treatment, we estimate both tHnbéase the lower
and upper bounds of the risk parameterFor each estimation, we present the minimum sum of squared
deviations, the two parameters of the initial beta distribution (Par. 1 and P#neZdnean of the initial beta
distribution implied by the two parameters, and Weights 1 and 2. For each estimati@iso present the
percentiles (2.5, 5, 95 and 97.5) of the corresponding bootstrbgistribution of the implied mean.

RESULT 3 (Prior Inferred from Updating) : The mean of the estimated prior distributionjdé 0.8438

in the eight-subject treatment afdr500 in the twelve-subject treatment. The hypothesis of subjects putting
more weight on the high value distribution is rejected for the twelve-subjextttient, but not for the eight-
subject treatment.

13We use mean squared deviation rather than maximum likelihood becaukemet know the distribution of the bid residuals.
¥1n order to reduce the amount of computation, in the bootstrapping gueeewe use a grid of 0, 0.5 and 1 for the Weights 1
and 2. This coarse grid size might account for the result that the estiMéights 1 and 2 are corner solutions.
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SUPPORT. The results in Table 4 indicate that for the eight-subject treatment and takneasstimate of
6 = 0.3622, the mean of the estimated prioris438, with a two-sided 95% bootstrapped confidence inter-
val of [0.1250, 0.9688]. For the twelve-subject treatment and the baseline estimgte-00.5651, the mean
of the estimated prior i8.7500, with a two-sided 95% bootstrapped confidence interv 6000, 0.8438].
Both point estimates suggest that bidders put more weight on the low vattibudisn. In addition, in the
twelve-subject treatment the one-sided confidence interval indicatabithegsult is statistically significant
at the 5% level. In the eight-subject treatment, the result is not statistically sagttifit the 5% level. N
To summarize, we have used three different approaches to determindea’didmbiguity attitude.
The first approach compares the mean bids in treatments with and without é&ylaigd finds that bids
are lower in treatments with ambiguity, which is consistent with ambiguity loving. €gtersl approach
estimates the ambiguity parameter to be at least one, rejecting ambiguity avénsanr.third approach,
allowing for individual updating, we again infer that the mean of the estimai&dliprior distribution of
0 is above0.5 in both the eight and the twelve-subject treatments. Combining all three apexave
conclude that ambiguity affect bidder behavior in first price auctions megperimental setting, and our
data are consistent with the hypothesis that bidders are ambiguity loving.

4.4 Second Price Auctions

For second price auctions, we use a structural approach basedposRion 4, which states that bidding
one’s true valuation is a weakly dominant strategy with or without ambiguity. Jotiés hypothesis, we
use an OLS regression with clustering at the session level. We use Biddeypthiedent variable, and Value
as the only independent variable. We do not include a constant bechtismetheoretical prediction. We
conduct the estimation on treatments with known and unknown distributionsotbrtbe early (1-5, and
1-10) and later rounds (11-30). We combine both the Known and Unkri@atments in one regression to
gain additional efficiency. Results are presented in Table 5.

[Table 5 about here.]

RESULT 4 (Effects of Ambiguity in Second Price Auctions) : Ambiguity has no significant effect on
bids in earlier rounds or later rounds. However, in rounds 1-10 of thewn treatment and rounds 11-30
of both treatments, subjects bid significantly more than their valuations.

SUPPORT.Table 5 presents the OLS regression results for second price audlansoefficient estimates
show how much subjects bid compared to their valuations. The standarsl@man parentheses. The aster-
isks next to the standard errors indicate the significance levels in one\sald tests of the null hypothesis
of bids being equal to values against the alternative hypothesis of lidedixg values. The null hypothesis
is rejected at the 5% significance level in rounds 1-10 of the Known treanenrounds 11-30 of both
treatments. The last line of the table displays the Wgldtatistics for the equality of coefficients between
the known and unknown treatments for the early and later rounds, tesecNone of these statistics is
significant at the 10% significance level. |

The finding that ambiguity has no effects on bidding behavior in second prictions confirms our
theoretical prediction. The finding that participants overbid is consistiéimiprevious experimental findings
(Kagel, Harstad and Levin (1987)). Interestingly, the extent of dddibg increases in later rounds, which
not only confirms that participants do not seem to learn the dominant straigiggiso indicates that they
depart further from the dominant strategy in later rounds.

4.5 Auctioneer Behavior: Reserve Price Setting

Having examined the effects of ambiguity on bidder behavior in the two auctichanéms, we now turn
to auctioneer behavior.
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We first characterize the optimal reserve price from the auctioneasp@etive. In our experiment, the
auctioneer always knows the true distribution of bidder valuations. Weves¢hat the auctioneer also has
a CRRA utility function,u(z) = z*, where) > 0. Note that the auctioneer’s risk parametgr,could
differ from the bidders’ risk parametefi. In first price auctions, the optimal reserve price depends on
the risk attitudes of both the auctioneey) @nd the bidders/), as well as on the ambiguity parameter,
f. Given this set of parameters, we compute the optimal reserve pricenpedsn Table 6. In second
price auctions, we can characterize the auctioneer’s optimal reseceegmalytically, as presented in the
following proposition.

Proposition 5 In second price auctions with or without ambiguity, for any valuegof € (0, 1], the
optimal reserve price is given byin{z-y37,0.5}, wherefy = 6o + § = 1.2.

Proof: See Appendix A. |
Since the auctioneer always knows the true distribution of bidder valuatiang experimental setting,
Proposition 5 implies that the optimal reserve price in the second price auctiosame with or without
ambiguity.
For risk averse or risk neutral bidders, we generate the followingthgses, derived from Proposition
5 as well as from numerical computations.

HYPOTHESIS 1 In a first price auction, the optimal reserve price should not ex@ée¢th7 in treatments
without ambiguity. It should not exce@di4 in treatments with ambiguity. In a second price auction, the
optimal reserve price should not excded167 in all treatments.

[Table 6 about here.]

Hypothesis 1 is shown numerically in Table 6. Table 6 reports the optimalveegeice for first price
auctions for each given set of risk parametetsafd )\) as well as the auctioneer estimate of the bidders’
ambiguity parametelf. The pattern in Table 6 is consistent with Proposition 5 of Riley and Samuelson
(1981), which states that risk-neutral auctioneer’s optimal reseiwe isra declining function of the degree

of bidder risk aversion. The last column of Table 6 reports the optimatvesaice for second price
auctions, computed directly from Proposition 5. The computational proedeading to results in Table 6

is in Appendix A.

HYPOTHESIS 2 In a first price auction, the optimal reserve price is lower (higher) in tlase with
ambiguity than in the case without, if with ambiguity the seller believes that bigdedess (more) weight
on the low value distribution than the actual weightgf= 0.7, or 6 < 1.2 (0 > 1.2).

Hypothesis 2 is shown numerically in Table 6. Hypothesis 2 states that, far fisle parameterg and
A, the optimal reserve prices increase withThis can be seen from the table, since, along each row, the
optimal reserve prices increasetascreases.

HYPOTHESIS 3 In a second price auction, the optimal reserve price is the same with orwtitrobigu-
ity.

Hypothesis 3 follows immediately from Proposition 5.

HYPOTHESIS 4 Without ambiguity, the optimal reserve price in a first price auction is less that in a
second price auction.

Hypothesis 4 can be obtained by comparing the two boldfaced columns in@lable
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HYPOTHESIS 5 With ambiguity, the optimal reserve price in a first price auction is less thahitha
second price auction, when the auctioneer believes that bidders putdégist on the low value distribution
than the actual weight of = 0.7.

Hypothesis 5 is derived from a combination of Hypotheses 2, 3 and 4.
[Figure 4 about here.]

Figure 4 presents the mean reserve price plus/minus one standard dewviagawrh of the four treat-
ments. The dashed line is the maximum reserve price predicted by theonhitreattnent. Two patterns
are immediate. First, in all treatments excéfit;2, mean reserve prices for individual rounds are often
above the maximum predicted by theory. Second, there does not apfeamiach learning, as we do not
observe any reduction in the standard deviations. We formally test asdrmre results below.

[Table 7 about here.]

Table 7 reports the average reserve price in early rounds (1-5yandlbrounds (1-30) for each session
in each treatment. The last two columns report the alternative hypotheddisearesults of the one-tailed
permutation tests. In summarizing the results, we use the shorthanddenote a result where the null
hypothesis of equality cannot be rejected at the ten percent signifiterate We use FPA for first price
auctions, and SPA for second price auctions.

RESULT 5 (Reserve Price) :

1. In ten out of twenty independent sessions, the average resécedgabove the upper bounds of the
optimal reserve price.

2. Effects of information conditions:

(&) FPA: no ambiguity> ambiguity, significant in early rounds and over all rounds.

(b) SPA: no ambiguityc ambiguity, significant in early rounds; no ambiguityambiguity over all
rounds.

3. Effects of mechanisms:

(a) Without ambiguity: FPA> SPA, significant in early rounds; FPA SPA over all rounds.
(b) With ambiguity: FPA< SPA, significant in early rounds and over all rounds.

SUPPORT.The last column of Table 7 reports the results of the one-sided permutatisn tes |

Part 1 of Result 5 shows that in only half of the sessions, the averageveeprice is within the limits
predicted by Hypothesis 1. In particular, in three treatmehts, ¢, K22 andU2;5), the session average
reserve prices are too high compared to the optimal reserve price pcebictaeory. From Figure 4, the
mean reserve price in second price auctions increases over time, aunsiti@verbidding which increases
over time (Table 5). Compared withi1,-, the mean reserve price il is always below the theoretical
maximum, consistent with lower bids in first price auctions with ambiguity.

Part 2 (a) is consistent with Hypothesis 2 if the auctioneers believe thagrsideeigh the high value
distribution more than the actual weight. Part 2 (b) is consistent with HypestBesxcept in the early
rounds. Interestingly, Part 3 (a) is not consistent with Hypothesis &hagredicts that, without ambiguity,
the optimal reserve price in a second price auction is more than that in arifiesigpiction. Indeed, we find
that Hypothesis 4 is reversed in the early rounds, and that the avesgy@e price between FPA and SPA
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is indistinguishable over all rounds. Finally, the finding that, with ambiguitypseégrice auctions have a
higher reserve price than first price auctions (Part 3 (b)) is consisimHypothesis 5.

Both Parts 2 (a) and 3 (b) of Result 5 suggest that auctioneers belavi¢hbidders put more weight
on the high value distribution than the actual weight. However, this finding doeimply that auctioneers
believe that bidders are ambiguity averse, since it includes the case ef®idaving a uniform prior (or
0=1).

All these results are individual level results, regarding how ambiguityctgfbidder and auctioneer
behavior. We now turn to aggregate results, which have important implicdtioasiction design.

4.6 Revenue, Earnings and Efficiency

In this subsection, we present aggregate results. Specifically, we ex#mimeffects of the auction mech-
anisms (first vs. second price auctions), information conditions (ambigsityng ambiguity treatments),
and auctioneers (eight- vs. twelve-subject treatments) on auctionegrue\bidder earnings and overall
auction efficiency.

In most previous auction experiments, the auctioneer’s role is either cogpigtered (i.e., the reserve
price is set to zero), or the experimenter is the auctioneer (e.g., LucldilgyRR000b). In contrast, in
our twelve-subject treatments, subjects are auctioneers, thus enakkngeecomparisons across different
treatments with endogenous reserve prices. With a zero reserve preape is a direct consequence of
bidder behavior, i.e., the higher the bids, the higher the revenue. Howleigaelationship is not necessarily
true with auctioneers present, since revenue is affected by both bidelrayior and reserve prices.

RESULT 6 (Revenue) : Without ambiguity, FPA generates significantly higher revenue than SRA. W
ambiguity and without auctioneers, FPA again generates significantly higkienue than SPA. With ambi-
guity and active auctioneers, however, FPA and SPA generates theasaoumt of revenue.

[Table 8 about here.]

SUPPORT. Table 8 presents the average revenue in the early rounds (1-5) andlbthirty rounds for
each session in each treatment. The last two columns report the alterngtothdses and results of the
one-tailed permutation tests for the effects of auction mechanisms and infanroatiditions. The last two
rows report the same information for the effects of auctioneers. |

Result 6 is consistent with theory. The Revenue Equivalence Thededes shat, without ambiguity
and with risk neutrality, FPA and SPA generate the same expected revwftheisk aversion, bidders bid
more in the FPA but not in the SPA, therefore, we obtain the usual restifEBfagenerates more revenue
than the SPA. This results also holds when ambiguity is introduced. Whenditioag active auctioneers
are introduced, the revenue dominance of the first price auction disappe

In addition, we also observe that in FPA in the early rounds of the eigh¢dutreatment, revenue
is significantly less when ambiguity is introduced, a consequence of amblguifyg bidders. In SPA,
ambiguity does not affect revenue over all rounds of both the eight-tlamdwelve-subject treatments,
which is consistent with theory. Finally, we find that the presence of awegimreduces-PA revenue. In
first price auctions, the auctioneers would have been significantly béttethey were forced to set a zero
reserve price. This is a consequence of auctioneers setting highegsares discussed in the previous
subsection.

Closely related to auctioneer revenue is bidder earnings. We expdictramechanisms and information
conditions to have opposite effects on bidder earnings compared to aetimvenue. We also expect
auctioneers to reduce bidder earnings.

[Table 9 about here.]
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Table 9 presents the average bidder earnings in early rounds (d®van all thirty rounds for each
session in each treatment. The last two columns report the alternative égpstand results of the one-
tailed permutation tests for the effects of auction mechanisms and informatiditions. The last two rows
report the same information for the effects of auctioneers. We find thdebigarnings are significantly
higher in a second price auction compared to a first price auction. Théhftcauctioneers significantly
reduce bidder earnings reflects the level of reserve prices.

The last group level result we examine is efficiency. Following the traditidgheérauction literature, we
define efficiency as equal to one hundred percent if the object gake tmdder with the higher valuation.
We therefore measure the frequency with which the bidder with the higheati@an wins the object. The
session level average is reported in Table 10.

RESULT 7 (Efficiency) : Without auctioneers, the average efficiency is 88.83%. With auctiornéers,
average efficiency is significantly reduced (to 71.12%). With ambiguitywgtihcauctioneers, FPA is signif-
icantly more efficient than SPA.

[Table 10 about here.]

SUPPORT. Table 10 presents the average efficiency for each session in eachemt¢@and the results of
the one-sided permutation tests. Efficiency of the eight-subject sessisignicantly higher than the
corresponding twelve-subject sessiong at 0.01 (one-sided permutation test). |

Theoretically, both first and second price auctions should yield oneradmércent efficiency under a
zero reserve price. Without auctioneers, we find that average afficie fairly close to 90%. This finding
is largely consistent with theory and previous experiments. However, itwlke-subject treatments,
efficiency is affected by the reserve prices. For example, with ambigwityage reserve price in FPA is
significantly less than that in SPA, which leads to a higher efficiency in Fip&. féict that the presence
of active auctioneers significantly reduces efficiency suggests thatghesfficiency estimates of previous
experiments might have been an artifact of a zero reserve price.

5 Conclusions

In many real world auctions, such as Internet auctions, bidder informagigarding other bidders’ valu-
ations is vague. To explore the effect of this vagueness on bidderwmtidrzeer behavior, we study first
price and second price sealed bid auctions with independent privatsyalbere the distribution of bidder
valuation isnot known. We derive the symmetric equilibrium using teeMEU framework. We then test
our theoretical predictions to examine how ambiguity affects bidder and agetibehavior and to reassess
the ranking of the first and second price sealed bid auctions.

Previous experimental studies on ambiguity mostly focus on Ellsberg indivithaéce experiments,
while previous auction experiments mostly assume that the distribution of biddleations is common
knowledge. Our study extends the experimental auction literature to a nadisticesetting with ambiguity.

It also extends studies of ambiguity to an important applied setting, to determieihavHindings from
individual choice experiments are robust in the auction context.

We show that ambiguity affects bidder behavior in first price auctionstr@gnto the results of many
previous studies in Ellsberg urn experiments, in our experimental auctitimgsehe results are consistent
with ambiguity loving. This surprising result is also consistent with the comparaghorance hypothesis
and the hostile nature hypothesis proposed by psychologists.

Finally, we extend previous auction experiments by using subjects as a@tonVe study how auction-
eers affect bidder behavior, revenue, earnings and efficienayfi@lings show that auctioneers set reserve
prices higher than the theoretical prediction, with interesting consegsiéoicauctioneer revenue, bidder
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earnings and auction efficiency. Specifically, auctioneedsicerevenue in first price auctions compared
to treatments without auctioneers. High reserve prices also reduce iad@ngs and auction efficiency.
With ambiguity-loving bidders and with real auctioneers, the first price aodrel price auctions generate
the same amount of revenue.

These findings have important implications for auction design in settings with artyb{gnd auction-
eers). Our results suggest that from the revenue perspectivegsigndr ought to be indifferent between
first and second price auctions. If efficiency is the most important olgedtie designer ought to choose
first price auctions.
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APPENDIX A.

Derivation of Eq. (2): Conditional oné € [0, 1], the distribution of the opponent’s valuations is given by
SF' + (1 —8) F2. Then, in light of thean-MEU theory, bidderi’s utility is a weighted average of the utility
of a maxmin EU bidder (weight) and a maxmax EU bidder (weight- «), where the set of beliefs ovér

is given byA. Then, conditional on the opponent strategy beingnd using the shorthand notationfor

i [Vi, b, s5(Vj, ), r], the bidder’s payoff U (b;; Vi, r, s;) is given by

Ui(bi; Vi, 55) = amin{f/lu(m)d [0F (V;) + (1 — 6) F*(V))] dG((S)}

GeA
1704216212({// (m) d [6F (V;) + (1 = 8) F (vj)]d(;((s)}
= amln{(/ 5dG (8 )[/0 u () dF* (V)}+</01(1f5)da(5)) [/Olu(m)dF?(Vj)H
+(1—a){max</ 8dG ( )) [/1 (m;) dF* (V)}+</01(1—5)d(;(5)) [/Olu(m)dFQ(vj)”
= « [/ (mi) dF*( 1/7} (1-4 [/ (m:) dF?( VJH
+(1fa){6[/0 ()dF(V)}+(175)[/0 ()dF(V)”

= [umarw)

= w(Vi —bi) Fals; ' (bi,7)]X{bi >

whereF, = (ad+ (1 —a)d) F' + [1 — (ad + (1 — @) §) ] F?, andxyy, >, is an indicator function. B
Proof of Proposition 1: By (2), bidderi solves

si(Vi,r) € argmax u (V; — b;) F, [sj_l(bi, r)} X{bi>r}-
b;€[0,00)

If V; < r, bidder: can always obtain zero utility by bidding belowOn the other hand, bidding at or above
r can only generate negative or zero utility. As a resylty;,r) < » whenV; < r. If V; > r, bidding

at or belowr or at or abové/; leads to zero or negative utility. On the other hand, bidding betwesnrd

V; can only generate positive or zero utility. As a result, the range of undéadirdds, wherl; > r, is
characterized by < s;(V;,r) < V;. If V; = r, bidding above can only generate zero or negative utility.
As aresult,s;(V;,r) < r whenV; < r. Furthermore, wher¥; > r, the bidding function of biddei is
characterized by the following first order condition:

wlVi = iV, )] 4 {577 [saViy 1), v |
Bivjsj (Sj_l [si(Vi,7), 7] ,7“)

In a symmetric equilibriuns; = s; = s, and hence if follows that it¥" > r,

[V = si(Vi )] Fa {57 [si(Vi ), ]} o+ —0.

ulV —s(V,r)] Fo (V)

—u' [V = s(V,r)]| Fo(V) + =0,

s (Vir)
which can be rewritten as 5 FL(V) ulV — s(V,r)]
o U —s(V,r
v V) = By w [V = sV
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Proof of Proposition 3: Fix r. First, for allV such that < V < 1 Corollary 1 shows that

s gV —s(V,r0)]
gy =Ty

and hence the functional form efV, r, 0) is independent of.
Now consider allV such thaty < V' < 1, wherev = max {r, %} Corollary 1 shows that for this range
of values

22 (Vo 0) = gV — s(V,r)| h(V;0). )
Suppose, by contradiction, that there eXiskE (v, 1] andfy, 6, € [0.5,1.5], 61 < 02, suchthas(Vp, 7, 61) <

s(Vo,r, 62). Define the seb/ as
M={Ve (v,W) :s(V,r,61) =s(V,r,02)} U{v}.

By continuity of s(-,r,8), M is a compact set, and henge = max(M) is well-defined. This continuity
property also implies that(V, r, 01) < s(V,r,62) forall V' € (m, Vp]. But because(-) is strictly increas-
ing, h(V, 0) is strictly decreasing i, and, by constructions(m, r,0;) = s(m,r,62), it follows from (7)
that

Vo

s(Vo,r,61) = s(m,r,01) + / gV —s(V,r,61)] h(V,01)dV
mVO

> s(m,r,02) + / gV —s(V,r,02)] h(V,6b2)dV

= 5(%7T7 92)7

which is a contradiction. Therefore it must be the case ¢fEtr, 0,) > s(V,r,6;) forall V € (v, 1] and
91,(92 S [0.5, 1.5], 01 < 05.

Now suppose by contradiction that there exiggse (v, 1] andf;, 0, € [0.5,1.5], 61 < 6, such that
s(Vo,r,01) = s(Vo,r,62). Sinceh(V,0) is continuous, positive, and strictly decreasingjrthere must
existe > 0 and~ > 0 such that

h(V,02) < 1

h(V,01) 1+

In addition, since(V, r, #) is continuous if/, ¢(-) is continuous, positive, and strictly increasiagy, r, 61) >
s(V,r,09) forall vV € (v, §], there must exist > 0 such that

gV —s(V,r, 0s)]

gV —s(V,r 61)]

. forall Ve (Vo — v, W).

<l+eforallV e (V-4 V).

But then it follows that
gV —s(V,r,02)] h(V,02) < g[V — s(V,r,01)] h(V,01) forall V € (Vo — min(d,7), Vo) .
This result, combined with the fact thafVy — min(d, y),r, 61] > s [Vo — min(4, ), r, 02], implies that

Vo
s(Vo,r,01) = s[Vo — min(0,),r, 01] + / gV —s(V,r,61)] h(V,01)dV
Vo—min(4,y)
Vo
> 5 [Vo — min(8,7), 7, 6] + / [V = s(V. 1, 02)] h(V, 0)dV
Vo—min(,7y)

= 5(‘/07 r, 62)7

25



which is a contradiction. Therefore it must be the case ¢ttr, 0,) > s(V,r,6;) forall V € (v, 1] and
61,02 € [0.5,1.5], 61 < 62, meaning thas(V, r, 61) is strictly decreasing il whenV € (v, 1]

|
Proof of Corollary 2: Substituting Eq. (4) into Eq. (3) gives

) LIV —s(V,r)] & if r<vV<i
—s(V, B ‘_/ _ 2
8V5 ( T) { % [V — S (V, T)] % |f max {’I" }

| /\

The solution to this differential equation is:

) — aV i+ 1Y it r<v<)
AR V(6-2)+5(6-1 -+
W—l—cz[e—l—%@—&)‘/} g if maX{T%}

| /\

wherec; andc; are determined using the boundary condifions(V, r) = r
We first consider the case< 1. In this case

7%—# r I} g
cr =r=c = T
! 113 1T 118

Then, by continuity at’ = 1,

Y

B2 1__%Jr- 1L ___1 [ 6 o=1, 9>ﬁ
1+ 4 2 2(1+8) 201+p8)  1+860—-2" *\2

15 NP 0—1] 70\
" 2) Tazgl\z) -

Next consider the case> % In this case, the boundary condititims(V,r) = r. gives

implying

B
148

Cy =

r(0—-2)+3(0-1) 1
=9 (1+7) +e@—-1+2-60)r) 5 =r,

implying

164 148
=——[06—-1+(2-0)r] 5
2 (2—0)(1+ﬁ)[ * )]
So we can write the bidding function as follows:

L B 148 1
1448 -

1+8 1 R 1

mrg‘/ﬁ . 1 1 1 |fT<V§§

s(Vir) =1 5+ a3+ 1is TTQBng;l} ()7 -1+ @-0V]™
5 0.1

ifr<i<V<l
ﬁ ﬂ .fl
m+1+502+( 7 |§ST<V§1

[ |
Proof of Proposition 5: Conditional onV, V5, andr, the auctioneer’s revenue is given by

RSPA(VLl@,r)::{ 0

if max{Vy,Vo} <r
max {r, min{V;, Vo }}

if max{V1,Vo}>r °
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Let EU4(r) denote the expected utility of the auctioneer when the reserve pric&gen, for allr € [0, 1],

1 1
EUA(r) = / / max {r, min(V;, V5)}* X{max(Vi,Vo)>r}dF (V2)dF'(V1),
0o Jo

wherey ; is an indicator function. By symmetry of the distributionslgfand Vs, this can be rewritten as:

1 1
BUA®) =2 [ [ max (r Vo Xz iy s dF(R)AF (V)
0 0
1 1 N \
= 2/0 /U [7’ X{(vizrX{r>1a} T V3 X{vlzvz}X{Vz>r}] dF(Va)dE (V1)
1 1
=2F(r)[1 = F(r)] + 2/0 /0 V3 X (v X(vi>ve} dF (V1) dF (Vo)

=2 F(r)[1 — F(r)] 4+ 2 /1 Vit [1 — F(Va)] dF(Va)

r

Recall that the auctioneer always knows the true distribution of the valsagivan byF = §oF' +
(1 — d) F?, whered is the true weight placed oR'. F' can equivalently be expressed as

B % if 0<V <3
F(V>_{(90—1)+(2—00)V it lov<l

wherefy = ) + 1/2. Then, since\ € (0,1], forallr € (1,1)

ang(T) =2X (0 — 1) + (2= 60)r] (2 — 0o) (1 — ) + 27 (2 — 0p)*(1 — 1)
— 27 (0 — 1) + (2 — Oo)7r] (2 — 6g) — 27 (2 — 00)*(1 — 1)
=21 [(6g — 1) + (2 — 60)r] (2 — 60) (1 — 7) [/\ - r]
<0.

Since EU4(r) is continuous at = 1, it follows that EUA(r) < EU4 (3) forallr € (1,1]. Therefore,
settingr = 1/2 strictly dominates any abovel /2. Forr < 1/2,

SEUA(r)

5 = 22N Wor(1 — Br) 4 2700 (1 — o) — 2031 — 220 (1 — Bor°)
T

= 27“>\(90 P\(l — 907") — 907"]
= 2/ [\ — (1 + \)bor] .

BecauselU(r) is continuous at = 1/2, this implies thatEU 4 (r) is single-peaked on € [0, ], with
the maximum at
r*(\) = min _x 1
- fo(1+X)" 2"

Becauser = 1/2 strictly dominates any abovel/2, it follows that the optimum reserve price for an
auctioneer with the risk parametgiis r*(\). |
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Bayesian Updating:
In this part, we outline the theoretical basis for our analysis of Bayesidating. Letd = prob {V is drawn from#F7 } .
In the beginning of the auction, each bidder has a single prior belief distnibof . We denote this distri-
bution byG, and its density (with respect to the Lebesgue measure) dyor eachy, the distribution oft”
can be written as:
FO(V)=6F'(V)+ (1 =0)F*(V).

Given this, the overall compounded prior ovéiis given by

Recall that:
3 ' i
FH(V) { 53+(VV_§)5 :; 555221
— ;V — max{V — %, 0}.
1 ' 1
F2(V) { 55+(VV_ 13 :; gi@iﬁ
= %V + max{V — %, 0}.
Thus,

1 1
FO(V) = max{2V,;V - 2} +min{V,1 -V},

and the corresponding density is given by
5 1

WhereX{VZ%} is the indicator function of the s¢t/ > 1}. Using this, we can computE as:

ro)= [ LR (V) dGo (5)
:/01 [max{;V,gV— 1}+min{V,1—V}5} dGo (5)

3
1.3 1 :

—max{V,V—}—i—mm{V,l—V},uo, (8)
2 72 2

where is the mean of the distributiof¥y.

However, given the availability of signals, each bidder successivalates 59 times during the entire
experiment (once each round after seeing his own valuation and otiteaeand except the last after seeing
the outcome of that round’s auction - see the main text for details). We diveatequence of these posterior
beliefs ag71,....Gs9. Also, for eachk € {1,...,60} andt € {0, ...,59}, let

Mi(k) = /0 ' 5hdGy(5)

be thek-th noncentral moment af;.
The subsequent updating is based on two types of signals.
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First type of signal: In this case, a bidder observes his own valuatlons a. This bidder will then update
his beliefG; overd to G, 1. Application of the Bayes rule gives:

1
Ple® 2T Hen” (1-2%01)) 0
fol f‘S (a) th (/5\> %+X{a2%}+ (1_2‘)({&2%}) Mt(l)

Using this formula, it follows that

g1 (0) = gt (9),

<% + X{azg}) My(k) + (1 - 2;\,’{&2%}) My(k +1)

1 ©)
Lt Xony + (1 — 22(@%}) M,(1)

Myia(k) = /01 g1 (6)do =

Second type of signal:In this case, a bidder observes that his opponent’s valudfiond a. With the
notation analogous to Case 1, we get:

F° (a) g; (6) max {%a,3a — 1} + min{a,1—a}é§
t 5 = — = t 5 .
g1 (9) f01F6 (a) dG, (5) max { a, %a—%}—&—min{a,l—a}Mt(l)g Q

Using this formula, it follows that:

max {3a, 5a — £} My(k) + min{a,1 — a} M1 (k +1)
max {%a,3a — 1} + min{a,1 — a} M;(1) '

1
M (k) = /0 5 g1 (6) ds = (10)

In each case, in parallel to (8), the overall updated prior over valuatiesociated withyr; is given by:

1 1
F. (V)= <2+ut>V+(1—2ut)max{V—2,0}, (11)
whereu, = M, (1). Consequently, a theoretical bidding function afteounds of updating can be obtained
by replacingF,, by F} in Eqg. (3), which gives the bidding function in Corollary 2 witmeplaced by, +0.5.
Therefore, the sequengg, ..., us9 derived from updating based on the personal experience of a particu
bidder is a sufficient statistic for a theoretical prediction of that biddexgience of bids. To derive this
sequence of first moments, (9) and (10) show that, working backwardsnecessary to know/sq(1),
which in turn requires knowing/ss(1) andMsg(2), which in turn requires knowing/s7(1), Ms7(2) and
M57(3), etc., all the way taVly(1),..., My(60). Therefore, to operationalize this updating procedure, we
must specify the first sixty moments @f,.

In our application, we parameterizey by a two-parameter family of beta distributions for which the
densitygg is given by:
~ T(a+0b)
where the two parametetisandb are positive and' is the standard Gamma function defined by:

5a71(1 . 5)b717

I'(z) E/ v e du, z >0,
0

and obeying
I'(z+1) =2I'(z), z>0. (12)
Note that, sincgy must integrate to unity, it follows that:
' L(e)l'(d)
61— 8)dds = == 13
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for anyc, d > 0. Given the form ofyy, it follows that, for anyk € {1, ..., 60},

I'(a+0b) a
My (k) _F(a /5+k (1 — §)b=1ds

I‘(a—i— I'(a+ k)I'(b)

- T(a)L'(d) T(a+b+k)
B ala+1)...(a+k—1)
(a+b)(a+b+1)(a+b+k—1)

where the second and third equality use (13) and (12), respectively.

In our estimation, we search for valuesidndb common across all bidders that best approximate bidder
behavior over all rounds, using the above updating procedure. ditiad we introduce the possibility that
bidders do not “fully” update their priors based on observed signaisaiticular, we allow bidder posteriors
to be weighted averages of their priors and their Bayesian posteriosgpamate the effect in updating based
on seeing own valuation from the effect based on seeing the auctiomuejtece allow different weights on
Bayesian posteriors based on these two types of signals. Lettirg[0, 1] be the weight on the Bayesian
posterior based on seeing one’s own valuationand [0, 1] be the weight on the Bayesian posterior based
on seeing the auction outcome, (9) is now modified to:

(14)

1
My (k) = (1 — w;) My (k) +wi/0 sk gy (6) do

(% + X{azé}) Mi(k) + (1 - QX{azé}) Mk +1)

= (1= wi)My(k) + wi=—— L)
B Xy + (12 2% ) M)
wherei € {1,2} as necessary, and (10) is now modified to:
1
Mt+1(k) = (1 — wg)Mt(k) + ’wg/ 5kg1 (5) dé
— 51 My( i l—a} M (E+1
:(1—w2)Mt(k)+w2maX{2a 2a } (k) + min{a,1 —a} My11(k+1) (16)

max {3a, 5a — 3} + min{a,1 — a} My(1)

These two recursive equations, together with (14) and the theoreticihbiflinction in Corollary 2 withd
replaced by, + 0.5, then serve as a theoretical basis of our updating estimation. It is paraeeteya
(Parameter 1)) (Parameter 2)v; (Weight 1), andw, (Weight 2), with the mean of the initial prior given
by My(1) = a/(a + ). |

Computation of the Optimal Reserve Price:
First price auction: Conditional onV;, V5, andr, the auctioneer’s revenue is given by:

0 if max {VI,VQ} <r

FPA _
R <V1’V2”">‘{max{sm,r),s(vz,r)} i max (V1 V2} > 7

or equivalently, using the fact thatV, r) is strictly increasing i/,

if max{Vq,Vo} <r

0
FPA —
RYTE (Wi, Va, ) —{ s [max {V4,Va},r] if max{Vi,Va} >r.

Recall that, the auctioneer always knows the true distribution of valuatiges gy F = 0.7F! 4 0.3F2,
or, equivalently,
1.2V if

<V
F(V)_{ 3124 (V-3)08 if <V

= O
IAIA
— DO
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Therefore, the distribution afiax {V7, V5 } is given by:

1.22¢2 if 0<a< %
G(a)—{ (0.240.8a)* if F<a<1l’
with the associated density given by:
(@) = 2.88a if 0<a<i
TU=116(024080) if L<a<l

Let EU 4(r) denote the expected utility of the auctioneer when the reserve pricd ren,
1 1 N
EUx(r) = / / [REPA (V1 Va,7)]" dF (V1) dF (V)
0o Jo

1,1

= [ [ s b (V3 V) P Xtz dF (VAP ()
o Jo
1

= /s(a,r)kg(a)da.

After substituting fors (a, ), using the bidding function in Corollary 2, we search fothat maximizes
EU4(r), using the grid{0, 0.001, ...,,0.999, 1} for both the integrand and the reserve price The inte-
gration is performed by the trapezoid approximation. We repeat this puoeéat values of the risk aversion
parameterg and\ on the grid{1/6,2/6, ..., 1} and the ambiguity paramet&on the grid{0.5, 0.6, ..., 1.5}.
The results are presented in Table 6, which shows that the optimal rggmés strictly increasing in all of
08, A, andf. Therefore, the highest reserve price under risk aversion or eiskcality of the bidders and the
auctioneers and under ambiguity of the bidders is approxim@atély and it is achieved fof = A = 1 and

# = 1.5. In treatments with known distributions, equilibrium bidding is governed by ttidilg function

in Corollary 2 withd = 6, = 1.2. Hence the highest reserve price is approximalely67, which can be
shown to be exactly equal ig/2.4.

Second price auction:In this case the computation is straightforward by using the closed-fornisolu
in Proposition 5, withdy = 1.2. We repeat the computation for values of the risk parametan the grid
{1/6,2/6,...,1}. The results are presented in the last column of Table 6. Sif{eg is strictly increasing
in A, the highest possible theoretical prediction for the reserve price uis#teaversion or risk neutrality of
the auctioneers is/2.4 = 0.4167, regardless of the presence of ambiguity. |
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APPENDIX B. INSTRUCTIONS

The complete instructions for the twelve-subject, first price auction withamkrdistribution treatment are shown here.
Instructions for the twelve-subject, first price auction with known distributieatment are identical except thatis replaced by
30 and that bidders are not asked to give an estimate dfistructions for the corresponding eight-subject treatments are iddntica
to their twelve-subject counterpart except that the parts concerniotianeers are deleted.

Instructions for the second price auctions are identical to their first prmenterpart except for “The Rules of the Auction and
Payoffs” section and the “Review Questions”, hence only those two pegtskeown here.

Experiment Instructions — U1,
Name PCLAB __ Total Payoff

Introduction

e You are about to participate in a decision process in which an object willbgoaed off for each group of participants
in each of 30 rounds. This is part of a study intended to provide insightaerain features of decision processes. If you
follow the instructions carefully and make good decisions you may eapnsiderable amount of money. You will be paid
in cash at the end of the experiment.

e During the experiment, we ask that you please do not talk to each ditlyeu have a question, please raise your hand and
an experimenter will assist you.

Procedure

e You each have drawn a laminated slip, which corresponds to your P@gdmumber. If the number on your slip is from
PCLAB 2 to PCLAB 9, you will stay in this room and you will be a bidder for timtiee experiment. If the number on your
slip is from PCLAB 10 to PCLAB 13, you will go to Room 212 after the instructiand you will be an auctioneer for the
entire experiment.

e In each of 30 rounds, you will bendomlymatched with two other participants into a group. Each group has an atetione

and two bidders. You will not know the identities of the other participants im gooup. Your payoff each round depends
ONLY on the decisions made by you and the other two participants in youpgro

e In each of 30 rounds, each biddevalue for the object will be randomly drawn from one of two distributions:

— High value distribution: If a bidder’s value is drawn from the high value distribution, then

* with 25% chance it is randomly drawn from the set of integers betweed 5@nwhere each integer is equally
likely to be drawn.

* with 75% chance it is randomly drawn from the set of integers betweem81180, where each integer is
equally likely to be drawn.

For example, if you throw a four-sided die, and if it shows up 1, yolnevavill be equally likely to take on an integer
value between 1 and 50. If it shows up 2, 3 or 4, your value will be eqlikéiy to take on an integer value between
51 and 100.

— Low value distribution: If a bidder’s value is drawn from the low value distribution, then

+ With 75% chance it is randomly drawn from the set of integers betweed 5@&nwhere each integer is equally
likely to be drawn.

* With 25% chance it is randomly drawn from the set of integers betweem81180, where each integer is
equally likely to be drawn.

For example, if you throw a four-sided die, and if it shows up 1, 2 008y walue will be equally likely to take on an
integer value between 1 and 50. If it shows up 4, your value will be eqliledlly to take on an integer value between
51 and 100.

— Therefore, if your value is drawn from the high value distribution, it cke tan any integer value between 1 and 100,
but it is three times more likely to take on a higher value, i.e., a value betdfand 100.
Similarly, if your value is drawn from the low value distribution, it can take op mteger value between 1 and 100,
but it is three times more likely to take on a lower value, i.e., a value between 50.

— In each of 30 rounds, each bidder’s value will be randomly and inegrgly drawn from the high value distribution
with a predetermined chance @%, and from the low value distribution witf100 — )% chance. You will not be
told whatz is. You will not be told which distribution your value is drawn from either. Ttker bidders’ values
might be drawn from a distribution different from your own. In anyagivound, the chance that your value is drawn
from either distribution does not affect how other bidders’ values eael

Auctioneers will be informed of the value afprivately on their screen.
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e Each round consists of the following stages:

— Each auctioneer will set a minimum selling price, which can be any integereka 1 and 100, inclusive.

— Meanwhile, each bidder will be asked to give an estimate of the chanc¢hthailue of theother bidder in the
group is drawn from the high value distribution, i.e., an estimate &f/e then ask how confident you are about your
estimate. You can choose one among the following five categories: miadent at all, slightly confident, moderately
confident, fairly confident, and very confident.

— Bidders are informed of the minimum selling prices of their auctioneeis tlzen each bidder will simultaneously
and independently submit a bid, which can be any integer between 1 @néhtfisive. If you do not want to buy,
you can submit any positive integer below the minimum selling price.

— The bids are collected in each group and the object is allocated accordhmyrides of the auction explained in the
next section.

— Bidders will get the following feedback on their screen: your valuey ¥md, the minimum selling price, the winning
bid, whether you got the object, and your payoff.

Auctioneers will get the following feedback: whether you sold the objeair yninimum selling price, the bids, and
your payoff.

e The process continues.
Rules of the Auction and Payoffs

e Bidders: In each round,

— if your bid is less than the minimum selling price, you don't get the object:
Your Payoff = 0

— if your bid is greater than or equal to the minimum selling price, and:

+ if your bid is greater than the other bid, you get the object and pay your bid
Your Payoff = Your Value - Your Bid ;

+ if your bid is less than the other bid, you don’t get the object:
Your Payoff = 0.
« if your bid is equal to the other bid, the computer will break the tie by flippingiladbin. Therefore,

- with 50% chance you get the object and pay your bid:
Your Payoff = Your Value - Your Bid ;

- with 50% chance you don't get the object:
Your Payoff = 0.

e Auctioneers In each round, you will receive two bids from your group.

— If both bids are less than your minimum selling price, the object is not soitl; a
Your Payoff = 0;

— if at least one bid is greater than or equal to your minimum selling pricesgtithe object to the higher bidder and
Your Payoff = the Higher Bid.

e For example, if the minimum selling price is 1, bidder A bids 25, and biddeidB B5, sinces5 > 1 and55 > 25, bidder
B gets the object. Bidder A's payoff = 0; bidder B’s payoff = her valli&: the auctioneer’s payoff = 55.

e There will be 30 rounds. There will be no practice rounds. From therfitend, you will be paid for each decision you
make.

e Your total payoff is the sum of your payoffs in all rounds.
e Bidders: the exchange rate is $1 for points.
e Auctioneers: the exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there atipgse
Review Questions you will have ten minutes to finish the review questions. Please raise yodrifiyou have any questions or if

you finish the review questions. The experimenter will check each paitipanswers individually. After ten minutes we will go
through the answers together.
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1. Suppose your value is 60 and you bid 62.
If you get the object, your payoff = .
If you don't get the object, your payoff = .

2. Suppose your value is 60 and you bid 60.
If you get the object, your payoff = .
If you don’t get the object, your payoff = .

3. Suppose your value is 60 and you bid 58.
If you get the object, your payoff = .
If you don't get the object, your payoff = .

4. The minimum selling price is 30 and your bid is 25, your payoff =

5. True or false:

(a) __If abidder’s value is 25, it must have been drawn from the low distribution

(b) __If a bidder's value is 60, it must have been drawn from the high distributio

(c) __You will be playing with the same two participants for the entire experiment.

(d) __Abidder’s payoff depends only on his/her own bid.

(e) __Ifyou are an auctioneer and your minimum selling price is higher than hdgh your payoff will be zero.

Experiment Instructions — U2;,

Rules of the Auction and Payoffs

e Bidders: In each round,

— if your bid is less than the minimum selling price, you don't get the object:
Your Payoff = 0

— if your bid is greater than or equal to the minimum selling price, and:
x if your bid is greater than the other bid, you get the object. The price ypul@aends on the minimum selling
price and the other bid:
- if the other bid is greater than or equal to the minimum selling price, you pagthiee bid:
Your Payoff = Your Value - the Other Bid;
- if the other bid is less than the minimum selling price, you pay the minimum selling:pr
Your Payoff = Your Value - the Minimum Selling Price;
+ if your bid is less than the other bid, you don’t get the object:
Your Payoff = 0.
x if your bid is equal to the other bid, the computer will break the tie by flippingiacoin. Therefore,
- with 50% chance you get the object and pay the other bid:
Your Payoff = Your Value - the Other Bid;

- with 50% chance you don't get the object:
Your Payoff = 0.

e Auctioneers In each round, you will receive two bids from your group.

— If both bids are less than your minimum selling price, the object is not soitl; a
Your Payoff = 0;

— if both bids are greater than or equal to your minimum selling price, youtsebbject to the higher bidder and
Your Payoff = the Lower Bid.

— if one bid is greater than or equal to your minimum selling price and the ottiés kess than your minimum selling
price, you sell the object to the higher bidder and
Your Payoff = the Minimum Selling Price.
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e For example, if the minimum selling price is 1, bidder A bids 25, and biddeidB B5, sincés5 > 1 and55 > 25, bidder
B gets the object.
Bidder A's payoff = 0;
bidder B’s payoff = bidder B’s value - bidder A's bid = bidder B’s vahu25;
the auctioneer’s payoff = 25.

e There will be 30 rounds. There will be no practice rounds. From therfitsnd, you will be paid for each decision you
make.

e Your total payoff is the sum of your payoffs in all rounds.
e Bidders: the exchange rate is $1 for points.
e Auctioneers: the exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there atipns@

Review Questions you will have ten minutes to finish the review questions. Please raise yodrifiyou have any questions or if
you finish the review questions. The experimenter will check each patitipanswers individually. After ten minutes we will go
through the answers together.

1. Suppose the minimum selling price is 1, your value is 60, and you bid 62.
If the other bid is 59, you get the object. Your payoff =
If the other bid is 61, you get the object. Your payoff =
If the other bid is 70, you don'’t get the object. Your payoff =

2. Suppose the minimum selling price is 1, your value is 60, and you bid 60.
If the other bid is 55, you get the object. Your payoff =
If the other bid is 60,
e with __ chance you get the object, your payoff =
e with __ chance you don't get the object, your payoff =

If the other bid is 70, you don'’t get the object. Your payoff =

3. Suppose the minimum selling price is 1, your value is 60, and you bid 57.
If the other bid is 55, you get the object. Your payoff =
If the other bid is 58, you don’t get the object. Your payoff =
If the other bid is 70, you don'’t get the object. Your payoff =

4. The minimum selling price is 30 and your bid is 25, your payoff =

5. True or false:

(a) __If abidder’s value is 25, it must have been drawn from the low distribution

(b) __If a bidder's value is 60, it must have been drawn from the high distributio

(c) __You will be playing with the same two participants for the entire experiment.

(d) __A bidder’s payoff depends only on his/her own bid.

(e) __Ifyou are an auctioneer and your minimum selling price is higher than hdgh your payoff will be zero.
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Information No. Subjects Auction Treatment Exchange Rates Total No.
Conditions  Per Session Mechanisms Abbreviation Bidders Auctioneers jecib

8 1st Price Klg 20 - 40

Known 8 2nd Price K2g 20 - 40
Distribution 12 1st Price K149 12 60 60
12 2nd Price K219 12 60 60

8 1st Price Ulg 20 - 40

Unknown 8 2nd Price U2g 20 - 40
Distribution 12 1st Price Ulis 12 60 60
12 2nd Price U215 12 60 60

Table 1: Features of Experimental Sessions

Treatment Round Alb 0<v<0.5 0b<v<l1
1-1 0.504 (40,40) 0.204 (26,19) 0.022 (14,21)
2-30 0.133 (5,5 0.133 (5,5 0.183 (5,5)
1-3 0.006 (5,5) 0.062 (5,5 0.540 (5,5)

8-subject  4-30 0.310 (5,5 0.183 (5,5) 0.133 (5,5)
1-5 0.012 (5,5) 0.038 (5,5 0.310 (5,5
6-30 0.242 (5,5) 0.310 (5,5 0.133 (5,5
1-30 0.133 (5,5 0.183 (5,5) 0.183 (5,5)
1-1 0.555 (29,21) 0.89 (10,9 0.680 (19,12)
2-30 0.012 (5,5 0.012 (5,5 0.038 (5,5)
1-3 0.062 (5,5) 0.460 (5,5 0.075 (5,5

12-subject 4-30 0.012 (5,5 0.012 (5,5 0.093 (5,5
1-5 0.012 (5,5) 0.093 (5,5 0.183 (5,5
6-30 0.012 (5,5 0.012 (5,5 0.093 (5,5)
1-30 0.012 (5,5 0.012 (5,5 0.062 (5,5

Table 2: Comparison of Bids with and without Ambiguity

Notes:1. The table lists one-sided p-values for the Wilcoxon ranksum tests ttuarisitlid more under the known distribution than
under an unknown distribution of valuations.

2. To assure independence of individual observations, first-perilydests use all the observations individually, while all the other
tests use session means. Number of independent observationghséleown and unknown distribution is listed in parentheses
for each test.
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Treatment Restriction of Sample Obs. ¢ Coefficient Std. Error 95% Confidence Interval

Klg 0=12 All Values 1200 0.3622 0.0242 0.3199 0.4160
Klg N/A Vie <05 742 0.3573 0.0191 0.3169 0.3900
K1y =12 Vie > 0.5 458 0.3633 0.0262 0.3185 0.4234
Klg Unrestricted All Values 1200 0.3313 0.0203 0.2863 0.3625
(0 =1.288 0.0549 1.1809 1.39)4
K1 =12 r<Vyg 637 0.5651 0.0427 0.4953 0.6621
K1 N/A r<V;<05 192 0.4070 0.0666 0.3190 0.5783
K1y =12 r<05<V; 384 0.5804 0.0513 0.4971 0.6919
K19 =12 05<r<Vy 61 0.4558 0.0641 0.3928 0.6126
K1 Unrestricted r<Vyg 637 0.4855 0.1021 0.3727 0.7947
(@ =1.3191 0.1417 0.9474 1.5051

Note: All standard errors and confidence intervals are bootstrapped witbtadjat for clustering at session level.

Table 3: Estimation of Bidders’ Risk Parametgj (
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Treatments g  MinSS Par.1 Par.2 Mean Weightl Weight2 Confidence Interval

2.5 5 95 97.5
0.32 10.0273 0.0018 0.0002 0.9062 0 1 0.3438 0.5156 0.980892D.
8-subject 0.3622 9.9766 0.0016 0.0003 0.8438 0 1 0.1250 30.20M.9570 0.9688

1 0.0703 0.0781 0.9082219.9

1 0.8516 0.8906 0.9980990.9

1 0.5000 0.5625 0.8359438

1 0.3125 0.3906 0.7031 0.7031

0.42 9.8495 0.5312 0.5312 0.5000
0.40 6.9534 0.0019 0.0001 0.9961

1

1

12-subject 0.5651  6.8936 24 8 0.7500 0
0.66 6.9470 19.5 125 0.6094 0

Notes:
1. Par. 1 and Par. 2 refer to the two parameters of the beta distributspeatésely.
2. Weights 1 and 2 are the weights on the Bayesian posteriors based aegsidhservations of his own valuations, and of auction

outcomes, respectively.

Table 4: Estimations of Initial Prior Distribution Using Updating

Dependent Variable: Bid in Second Price Auction
Rounds 1-5 Rounds 1-10 Rounds 11-30

Value (Known Case) 1.0199 1.0371 1.0627
(0.0140)*  (0.0141)*** (0.0206)***
Value (Unknown Case) 1.0079 1.0127 1.0350
(0.0167) (0.0184) (0.0160)**
Observations 644 1249 2342
Test of Known=Unknonwn:
P-value ofy?(1) 0.5786 0.2826 0.2876

Notes:
1. Standard errors in parentheses are adjusted for clustering atthersievel.
2. The asterisks next to the standard errors display significance isideeé-tests of the null hypothesis of the coefficient being

unity against the alternative hypothesis of the coefficient being moreuthign
3. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 5: Effects of Ambiguity on Bids in Second Price Auctions
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0.4100

0.0170
0.1300
0.2340
0.3120
0.3720
0.4190

0.0170 0.1192

0.1350
0.2410
0.3200
0.3800
0.4280

0.2082
0.2778
0.3334
0.3787
0.4167

1/6
2/6
3/6
4/6
5/6

0.0370
0.1290
0.2040
0.2620
0.3090
0.3470

0.0390
0.1340
0.2110
0.2720
0.3200
0.3600

0.0400
0.1380
0.2190
0.2810
0.3300
0.3710

0.0410
0.1430
0.2260
0.2900
0.3400
0.3810

0.0430
0.1480
0.2330
0.2980
0.3490
0.3910

0.0440
0.1530
0.2400
0.3060
0.3580
0.4000

0.04600480
0.15801630
0.247102530
0.31403210
0.36103750
0.40904167

0.0490
0.1680
0.2600
0.3290
0.3820
0.4250

0.0510
0.1730
0.2670
0.3360
0.3900
0.4330

0.0530
0.1780
0.2730
0.3430
0.3970
0.4400

0.1192
0.2081
0.2778
0.3334
0.3787
0.4167

Table 6: Computed Optimal Reserve Price in First and Second Price Auctions
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Rounds 1-5 Session1l Session2 Session3 Session4 Session 5H;

K19
K29
Rounds 1-30
K1qo
Ulis
K219
U219

0.4905
0.2310
0.2630
0.4990

0.4571
0.2535
0.4964
0.4448

0.2285
0.2075
0.2700
0.3590

0.2938
0.1707
0.4651
0.5276

0.4205
0.3160
0.3290
0.2360

0.4493
0.3295
0.3163
0.4222

0.3870
0.4005
0.3155
0.3790

0.3547
0.3741
0.4763
0.4152

0.413%1 > K2
0.2500'1 < U2
0.2150¢1 > U1
0.5690(2 < U2

0.434K1 < K2
0.252271 < U2
0.297&1 > U1
0.51642 < U2

p-value
0.0278**
0.0476**
0.0516*
0.0278**

0.3611
0.0000***
0.0198**
0.1548

Notes:

1. The null hypothesis is that the average reserve price is equal in thesaiments.
2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 7: Average Reserve Price and Results of Permutation Tests {l@g-ta

Rounds 1-5 Session1l Session 2 Session 3 Session 4 Session 5 H; p-value
Klg 0.4665 0.4685 0.4235 0.5170 0.5485 K1 > K2  0.0040***
Ulg 0.3705 0.4795 0.4280 0.4420 0.3905 U1 >U2 0.0556*
K2g 0.2815 0.2665 0.2600 0.3825 0.3795 K1>U1l 0.0397*
U2s 0.2935 0.3870 0.4175 0.3130 0.3990 K2<U2 0.0992*
Rounds 1-30
Kl1g 0.4459 0.3869 0.4443 0.4648 0.4559 K1 > K2 0.0079***
Ulg 0.3638 0.4419 0.4255 0.4277 0.4499 U1l>U2 0.0159*
K2g 0.3335 0.3265 0.3423 0.3948 0.3506 K1>U1 0.2341
U2s 0.2953 0.3653 0.3628 0.3131 0.3588 K2>U2 0.3730
Rounds 1-5
K15 0.4430 0.4100 0.4625 0.3900 0.3485 K1 > K2 0.0238*
Ul 0.3540 0.4840 0.4015 0.3085 0.3925 Ul<U2 0.2540
K215 0.2760 0.3405 0.3750 0.3925 0.3080 K1>U1 0.2659
U2, 0.4120 0.4840 0.3730 0.4550 0.3445 K2<U2 0.0278**
Rounds 1-30
K15 0.3579 0.3918 0.3833 0.4053 0.3523 K1> K2 0.0317**
Ul;, 0.3740 0.3968 0.3927 0.3837 0.3844 U1>U2 0.1190
K215 0.3554 0.3405 0.3786 0.3445 0.3434 K1<U1l 0.2063
U215, 0.3540 0.3821 0.4146 0.3531 0.3455 K2<U2 0.1111
Comparison of 8- and 12-subject treatments
Klg > K115 0.0119* Ulg > Ulys 0.0278** K2g3 < K25 0.4008 U2s < U215 0.0873*

Notes:

1. The null hypothesis is that the average revenue is equal in the two ¢ngatm
2. Significant at: * 10% level; ** 5% level; *** 1% level.
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Table 8: Average Revenue and Results of Permutation Tests (one-tailed)



Rounds 1-5 Session1l Session 2 Session 3 Session 4 Session 5 H; p-value

K1g 0.0703 0.0653 0.0793 0.0635 0.0175 K1 < K2 0.0000***
Ulg 0.0550 0.0968 0.0555 0.0675 0.0518 Ul < U2 0.0159*
K2¢ 0.1178 0.1530 0.1940 0.1500 0.1393 Kl<U1l 0.3333
U2s 0.0953 0.0690 0.0838 0.1860 0.1448 K2>U2 0.0952*
Rounds 1-30
Kl1lg 0.0912 0.0914 0.0883 0.0788 0.0623 K1 < K2  0.0000***
Ulg 0.1194 0.0869 0.0785 0.0912 0.0785 Ul < U2 0.0079***
K2g 0.1230 0.1426 0.1252 0.1152 0.1299 Kl1<Ul 0.2421
U2g 0.1505 0.1115 0.1045 0.1540 0.1366 K2<U2 0.3532
Rounds 1-5
K15 0.0405 0.0630 0.0723 0.0728 0.0635 K1 < K2 0.0079***
Ul 0.0800 0.0543 0.0830 0.0343 0.0643 Ul>U2 0.3135
K215 0.0718 0.1165 0.1265 0.0853 0.1165 Kl<U1l 0.2421
U2, 0.0088 -0.0028 0.0705 0.1198 0.0600 K2>U2 0.0357*
Rounds 1-30
K115 0.0601 0.0774 0.0670 0.0773 0.0663 K1< K2 0.1230
Ul 0.0882 0.0730 0.0831 0.0740 0.0777 Ul<U2 0.3492
K25 0.0665 0.0739 0.1091 0.0692 0.0943 K1< U1l 0.0397*
U2, 0.0800 0.0223 0.0780 0.0899 0.0768 K2 >U2 0.2262

Comparison of 8- and 12-subject treatments
Klg > K115 0.0516* Ulg > Ulye 0.0873* K25 > K215 0.004*** [U2g > U212 0.004***

Notes:
1. The null hypothesis is that average earning is equal in the two treatments
2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 9: Bidder Earnings in Early rounds and Over All Rounds

Treatment Session1l Session2 Session3 Session4 Session 5H; p-value
Klg 0.8667 0.9083 0.9167 0.9083 0.875(K1 > K2 0.3373
Ulg 0.8833 0.8750 0.9000 0.8917 0.9083/1 > U2 0.3214
K2g 0.8583 0.9167 0.8917 0.8833 0.90001 > U1 0.3810
U2g 0.9333 0.7833 0.8250 0.9000 0.941K2 > U2 0.3413
K19 0.6500 0.7000 0.6583 0.7583 0.641K1 < K2 0.1429
Ul 0.7583 0.8833 0.7417 0.7583 0.7833/1 > U2 0.0159**
K29 0.6583 0.6917 0.8083 0.6500 0.7917K1 < U1 0.0040***
U219 0.6333 0.5750 0.7667 0.7083 0.60832 > U2 0.1190

Notes:
1. The null hypothesis is that efficiency is equal in the two treatments.
2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 10: Efficiency in 8-subject and 12-subject Treatments and Resiermutation Tests (one-tailed)
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