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Abstract

This study presents a theoretical model and laboratory experiment of the first and second price sealed
bid auctions with independent private values, where the distribution of bidder valuations is unknown. We
derive the symmetric equilibrium using the α-MEU framework. We then test the theoretical predictions in
the laboratory. In our experimental setting, ambiguity aversion is rejected in favor of ambiguity loving. Our
results suggest that decision makers’ ambiguity attitudes are context dependent. Another departure from
previous experimental studies is the use of subjects as auctioneers. We find that compared to zero reserve
prices the presence of auctioneers significantly reduces revenue in first price auctions. It also significantly
reduces bidder earnings and efficiency. Without knowledge of the distribution of bidder valuations and with
auctioneers, the first and second price auctions generate the same amount of revenue.
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1 Introduction

Theoretical and experimental auction literature often assumes that both bidders and auctioneers know the
distribution of bidder valuations.1 Consequently, nearly all of the results derive from such assumptions.
However, in many real-world auctions, it is inappropriate to assume that bidders know the distribution
from which opponent valuations are drawn. One prominent example is the Internet auctions. The online
auction has become a fascinating and fast-growing exchange mechanism (Lucking-Reiley (2000a)). Online
auction technology introduces several interesting features not available to traditional auctions. For example,
bidders can be geographically dispersed and bidding can be asynchronous. These conveniences make it
easier to obtain a relatively large group of bidders for an object. These, and other special features of online
auctions, make it important to re-examine the implications of some key assumptions in auction theory and
experiments. In this study, we focus on the assumption that bidders know the distribution of other bidder
valuations.

To select the right auction mechanism for environments such as the Internet, one needs to answer two
fundamental questions: how the absence of the knowledge of the distribution of bidder valuations affects
bidder and auctioneer behavior, and how this change in behavior affects the performance of various auction
mechanisms. To address these questions, we conduct laboratory experiments comparing treatments with an
unknown distribution of bidder valuations to those with a known distribution of bidder valuations.

The uncertainty about the probability distribution (of bidder valuations, for example) created by missing
information is ambiguity. Not knowing important information can affect decision making, as illustrated by
the Ellsberg (1961) paradox. Ellsberg’s two-color problem uses two urns, one containing 50 red and 50
black balls called the known urn (or the risky urn), and one containing 100 balls in an unknown combination
of red and black called the unknown urn (or the ambiguous urn). These two urns represent two distinct types
of uncertainty. The first type of uncertainty, present in both urns, is uncertainty as to which outcome will
occur: red or black, and is termed risk. The second type of uncertainty, present only in the unknown urn, is
uncertainty about the probability of each outcome itself and is termed ambiguity. In Ellsberg experiments,
many people bet on red from the known (vs. unknown) urn and on black from the known urn. However, they
are indifferent between the two colors when betting on only one urn. This pattern of behavior is inconsistent
with any model which uses probabilities, and is called ambiguity aversion. The opposite of ambiguity
aversion is called ambiguity loving.

Apart from online auctions, ambiguity is prevalent in many other real-world situations, for example, the
success rate of some new drugs or clinical treatments (e.g., Curley, Young and Yates (1989)), the insurance of
certain classes of highly ambiguous risks, such as environmental hazards (e.g., Priest (1987)) and terrorist
attacks, the usefulness of new features of consumer products (Kahn and Meyer, 1991), the outcomes of
R&D, incomplete contracting due to unforeseen contingencies, the audit selection procedures of the IRS
(Andreoni, Erard and Feinstein (1998)), and initial public offerings (IPOs) of small privately-held firms.

Many researchers have studied ambiguity empirically. In a survey article of empirical and theoretical
research on ambiguity, Camerer and Weber (1992) summarize the empirical research into three categories.
The first kind of empirical ambiguity research is Ellsberg’s original thought experiment and replications of
it. The second kind determines the psychological causes of ambiguity. The third kind studies ambiguity in
applied settings. While many studies of the first kind find various degrees of ambiguity aversion, Curley and
Yates (1989), and Hogarth and Einhorn (1990), among others, find ambiguity loving when subjects face an
unknown urn, and a known urn with a low probability of winning. Two studies of ambiguity in experimental
markets find mixed results. Camerer and Kunreuther’s (1989) study of ambiguity in an insurance market
finds that ambiguity about the probability of loss has no systematic effect on insurance prices. Sarin and
Weber’s (1993) study of ambiguity in an experimental asset market uses a double oral auction and a multi-

1For surveys of the theoretical literature see McAfee and McMillan (1987) and Klemperer (1999). For a survey of the experi-
mental literature, see Kagel (1995).
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unit Vickrey auction. This study finds that the market price for the unambiguous bet is considerably larger
than the market price of the ambiguous bet.2 Salo and Weber’s (1994) study of ambiguity in first price sealed
bid auctions finds that ambiguity has no significant effects on bidding behavior.3 Moreover, in summarizing
studies of ambiguity in applied settings, Camerer and Weber (1992) observe, “These medical and health
studies are a little discouraging, because they show less ambiguity aversion, · · · , than is observed or assumed
in laboratory experiments (and in theory).” Such mixed results pose the question of whether ambiguity
aversion is context dependent. In this paper, we investigate how agents react to ambiguity in one important
class of settings, namely first price and second price sealed bid auctions.

There are several different approaches to formally model ambiguity. Among them, maxmin expected
utility4 (MMEU) and Choquet expected utility5 (CEU) models are the most prominent in applications. In
this paper we use the α-MEU model which is a natural and tractable generalization of the MMEU model.
The α-MEU, as we discuss in Section 2, allows for both ambiguity averse and ambiguity loving behavior.

Our experiment serves three purposes. First, we extend the large amount of research on auctions to a
more realistic setting with the presence of ambiguity, to study how ambiguity affects behavior and to reassess
the ranking of first and second price sealed bid auctions in this setting. Second, we study how subjects as
auctioneers affect bidder behavior, auctioneer revenue, bidder earnings and auction efficiency. Third, we
extend ambiguity research to an important applied setting, to address the question of whether ambiguity
aversion is context dependent.

The paper is organized as follows. Section 2 introduces a theoretical model of sealed bid auctions with
risk and ambiguity. Section 3 presents the experimental design. Section 4 presents the main results. Section
5 concludes the paper.

2 Formal Theoretical Development

This section develops a theoretical auction model incorporating risk and ambiguity. This model guides our
experimental design and provides a benchmark for the data analysis.

Three theoretical studies address the role of ambiguity in auctions. Salo and Weber (1995) analyze the
first price sealed bid auction using the Choquet expected utility model with a convex capacity. In particular,
they consider the case where bidders have a constant relative risk aversion (CRRA) utility function and the
Choquet capacity has a power representation. In this case, they show that the equilibrium bidding function is
linear. In another study, Lo (1998) analyzes sealed bid auctions using the MMEU framework. Specifically,
he derives the equilibrium bidding function for linear utility functions, and compares the first and second
price auctions. Using the MMEU framework, Ozdenoren (2002) extends and generalizes the results in Lo.
He derives conditions under which risk neutral bidders increase their bids in the first price auction as they
become more ambiguity averse. He then uses this result to compare the first and second price auctions.

Our model differs from the above models in two important ways. First we use the α-MEU framework to
allow for both ambiguity averse and ambiguity loving behavior. This framework is a generalization of both
the maxmin and maxmax expected utility models. Second, we consider bidders with general concave utility
functions. As a result, previous theory cannot be directly applied to our framework.

Throughout this section, we assume that there are two bidders i = 1, 2. In addition, we assume that there
is one indivisible good for sale. In this model, we look at first and second price auctions with independent
private values with a reserve price, r. Bidders send their bids simultaneously. For simplicity, we assume that

2In summarizing the different outcomes of the two studies, Camerer and Weber (1992) point out that, in the Sarin and Weber
experiments, ambiguity is operationalized as à la Ellsberg.

3We discuss the difference between Salo and Weber’s design and our design at the end of Section 3.
4In the maxmin expected utility model, decision makers have a set of priors and choose an action that maximizes the minimum

expected utility over the set of priors.
5In the Choquet expected utility model, decision maker’s beliefs are represented by a nonadditive probability measure (capacity).
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the set of possible valuations of the bidders is [0, 1], with Vi denoting bidder i’s valuation. Only the bidder
knows his own valuation.

Our main departure from previous theoretical and experimental auction literature is the assumption that
bidders do not know the valuation distribution. We look at the case, where bidder valuations are known to
be independent draws from either F 1 (·) or F 2 (·), with positive and a.e.−continuous densities f1 (·) and
f2 (·), respectively. In our experiment, we assume that F 2 first order stochastically dominates F 1. Hence,
we call F 1 the low value distribution and F 2 the high value distribution. For each bidder, the probability, δ,
of the event that his opponent’s valuation is drawn from the distribution F 1 is unknown. We define δ to be
the random variable corresponding to the probability that valuation is drawn from F 1.

In the standard subjective expected utility (SEU) model, each bidder has a subjective prior about the
value of δ. However, if a bidder’s information about δ is too vague to be represented by a single prior,
it can be represented by a set of priors. In a seminal paper, Gilboa and Schmeidler (1989) provide an
axiomatization of the maxmin expected utility model using a set of priors. Expected utility is a special case
of MMEU, where the set of beliefs contains only a single probability measure. In this model, a bidder’s prior
on the event that his opponent’s valuation is drawn from the distribution F 1 is given by a set of probability
measures. The bidder’s utility is given by the minimum expected utility over this set of priors. Intuitively,
a set of priors reflects both ambiguity in the environment and bidder difficulty in forming a well-defined
single prior. The min operator, on the other hand, reflects bidder aversion to such ambiguity. To illustrate
how MMEU explains Ellsberg type behavior, suppose a decision maker has a linear utility function and the
set of priors is {(x, 1 − x) : 0.4 ≤ x ≤ 0.6}, where x is the probability of drawing a red ball and 1 − x is
the probability of drawing a black ball from the unknown urn. The probability of drawing either color from
the known urn is 0.5. In this case, betting $1 on either color from the ambiguous urn will give a maxmin
expected utility of 0.4, whereas betting $1 on either color from the known urn will give an expected utility
of 0.5.

In general, decision makers may also have preferences that represent ambiguity loving behavior (Heath
and Tversky 1990). Such behavior can be captured using the maxmax expected utility model, where the
min operator is replaced by the max operator. We do not want to restrict bidders’ ambiguity attitude a priori,
therefore, we use the α-MEU model that allows for both ambiguity averse and ambiguity loving behavior.
The α-MEU model, axiomatized by Ghirardato et al. (2002), is a generalization of both the maxmin and
maxmax expected utility models. In this model, bidders compute the utility of an act using α times the
minimum plus 1 − α times the maximum expected utility over the set of priors. When α equals 1, this
model reduces to MMEU. When α equals 0, it reduces to maxmax EU. Note that the class of preferences
this model represents is more general, since α can take all intermediate values.

Formally, let ∆ be a closed and convex subset of the set of distribution functions over [0, 1], representing
a bidder’s belief about the distribution of δ. Let δ = minG∈∆

∫
δdG (δ) and δ = maxG∈∆

∫
δdG (δ) . Note

that the set ∆ is subjective and the set [δ, δ] can in general be a strict subset of [0, 1]. To see this, consider
the case where the set ∆ has a single element, F . In this case, δ = δ = expected value of F . We assume
that ∆ is independent of bidder valuations and is common knowledge to all bidders. When there is no
ambiguity, the common knowledge assumption reduces to the standard common knowledge assumption in
auction theory.

In a first price auction, the bidder with the higher bid above the reserve price receives the object and
pays his bid to the seller. However, if both bids are below the reserve price, the object is not sold. Ties are
broken by a random device. A bid can be any number in [0,∞). A reserve price can be any number in [0, 1].
The payoff for bidder i is given by

πi(Vi, bi, bj , r) =


Vi − bi if bi > bj and bi ≥ r
Vi − bi or 0 if bi = bj ≥ r
0 if bi < bj or bi < r.

. (1)
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The bidding strategy of bidder i is given by si : [0, 1]2 → [0,∞), mapping own valuation and reserve
price into a bid. We assume that, in equilibrium, bidder i knows both his own valuation, Vi, and bidder j’s
strategy, sj , but not j’s valuation. Bidder i best replies to bidder j’s strategy given his valuation, the reserve
price and his beliefs ∆.

In our framework, the set of priors, ∆, captures the ambiguity attitude. In order to capture bidders’ risk
attitude, we use a concave utility function, u(·), with u(0) = 0, u′ > 0, and u′′ < 0. Given the other bidder’s
strategy sj , the reserve price r, and bidder i’s own valuation Vi, bidder i chooses his bid by maximizing

Ui(bi; Vi, r, sj) ≡ u (Vi − bi) Fα

[
s−1
j (bi, r)

]
, (2)

where s−1
j (bi, r) is the partial inverse of sj with respect to its first argument, which, in equilibrium, is bidder

j’s value, and Fα =
(
αδ + (1 − α) δ

)
F 1 +

[
1 − (

αδ + (1 − α) δ
)]

F 2 is the bidder’s belief about δ. In
other words, an α-MEU bidder will behave as if he believes that his opponent’s valuation is drawn from F 1

with probability αδ + (1 − α) δ and from F 2 with probability 1− (
αδ + (1 − α) δ

)
. The derivation of Eq.

(2) is in Appendix A.
Strategies s1 and s2 are equilibrium strategies if

Ui(si(Vi, r); Vi, r, sj) ≥ Ui(bi; Vi, r, sj)

for all (Vi, r) ∈ [0, 1]2, bi ∈ [0,∞), i = 1, 2, and j = 3 − i. In the following proposition, we characterize
the symmetric equilibrium strategy.

Proposition 1 The symmetric equilibrium bidding strategy is characterized by the following:

(a) if V < r, then s(V, r) ∈ [0, r);

(b) if V = r, then s(V, r) ∈ [0, r]; and

(c) if V > r, then r < s(V, r) < V , and s is characterized by

∂s

∂V
(V, r) =

F ′
α(V )

Fα(V )
u [V − s(V, r)]
u′ [V − s(V, r)]

, (3)

Proof: See Appendix A.
This Proposition characterizes the symmetric equilibrium bidding strategies for an α-MEU bidder. Eq.

(3) in Proposition 1 is analogous to the equilibrium characterization for the no-ambiguity case by Riley
and Samuelson (1981) and Milgrom and Weber (1982). We now use a particular specification for F 1 and
F 2 in order to investigate further properties of the bidding function. We use this specification later in the
experiments. In Section 3, we discuss why we choose these functional forms.

We use the following specifications for F 1 and F 2. The low value distribution F 1 corresponds to the
case where we first choose the interval

[
0, 1

2

]
with probability 3

4 and the interval
(

1
2 , 1

]
with probability

1
4 . Subsequently, we choose the valuation from the chosen interval uniformly. Similarly, the high value
distribution F 2 corresponds to the case where we first choose the interval

[
0, 1

2

]
with probability 1

4 and the
interval

(
1
2 , 1

]
with probability 3

4 . Again, we then choose the valuation from the chosen interval uniformly.
More precisely, the two distribution functions are specified as follows:

F 1 (x) =
{

3
2x if 0 ≤ x ≤ 1

2
3
4 +

(
x − 1

2

)
1
2 if 1

2 < x ≤ 1

F 2 (x) =
{

1
2x if 0 ≤ x ≤ 1

2
1
4 +

(
x − 1

2

)
3
2 if 1

2 < x ≤ 1
.
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[Figure 1 about here.]

Figure 1 presents graphs of the cumulative distribution functions F 1 and F 2. Note that neither F 1 nor
F 2 is uniform. A non-uniform distribution in first price auctions allows separation of equilibrium bidding
functions from linear rules of thumb. We elaborate on this issue in Section 4.

Recall that Fα =
(
αδ + (1 − α) δ

)
F 1 +

[
1 − (

αδ + (1 − α) δ
)]

F 2. Thus, Fα can be expressed as:

Fα (x) =
{

θx if 0 ≤ x ≤ 1
2

1
2θ +

(
x − 1

2

)
(2 − θ) if 1

2 < x ≤ 1

=
{

θx if 0 ≤ x ≤ 1
2

(θ − 1) + (2 − θ)x if 1
2 < x ≤ 1,

(4)

where

θ =
(
αδ + (1 − α) δ

) 3
2

+
[
1 − (

αδ + (1 − α) δ
)] 1

2

=
(
αδ + (1 − α) δ

)
+

1
2
. (5)

Eq. (5) implies that the higher α is, the lower θ will be. Recall from Eq. (2) that the higher the
parameter α is, the more weight the decision maker puts on the min functional. In this sense, higher values
of α reflect more ambiguity aversion.6 Consequently, lower values of θ reflects more ambiguity aversion.
To summarize, the parameter, α, measures a bidder’s ambiguity attitude. The interval, [δ, δ], measures the
amount of ambiguity in the environment. Fixing the amount of ambiguity in the environment, [δ, δ], the
parameter, θ, also measures a bidder’s ambiguity attitude. In the analysis, as we cannot separately identify
α, δ and δ, we will use θ as a measure of ambiguity.

In order to identify when a bidder is ambiguity averse (or loving), we first need to know when the bidder
is ambiguity neutral, which is characterized by the next proposition.

Proposition 2 When the set of priors is the convex hull of two probability measures, F 1 and F 2, and
when α = 1

2 , the decision maker is an expected utility maximizer with beliefs given by 1
2F 1 + 1

2F 2, and
consequently ambiguity neutral.

Proof: See Proposition 3 of Ghirardato, Klibanoff and Marinacci (1998).
In our case, the set of priors is indeed the convex combination of two probability distributions. This

proposition gives us a natural benchmark for the case of ambiguity neutrality, which allows us to formally
define ambiguity aversion and ambiguity loving.

Definition 1 When α = 1
2 , the decision maker is ambiguity neutral; when α > 1

2 , the decision maker is
ambiguity averse; when α < 1

2 , the decision maker is ambiguity loving.

Using the above parameterizations of F 1 and F 2, we can extend the characterization of the bidding
function provided in Proposition 1.

6In fact, Siniscalchi (2002) shows that, once the set of priors ∆ (or, equivalently, the interval
[
δ, δ

]
) is fixed, according to

the comparative definitions of ambiguity and ambiguity aversion in Epstein (1999) (provided the set ∆ satisfies the appropriate
restrictions on the set of unambiguous events) and in Ghirardato and Marinacci (2002), the index α can be interpreted as an
ambiguity aversion parameter.
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Corollary 1 With the parameterized distribution functions F 1 and F 2, the equilibrium bidding strategy is
characterized by

∂s

∂V
(V, r, θ) =

{
g[V −s(V,r)]

V if r < V ≤ 1
2

g [V − s(V, r)] h(V, θ) if max
{
r, 1

2

}
< V ≤ 1,

(6)

where

g(z) ≡ u(z)
u′(z)

,

and

h(v, θ) ≡ 2 − θ

θ − 1 + (2 − θ)v
.

Proof: Substituting Eq. (4) into Eq. (3), we obtain the result.
This more detailed characterization allows us to consider the impact of ambiguity on the bidding func-

tion. This issue is addressed by the following Proposition:

Proposition 3 If r < V ≤ 1
2 , s(V, r, θ) is independent of θ. If max

{
r, 1

2

}
< Vi ≤ 1, s(V, r, θ) is strictly

decreasing in θ.

Proof: See Appendix A.
This proposition shows that, in the range where max

{
r, 1

2

}
< V ≤ 1, an increase in ambiguity aversion

(a decrease in θ) leads to higher bids, while an increase in ambiguity loving (an increase in θ) leads to lower
bids. The intuition is the following. When a bidder is more ambiguity averse, she is more pessimistic, which
implies that she thinks that her opponent’s valuation is more likely to be high. Therefore, she bids more.

In contrast, in a second price auction, the bidder who has the highest bid at least as large as the reserve
price receives the object and pays the maximum of the second highest bid and the reserve price to the seller.
If both bids are below the reserve price, the object is not sold. Ties are broken by a random device. In this
auction, bidding one’s true valuation is a weakly dominant strategy, even with ambiguity aversion (see, e.g.,
Lo (1998)). This leads to our next proposition.

Proposition 4 In a second price sealed bid auction, regardless of the bidder risk and ambiguity attitudes,
bidding one’s true valuation is a weakly dominant strategy when the valuation is greater than the reserve
price. When the valuation is less than or equal to the reserve price, any bid below the reserve price is a
weakly dominant strategy.

All theoretical results characterized in this section serve as a guidance for our experimental design and
data analysis.

3 Experimental Design

The experimental design reflects both theoretical and technical considerations. The design addresses the
following objectives: to determine the effect of ambiguity on bidder and auctioneer behavior, to reevaluate
the performance of two auction mechanisms in the presence of ambiguity, and to search for factors not
considered in the theoretical framework which might also affect bidder and auctioneer behavior.
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3.1 Economic Environments

To study the effect of ambiguity on bidder and auctioneer behavior, we chose a 2× 2× 2 design. In the first
four treatments - first price auctions with known and unknown distributions and second price auctions with
known and unknown distributions, each session consists of eight bidders randomly re-matched into groups
of two each round. In the other four treatments, each session consists of eight bidders and four auctioneers,
each of whom is randomly re-matched into a group of three each round, with each group consisting of one
auctioneer and two bidders.

[Table 1 about here.]

Table 1 summarizes the relevant features of the experimental sessions, including information conditions,
number of subjects per session, auction mechanisms, treatment abbreviations, exchange rates and the total
number of subjects in each of the eight treatments. For each treatment, we conducted five independent ses-
sions using networked computers at the Research Center for Group Dynamics Laboratory at the University
of Michigan. This design gives us a total of forty independent sessions and four hundred subjects,7 recruited
from an email list of Michigan undergraduate and graduate students.8 The choice of the 2× 2× 2 design is
based on the following considerations.

1. Known vs. unknown distributions: we use the treatments with known distributions as a baseline to
isolate the effects of ambiguity.

2. Eight-subject vs. twelve-subject treatments: In most previous experiments, experimenters act as auc-
tioneers. To check the robustness of the theoretical predictions, we use subjects as auctioneers in the
twelve-subject treatments. This feature marks a major departure from previous experiments.

3. First price vs. second price auctions: One of our main goals in the design is to compare the perfor-
mance of the two different auction mechanisms in the presence of ambiguity.

One crucial decision in the design was how to implement ambiguity. In many psychology experiments
designed to test the Ellsberg paradox, subjects were told nothing about the distribution of the unknown urn.
We adopted a similar design in a pilot experiment conducted in April 2001, but found no basis to infer
what prior (or set of priors) the subjects used. Thus, for analytical tractability, we narrow ambiguity to
a single parameter in this experiment. More specifically, bidder valuations are known to be independent
draws from either the low value distribution F 1 (·) or the high value distribution F 2 (·). We use the F 1

and F 2 specifications from Section 2, with two modifications. First, we re-scale the support to the interval
[0, 100]. Second, we discretize the support to the set {1, 2, · · · , 100}. For each bidder, the probability δ
of the event that his opponent’s valuation is drawn from the distribution F 1 is unknown. Therefore, we
generate ambiguity regarding the valuation distribution through δ.

In the experiment, each bidder’s valuation in each round is a random draw from the set {1, 2, · · · , 100}.
We choose δ0 to be 0.70 for two reasons. First, we want the compound distribution to be non-uniform,
which precludes δ0 = 0.5. We choose not to use a uniform distribution, since it might be a focal point in
the absence of knowledge about the true distribution. Furthermore, with a uniform distribution, one cannot
separate equilibrium bidding strategies from linear rules of thumb in first price auctions (Chen and Plott
(1998)). Second, since most previous experiments demonstrate ambiguity aversion, we want to put more
weight on the low distribution to create an “optimistic” environment, which leaves room for ambiguity
averse bidders to learn. This consideration precludes δ0 < 0.5. In treatments with known distribution,
δ0 = 0.70 implies that δ = δ = 0.7. It then follows from Eq. (5) that θ = θ0 = 1.2.

7Despite our explicit announcement in the advertisement that subjects could not participate in the auction experiment more than
once and our screening before each session, nine subjects participated twice.

8Graduate students in Economics were excluded from the list.
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3.2 Experimental Procedure

At the beginning of each session, subjects randomly drew a PC terminal number. Then, each subject was
seated in front of the corresponding terminal, and given printed instructions. After the instructions were read
aloud, subjects completed a set of Review Questions, to test their understanding of the instructions. After-
wards, the experimenter checked answers and answered questions. The instruction period varied between
fifteen to thirty minutes depending on the treatment. In the eight-subject sessions, all eight subjects were
seated in the same room. In the twelve-subject sessions, the four auctioneers went to an adjacent lab after
the instruction period while the bidders remained in the original lab. In the treatments with unknown δ, the
auctioneers were privately informed of the value of δ on their screen at the beginning of each round. Each
round consisted of the following stages:

1. In each of the twelve-subject treatments, each auctioneer set a reserve price, which could be any
integer between 1 and 100, inclusive.

2. Meanwhile, for treatments with an unknown distribution only, each bidder estimated the chance that
the valuation of the other bidder in the group was drawn from the high value distribution, i.e., an
estimate of 1 − δ. The bidder also indicated his confidence in his estimate: not confident at all,
slightly confident, moderately confident, fairly confident, and very confident. This confidence rating
method to elicit ambiguity attitude was proposed and evaluated by psychologists Curley, Young and
Yates (1989). Among three different methods to elicit subject ambiguity attitude in decision making,
they found this one to be the best.

3. Next, each bidder was informed of the reserve price of his auctioneer (in the twelve-subject treatments)
and his own valuation. Note that, in the eight-subject treatments, the reserve price was implicitly set
to zero. Then each bidder simultaneously and independently submitted a bid, which could be any
integer between 1 and 100, inclusive. Bidders were instructed that if they did not want to buy they
could submit any positive integer below the reserve price.

4. Bids were then collected in each group and the object was allocated according to the rules of the
auction.

5. Afterwards, each bidder received the following feedback on his screen: his valuation, his bid, the
reserve price, the winning bid, whether he received the object, and his payoff.

Each auctioneer received the following feedback: whether the object was sold, his reserve price, the
bids in his group, and his payoff.

The subjects did not receive the entire vector of valuations and the corresponding bids, as in some
previous studies, to slow down the learning of δ and thus preserve ambiguity for the initial rounds.

In each treatment, each session lasted thirty rounds with no practice rounds. At the end of thirty rounds,
all participants completed a questionnaire to elicit demographic information such as gender, race, age, and
the number of siblings, and biological information such as menstrual cycle. The demographic results are
reported in a companion paper.

Compared to Salo and Weber’s (1994) laboratory study of ambiguity in first price sealed bid auctions,
our design has the following characteristics. First, we study both first and second price auctions, while Salo
and Weber study first price auctions. Second, we have treatments with and without auctioneers, while Salo
and Weber do not have treatments with auctioneers. Third, we use a non-uniform distribution of valuations,
while Salo and Weber use the uniform distribution. Fourth, while Salo and Weber also examine unknown
number of competitors and dichotomous auctions, we do not. Last, we used four hundred subjects, while
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Salo and Weber used forty-eight subjects. The larger number of observations enables us to obtain more
precise estimates in our statistical analysis.

The experiments were conducted from October 2001 to January 2002. Each session lasted from forty
minutes to an hour. The exchange rates are presented in Table 1. The average earning was $18.78. Instruc-
tions are included in Appendix B. Data are available from the authors upon request.

4 Results

We present experimental results in this section. Due to space limitations, survey results are presented in a
companion paper. Figure 2 presents the cross plot of bids against values in all eight treatments. The first two
columns are for the first price auctions, while the second two columns are for the second price auctions. For
each column, the top graph is for the known treatment, while the bottom graph is for the unknown treatment.
In all twelve-subject treatments, we exclude observations where valuation is less than or equal to the reserve
price. An immediate observation is that in first price auctions most bids are below the value (i.e., below the
diagonal), while in second price auctions, bids are often above the values. We now proceed to analyze the
difference between treatments with and without ambiguity.

[Figure 2 about here.]

We first estimate bidders’ ambiguity attitude in first price auctions by using three different approaches.
The nonparametric approach compares bids in the no-ambiguity treatments and those in the ambiguity treat-
ments, and infers bidders’ ambiguity attitude based on Proposition 3. This approach imposes minimal
assumptions on bidder behavior. The structural approach is based on the equilibrium bidding function to
be derived in Corollary 2 and explicitly estimates the ambiguity parameter. Compared to the nonparametric
analysis, the structural approach requires more assumptions on bidder utility function. In the third approach,
we extend the structural approach by using an individual learning model. While the first two approaches are
based on the α-MEU model, the third approach is based on the SEU model.

We then examine the effects of ambiguity on bids, reserve prices, revenue, earnings and efficiency. Note
that, in all subsequent analysis, we normalize the valuations, reserve prices and bids to be on the interval
[0, 1], consistent with the notation in our theoretical model.

4.1 Nonparametric Estimation of Ambiguity Attitude in First Price Auctions

To estimate bidders’ ambiguity attitude, we first compare the bids in the no-ambiguity treatment and those in
the ambiguity treatment. As we have a full factorial design, keeping everything else constant, any systematic
variations in bids in the ambiguity treatments compared to the no-ambiguity treatments can only be attributed
to the variation in the amount of ambiguity. In other words, in both treatments, bidder ambiguity preference,
α, remains the same, while the interval, [δ, δ], changes.

Recall that both the amount of ambiguity in the environment and bidder’s ambiguity attitude are sum-
marized in the parameter θ. Proposition 3 implies that higher θ leads to lower bids. In the no-ambiguity
treatments, θ = 1.2 as δ = 0.7 is known. Therefore, by comparing bids in the ambiguity treatments and
those in the no-ambiguity treatments, we can determine whether θ in the ambiguity treatments is greater (or
less) than 1.2. If bids in the ambiguity treatments are lower, we can infer that θ > 1.2, and vice versa. To
infer bidder’s ambiguity attitudes from θ, we need to assume that the center of the interval, [δ, δ] is at or
below 0.7. This assumption puts a weak restriction on the amount of weight on the low value distribution
relative to the high value distribution. However, it does not rule out the possibility of putting more than 0.7
weight on the low value distribution, e.g., [0.4, 1.0] is centered at 0.7 and thus is allowed by our assumption.
A natural place where the interval might be centered is 0.5, as suggested by the “principle of insufficient
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reason,” which Luce and Raiffa (1957, p. 284) attribute to Jacob Bernoulli. This case, too, is covered by
this assumption. Under this assumption, if θ > 1.2, then α < 1/2, implying ambiguity loving.9 If θ < 1.2,
then bidder ambiguity attitude cannot be determined precisely.10 For treatments without (K18 and U18) and
with auctioneers (K112 and U112) respectively, we compare the mean bids in the no-ambiguity treatment
with those in the ambiguity treatment, using the Wilcoxon ranksum test. We also compare the median bids
and get similar results.

[Table 2 about here.]

Table 2 reports p-values for the Wilcoxon ranksum tests. The null hypothesis is that mean bids are the
same in treatments with and without ambiguity. The alternative hypothesis is that bids are higher in the
no-ambiguity treatment. In Round 1, all bids are independent, therefore, we use each individual bid as an
independent observation. From Round 2 on, we use a session mean as an independent observation. As we
expect the amount of ambiguity to decrease over time, we partition the data into early rounds (Round 1,
Rounds 1-3, Rounds 1-5) and later rounds. For each time interval, we compare bids over all values, as well
as those in two subranges, [0, 0.5] and (0.5, 1].

RESULT 1 (Ambiguity Attitude) In first price auctions, bids are lower in the ambiguity treatments com-
pared to the no-ambiguity treatments, implying ambiguity loving.

SUPPORT. The last two columns in Table 2 reports p-values for one-sided Wilcoxon ranksum tests, compar-
ing (mean) bids for treatments with and without ambiguity, for the value range of (0.5, 1]. For the 8-subject
treatments, it is significant in Round 1. For the 12-subject treatments, it is significant for Rounds 2-30, and
weakly significant for Rounds 1-3, 4-30, 6-30 and 1-30.

Result 1 presents a significant finding that bids are lower with the presence of ambiguity. From Propo-
sition 3 and the analysis at the beginning of this subsection, we can infer that bidders are ambiguity loving.
This is the first main result of this paper.

Result 1 is surprising, given that a large volume of empirical studies replicating the Ellsberg urn experi-
ment and variations confirm ambiguity aversion. How do we reconcile our result with the “robust” ambiguity
aversion finding in psychology? We turn to the literature on the psychological causes of ambiguity aversion.

Note that the interpretation of ambiguity loving in auction settings is not exactly the same as ambiguity
loving in individual choice experiments such as the Ellsberg experiment. In our auction setting, ambiguity
loving implies that bidders put more weight on the low value distribution when the true underlying weight
is unknown. This, in turn, implies that a bidder is pessimistic in thinking that his own valuations are more
likely to be low, but optimistic in thinking that his opponent’s valuations are also more likely to be low. By
contrast, in an Ellsberg urn experiment, ambiguity loving implies a preference for the unknown urn when
choosing between known and unknown urns, or pessimism when missing information.

Fox and Tversky (1995) propose the comparative ignorance hypothesis, according to which “ambiguity
aversion is driven primarily by a comparison between events or between individuals, and it is greatly reduced
or eliminated in the absence of such a comparison.” Since our experiment uses a between-subjects design,
where subjects participated in a treatment with either known or unknown distributions, not both, this could
have contributed to the reduction of ambiguity aversion. In other words, our results are consistent with the
comparative ignorance hypothesis. However, this hypothesis does not explain why bidders are ambiguity
loving.

9To see this, note that if θ > 1.2, then αδ + (1 − α)δ > 0.7. Under our assumption, (δ + δ)/2 ≤ 0.7. So when α = 1/2,
αδ + (1 − α)δ ≤ 0.7. Moreover, αδ + (1 − α)δ is decreasing in α. Together, these facts imply that α < 1/2.

10To see this, suppose [δ, δ] = [0.3, 0.5], and suppose α = 0, which is ambiguity loving, then θ = 1 < 1.2, such a bidder would
increase his bid in the ambiguity treatment, even though he is ambiguity loving.
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Curley, Yates and Abrams (1986) investigate the plausibility of six hypotheses regarding the psychologi-
cal sources of ambiguity aversion in a series of urn experiments. Of the six hypotheses, the other-evaluation
hypothesis and the hostile nature hypothesis are most relevant for our experiment. The other-evaluation
hypothesis states that a decision maker, in making a choice, anticipates that others will evaluate his deci-
sion, and therefore, makes the choice that is perceived to be most justifiable to others. The hostile nature
hypothesis conjectures that subjects perceive that the process by which the outcomes are determined for the
ambiguous option is antagonistic, or at least competitive, towards themselves. Comparing our experiment
to previous individual choice experiments, we note that ambiguity is particularly salient in the Ellsberg urn
experiments, where a decision maker’s only influence on the outcome is the choice of the urn. However,
in the auction context, ambiguity is not as salient. If we extend the other-evaluation and hostile nature hy-
potheses to auctions, the outcome to be evaluated is affected by the underlying distribution, as well as by
bidder and auctioneer strategies. In this complex environment, the prior most justifiable to others could well
be such that the experimenter puts more weight on the low value distribution, implying a more competitive
outcome-generating process.

Comparing our result to results from Ellsberg urn and market experiments, we conclude that decision
makers’ ambiguity attitudes are context dependent. It also supports Camerer and Weber’s (1992) summary
of medical and health studies which show less ambiguity aversion “than is observed or assumed in laboratory
experiments (and in theory).”

In order to get an idea of the magnitude of the ambiguity parameter and the dynamics of ambiguity atti-
tude, we proceed to estimate the ambiguity parameter using a structural approach in the α-MEU framework
and an individual learning model in the SEU framework.

4.2 Structural Estimation of Ambiguity Parameter in First Price Auctions

In the previous subsection, we determined that bidders are ambiguity loving from comparison of bids in the
two treatments. To get an idea of the magnitude of the ambiguity parameter, θ, we now use the structural
approach, to directly estimate θ. As is common in the structural approach, we need additional assumptions
to make the model tractable. Our first assumption is that an ambiguity neutral bidder will use the uniform
prior in the ambiguity treatment, i.e., δ + δ = 1. As a result, Eq. (5) implies that θ < 1 corresponds to
ambiguity aversion, θ = 1 corresponds to ambiguity neutrality, and θ > 1 corresponds to ambiguity loving.
Our second assumption is that bidders have constant relative risk averse (CRRA) utility functions of the
form u(x) = xβ , where β > 0. While there has been no consensus on the right model for bidder behavior in
first price auctions (see Kagel (1995) and Cox (forthcoming) for surveys of this research), we choose to use
CRRA due to its analytical tractability. Because of these assumptions, results on the magnitude of θ should
be taken with caution.

We now compute the equilibrium bidding strategies for an α-MEU bidder with a CRRA utility function,
using Proposition 1.

Corollary 2 With the parameterized distribution functions F 1 and F 2, the equilibrium bidding strategy for
a bidder with a CRRA utility function is characterized by:

s (V, r) =


V

1+β + β
1+β r

1+β
β V

− 1
β if r < V ≤ 1

2

V
1+β + β

1+β
θ−1
θ−2 + β

1+β

[
r

1+β
β 2

1
β + θ−1

2−θ

] (
θ
2

) 1
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V

1+β + β
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β [θ − 1 + (2 − θ) V ]−
1
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Proof: See Appendix A.
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We use Corollary 2 to estimate the risk parameter, β, and ambiguity parameter, θ. In the two control
treatments with a known distribution (K18 and K112), ambiguity does not play a role, as bidders know
the value of δ. While treatment K18 most closely approximates previous experimental studies of first price
sealed bid auctions, treatment K112 serves as a robustness check of whether previous experimental results
are sensitive to auctioneers. We use these two treatments to estimate bidder risk attitudes.

We make the simplifying assumption that, within the same treatment, the risk parameter is common
and known across individuals. Allowing heterogeneous risk parameters across individuals would clearly fit
the data better. However, one has to resort to the computational approach, which requires making ad hoc
assumptions about the distribution of risk parameters in the population as well as about independence across
individuals and rounds within the same session. Since our main goal is to separate the effects of risk from
ambiguity, we assume symmetric bidders to get closed form solutions without distributional assumptions.
Moreover, we believe that the main conclusions would remain unchanged even with heterogeneity. Thus,
we estimate the following econometric model:

bit = s(Vit, rit; β, θ0) + ξit,

where s(·) is the bidding function characterized in Corollary 2; bit is the bid submitted by bidder i at round
t; Vit is the private valuation of bidder i at round t; rit is the reserve price faced by bidder i at round t; β
is the risk parameter; θ0 = 1.2; and ξit is the error term assumed to be orthogonal to both the valuation
and the reserve price, i.e., E(ξit|Vit, rit) = 0. The method of nonlinear least squares is used for parameter
estimations. In all estimations, standard errors and confidence intervals are computed by bootstrapping
and are adjusted for clustering at the session level, implying that ξit is allowed to be heteroscedastic, and
correlated across both individuals and rounds, but is independent across sessions. We use the bootstrap
procedure to avoid distributional assumptions on ξit or relying on asymptotic distribution theory.

[Table 3 about here.]

Table 3 reports the estimates of β for treatments K18 and K112, respectively. In each estimation, we
use only those observations where Vit ≥ rit. For each treatment, we first conduct a baseline estimation of
β with the restriction that θ = 1.2. We then repeat the same estimation separately for different subranges of
valuations and reserve prices to evaluate the sensitivity of the estimate of β, since the bidding function has
a different functional form for each subrange. Finally, we run a control estimation which jointly estimates
β and θ. In the control estimation of both treatments, θ = 1.2 lies within the 95% confidence interval, thus
justifying the θ = 1.2 restriction in the known distribution treatments. The estimated bidder risk parameter
is β8 = 0.3622 for treatment K18, and β12 = 0.5651 for treatment K112.

We find that our estimated risk parameters, 0.3622 and 0.5651, are consistent with recent estimates
in private-value auction experiments, such as 0.33 (Cox and Oaxaca (1996)), [0.35, 0.71] (Chen and Plott
(1998)) and 0.48 (Goeree, Holt and Palfrey (1999)). However, the estimated risk parameter, β, is signif-
icantly different in treatments with auctioneers. Specifically, bidders seem to be less risk averse in the
presence of auctioneers. There could be two reasons for this difference. First, bidders might have perceived
the games with and without auctioneers as different games. Indeed, auctioneers and, hence, positive reserve
prices cause nearly half the valuations to be below the corresponding reserve prices.11 Therefore, it seems
that a bidder whose valuation is above the reserve price might take more risk to secure some aspiration level
of payoffs. Second, we cannot rule out the possibility that CRRA does not fully capture bidder behavior,
and therefore, leading to these two different estimates.

In subsequent analyses, we use the estimated β8 = 0.3622 for the eight-subject treatments, and β12 =
0.5651 for the twelve-subject treatments to isolate the effects of risk and ambiguity. As a robustness check,

11In treatment K112, only 637 values out of 1200 observations are above the corresponding reserve prices. We discuss the high
reserve prices and its consequences in more detail after Result 5.
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we repeat all the subsequent estimation procedures for β
8

= 0.32 and β8 = 0.42 for the eight-subject

treatments, and β
12

= 0.40 and β12 = 0.66 for the twelve-subject treatments. These alternative values of β
are reasonable lower and upper bounds based on the estimates of β and their respective confidence intervals
reported in Table 3.

We now estimate θ using Corollary 2, with the modification of allowing θ to vary over time but not over
bidders. More specifically, we let θ be a cubic polynomial of time to partially capture the effects of updating.

[Figure 3 about here.]

Figure 3 presents estimated time paths of θ, together with their bootstrapped confidence intervals, with
adjustment for clustering at the session level in treatments with unknown distributions (U18 and U112). The
top row presents the results for the eight-subject treatment (U18), while the bottom row presents the results
for the twelve-subject treatment (U112). For each treatment, the first column uses the baseline estimates
of the risk parameter β from the corresponding treatments with known distributions. The second and third
columns serve as robustness checks by using the corresponding lower and upper bounds of β respectively.
In all six graphs, the estimated ambiguity parameter θ is at least one, suggesting that bidders are ambiguity
loving.

RESULT 2 (Estimation of the Ambiguity Parameter θ) : In all rounds, but particularly in the early
rounds (1-5), the estimated ambiguity parameter θ is at least one, with the lower boundaries of all confidence
intervals for the eight-subject treatments being at least one, and with the lower boundaries of all confidence
intervals for the twelve-subject treatments being approximately one or above one. This rejects ambiguity
aversion in both the eight- and twelve-subject treatments. In the eight-subject treatments, starting from
round 2, both ambiguity aversion and ambiguity neutrality are rejected in favor of ambiguity loving.

SUPPORT. In all six graphs of Figure 3, we see that the estimated θ is at least one. Furthermore, the
lower boundaries of all confidence intervals for the eight-subject treatments (the top row) are at least one,
while the lower boundaries of all confidence intervals for the twelve-subject treatments (the bottom row) are
approximately one or above one.

Result 2 confirms Result 1 in establishing ambiguity loving in first price auctions. Apart from the two
assumptions discussed earlier, the structural estimation restricts the ambiguity parameter θ to be the same
across individuals in any given round. In the next subsection, we will relax this assumption by modelling
individual learning.

4.3 Learning in First Price Auctions

We extend the structural approach by explicitly allowing bidders to individually update their priors about the
ambiguity parameter θ based on past observations of their own valuations and the auction outcomes. Unlike
mainstream learning literature, which focuses on short, intermediate and long-run learning dynamics, the
objective of this analysis is to verify Result 2 by using the entire set of time series data to infer a bidder’s
prior distribution before the auction. Since there is no consensus on the appropriate updating rule in the
α-MEU or CEU framework, we use a standard SEU framework with Bayesian updating, a benchmark in
learning models. The theoretical derivation of this updating rule is in Appendix A. Here, we outline the
theory and the corresponding estimation procedure for our updating rule.

1. We assume that bidders start with some identical prior distribution over the parameter δ, which can
be parameterized using a beta distribution. A beta distribution incorporates special cases of inter-
ests, such as uniform, unimodal, and bimodal distributions, and has only two parameters, facilitating
computation.
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2. In each round, each bidder generates his Bayesian posterior using Bayes rule based on the following
signals about either his own valuation or his opponent’s valuation.

(a) A bidder observes his own valuation.

(b) In the case where he does not get an object and the object is sold, the bidder is informed of the
winning bid in his group and hence infers his opponent’s valuation by inverting the symmetric
bidding function.

(c) In the case where he does not get an object and the object is not sold, the bidder infers that his
opponent’s valuation is below the reserve price.

(d) In the case where the bidder gets the object, he infers that his opponent’s valuation does not
exceed his own valuation.

3. Each bidder’s actual posterior is a weighted average of his prior and his generated Bayesian posterior.
Note that this approach incorporates Bayesian updating and no updating as special cases. We allow
different posterior weights for the first type of signal (based on a bidder’s observation of his own valu-
ation) and for the other three types of signals (based on the bidder’s observation of auction outcomes),
referred to as Weight 1 and Weight 2, respectively.

4. For each parameter combination (two parameters of the beta distribution, Weight 1 and Weight 2),
we use the entire time series data set for each bidder to generate predicted bids based on the updating
theory outlined above. Then we search for the parameter combination that minimizes the sum of
squared deviations12 between the actual and generated bids. Weights 1 and 2 are searched on [0, 1]
with a step size of 0.2. For each combination of Weights 1 and 2, we use an algorithm similar
to hill-climbing to locate the minimum of the objective function over the two parameters of the beta
distribution. Our computation shows that, conditional on the two weights, the negative of the objective
function is single-peaked in the two parameters of the beta distribution.

Recall that in a standard SEU framework, a bidder has a single prior, i.e., in Eq. (5) δ = δ. Therefore,
in a SEU framework, bidders put less weight on the low value distribution if the estimated mean of δ < 0.5,
equal weight on the low and high value distributions if the estimated mean of δ = 0.5, and more weight on
the low value distribution if the estimated mean of δ > 0.5.

[Table 4 about here.]

Table 4 presents the results of the updating analysis for the eight-subject as well as the twelve-subject
treatments with unknown distributions. In each treatment, we estimate both the baseline and the lower
and upper bounds of the risk parameter β. For each estimation, we present the minimum sum of squared
deviations, the two parameters of the initial beta distribution (Par. 1 and Par. 2), the mean of the initial beta
distribution implied by the two parameters, and Weights 1 and 2. For each estimation, we also present the
percentiles (2.5, 5, 95 and 97.5) of the corresponding bootstrapped13 distribution of the implied mean.

RESULT 3 (Prior Inferred from Updating) : The mean of the estimated prior distribution of δ is 0.8438
in the eight-subject treatment and 0.7500 in the twelve-subject treatment. The hypothesis of subjects putting
more weight on the high value distribution is rejected for the twelve-subject treatment, but not for the eight-
subject treatment.

12We use mean squared deviation rather than maximum likelihood because we do not know the distribution of the bid residuals.
13In order to reduce the amount of computation, in the bootstrapping procedure, we use a grid of 0, 0.5 and 1 for the Weights 1

and 2. Background computations show that a reduction in the grid increases the minimum sum of squares by, at most, one percent.
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SUPPORT. The results in Table 4 indicate that for the eight-subject treatment and the baseline estimate of
β = 0.3622, the mean of the estimated prior is 0.8438, with a two-sided 95% bootstrapped confidence inter-
val of [0.1250, 0.9688]. For the twelve-subject treatment and the baseline estimate of β = 0.5651, the mean
of the estimated prior is 0.7500, with a two-sided 95% bootstrapped confidence interval of [0.5000, 0.8438].
Both point estimates suggest that bidders put more weight on the low value distribution. In addition, in the
twelve-subject treatment the one-sided confidence interval indicates that this result is statistically significant
at the 5% level. In the eight-subject treatment, the result is not statistically significant at the 5% level.

To summarize, we have used three different approaches to determine a bidder’s ambiguity attitude. The
first approach compares the mean bids in treatments with and without ambiguity and finds that bids are
lower in treatments with ambiguity, which implies ambiguity loving. The second approach estimates the
ambiguity parameter to be at least one, rejecting ambiguity aversion. Allowing for individual updating, we
again infer that the mean of the estimated initial prior distribution of δ is above 0.5 in both the eight and the
twelve-subject treatments. Combining all three approaches, we conclude that ambiguity aversion is rejected
in favor of ambiguity loving in first price auctions in our experimental setting.

4.4 Second Price Auctions

For second price auctions, we use a structural approach based on Proposition 4, which states that bidding
one’s true valuation is a weakly dominant strategy with or without ambiguity. To test this hypothesis, we
use an OLS regression with clustering at the session level. We use Bid as the dependent variable, and Value
as the only independent variable. We do not include a constant because of the theoretical prediction. We
conduct the estimation on treatments with known and unknown distributions for both the early (1-5, and
1-10) and later rounds (11-30). We combine both the Known and Unknown treatments in one regression to
gain additional efficiency. Results are presented in Table 5.

[Table 5 about here.]

RESULT 4 (Effects of Ambiguity in Second Price Auctions) : Ambiguity has no significant effect on
bids in earlier rounds or later rounds. However, in rounds 1–10 of the Known treatment and rounds 11–30
of both treatments, subjects bid significantly more than their valuations.

SUPPORT. Table 5 presents the OLS regression results for second price auctions. The coefficient estimates
show how much subjects bid compared to their valuations. The standard errors are in parentheses. The aster-
isks next to the standard errors indicate the significance levels in one-sided Wald tests of the null hypothesis
of bids being equal to values against the alternative hypothesis of bids exceeding values. The null hypothesis
is rejected at the 5% significance level in rounds 1–10 of the Known treatment and rounds 11–30 of both
treatments. The last line of the table displays the Wald χ2 statistics for the equality of coefficients between
the known and unknown treatments for the early and later rounds, respectively. None of these statistics is
significant at the 10% significance level.

The finding that ambiguity has no effects on bidding behavior in second price auctions confirms our
theoretical prediction. The finding that participants overbid is consistent with previous experimental findings
(Kagel, Harstad and Levin (1987)). Interestingly, the extent of overbidding increases in later rounds, which
not only confirms that participants do not seem to learn the dominant strategy, but also indicates that they
depart further from the dominant strategy in later rounds.

4.5 Auctioneer Behavior: Reserve Price Setting

Having examined the effects of ambiguity on bidder behavior in the two auction mechanisms, we now turn
to auctioneer behavior.
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We first characterize the optimal reserve price from the auctioneer’s perspective. In our experiment, the
auctioneer always knows the true distribution of bidder valuations. We assume that the auctioneer also has
a CRRA utility function, u(x) = xλ, where λ > 0. Note that the auctioneer’s risk parameter, λ, could differ
from the bidders’ risk parameter, β. In first price auctions, the optimal reserve price depends on the risk
attitudes of both the auctioneer (λ) and the bidders (β), as well as on the ambiguity parameter, θ. Given this
set of parameters, we compute the optimal reserve price, presented in Table 7. In second price auctions, we
can characterize the auctioneer’s optimal reserve price analytically, presented in the following proposition.

Proposition 5 In second price auctions, for any values of β, λ ∈ (0, 1], the optimal reserve price is given
by min{ 1

θ0

λ
λ+1 , 0.5}, where θ0 = δ0 + 1

2 = 1.2.

Proof: See Appendix A.
Since the auctioneer always knows the true distribution of bidder valuations in our experimental setting,

Propositions 4 and 5 together imply that the optimal reserve price in the second price auction is the same
with or without ambiguity.

For risk averse or risk neutral bidders, we generate the following hypotheses, derived from Propositions
4 and 5 as well as from numerical computations.

HYPOTHESIS 1 In a first price auction, the optimal reserve price should not exceed 0.4167 in treatments
without ambiguity. It should not exceed 0.44 in treatments with ambiguity. In a second price auction, the
optimal reserve price should not exceed 0.4167 in all treatments.

[Table 6 about here.]

Hypothesis 1 is shown numerically in Table 6. Table 6 reports the optimal reserve price for first price
auctions for each given set of risk parameters (β and λ) as well as the auctioneer estimate of the bidders’
ambiguity parameter, θ. The pattern in Table 6 is consistent with Proposition 5 of Riley and Samuelson
(1981), which states that risk-neutral auctioneer’s optimal reserve price is a declining function of the degree
of bidder risk aversion. The last column of Table 6 reports the optimal reserve price for second price
auctions, computed directly from Proposition 5. The computational procedure leading to results in Table 6
is in Appendix A.

HYPOTHESIS 2 In a first price auction, the optimal reserve price is lower (higher) in the case with
ambiguity than in the case without, if with ambiguity the seller believes that bidders put less (more) weight
on the low value distribution than the actual weight of δ0 = 0.7, or θ < 1.2 (θ > 1.2).

Hypothesis 2 is shown numerically in Table 6. Hypothesis 2 states that, for fixed risk parameters β and
λ, the optimal reserve prices increase with θ. This can be seen from the table, since, along each row, the
optimal reserve prices increase as θ increases.

HYPOTHESIS 3 In a second price auction, the optimal reserve price is the same with or without ambigu-
ity.

Hypothesis 3 follows immediately from Proposition 4.

HYPOTHESIS 4 Without ambiguity, the optimal reserve price in a first price auction is less than that in a
second price auction.

Hypothesis 4 can be obtained by comparing the two boldfaced columns in Table 6.
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HYPOTHESIS 5 With ambiguity, the optimal reserve price in a first price auction is less than that in a
second price auction, when the auctioneer believes that bidders put less weight on the low value distribution
than the actual weight of δ = 0.7.

Hypothesis 5 is derived from a combination of Hypotheses 2, 3 and 4.

[Figure 4 about here.]

Figure 4 presents the mean reserve price plus/minus one standard deviation in each of the four treat-
ments. The dashed line is the maximum reserve price predicted by theory in each treatment. Two patterns
are immediate. First, in all treatments except U112, mean reserve prices for individual rounds are often
above the maximum predicted by theory. Second, there does not appear to be much learning, as we do not
observe any reduction in the standard deviations. We formally test and present the results below.

[Table 7 about here.]

Table 7 reports the average reserve price in early rounds (1–5) and over all rounds (1–30) for each session
in each treatment. The last two columns report the alternative hypotheses and the results of the one-tailed
permutation tests. In summarizing the results, we use the shorthand ∼ to denote a result where the null
hypothesis of equality cannot be rejected at the ten percent significance level. We use FPA for first price
auctions, and SPA for second price auctions.

RESULT 5 (Reserve Price) :

1. In ten out of twenty independent sessions, the average reserve price is above the upper bounds of the
optimal reserve price.

2. Effects of information conditions:

(a) FPA: no ambiguity > ambiguity, significant in early rounds and over all rounds.

(b) SPA: no ambiguity < ambiguity, significant in early rounds; no ambiguity ∼ ambiguity over all
rounds.

3. Effects of mechanisms:

(a) Without ambiguity: FPA > SPA, significant in early rounds; FPA ∼ SPA over all rounds.

(b) With ambiguity: FPA < SPA, significant in early rounds and over all rounds.

SUPPORT. The last column of Table 7 reports the results of the one-sided permutation tests.
Part 1 of Result 5 shows that in only half of the sessions, the average reserve price is within the limits

predicted by Hypothesis 1. In particular, in three treatments (K112, K212 and U212), the session average
reserve prices are too high compared to the optimal reserve price predicted by theory. From Figure 4, the
mean reserve price in second price auctions increases over time, consistent with overbidding which increases
over time (Table 5). Compared with K112, the mean reserve price in U112 is always below the theoretical
maximum, consistent with lower bids in first price auctions with ambiguity.

Part 2 (a) is consistent with Hypothesis 2 if the auctioneers believe that bidders weigh the high value
distribution more than the actual weight. Part 2 (b) is consistent with Hypothesis 3 except in the early
rounds. Interestingly, Part 3 (a) is not consistent with Hypothesis 4, which predicts that, without ambiguity,
the optimal reserve price in a second price auction is more than that in a first price auction. Indeed, we find
that Hypothesis 4 is reversed in the early rounds, and that the average reserve price between FPA and SPA
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is indistinguishable over all rounds. Finally, the finding that, with ambiguity, second price auctions have a
higher reserve price than first price auctions (Part 3 (b)) is consistent with Hypothesis 5.

Both Parts 2 (a) and 3 (b) of Result 5 suggest that auctioneers believe that the bidders put more weight
on the high value distribution than the actual weight. However, this finding does not imply that auctioneers
believe that bidders are ambiguity averse, since it includes the case of bidders having a uniform prior (or
θ = 1).

All these results are individual level results, regarding how ambiguity affects bidder and auctioneer
behavior. We now turn to aggregate results, which have important implications for auction design.

4.6 Revenue, Earnings and Efficiency

In this subsection, we present aggregate results. Specifically, we examine the effects of the auction mech-
anisms (first vs. second price auctions), information conditions (ambiguity vs. no ambiguity treatments),
and auctioneers (eight- vs. twelve-subject treatments) on auctioneer revenue, bidder earnings and overall
auction efficiency.

In most previous auction experiments, the auctioneer’s role is either completely ignored (i.e., the reserve
price is set to zero), or the experimenter is the auctioneer (e.g., Lucking-Reiley 2000b). In contrast, in
our twelve-subject treatments, subjects are auctioneers, thus enabling revenue comparisons across different
treatments with endogenous reserve prices. With a zero reserve price, revenue is a direct consequence of
bidder behavior, i.e., the higher the bids, the higher the revenue. However, this relationship is not necessarily
true with auctioneers present, since revenue is affected by both bidding behavior and reserve prices.

RESULT 6 (Revenue) : Without ambiguity, FPA generates significantly higher revenue than SPA. With
ambiguity and without auctioneers, FPA again generates significantly higher revenue than SPA. With ambi-
guity and active auctioneers, however, FPA and SPA generates the same amount of revenue.

[Table 8 about here.]

SUPPORT. Table 8 presents the average revenue in the early rounds (1-5) and over all thirty rounds for
each session in each treatment. The last two columns report the alternative hypotheses and results of the
one-tailed permutation tests for the effects of auction mechanisms and information conditions. The last two
rows report the same information for the effects of auctioneers.

Result 6 is consistent with theory. The Revenue Equivalence Theorem states that, without ambiguity
and with risk neutrality, FPA and SPA generate the same expected revenue. With risk aversion, bidders bid
more in the FPA but not in the SPA; therefore, we obtain the usual result that FPA generates more revenue
than the SPA. This results also holds when ambiguity is introduced. When, in addition, active auctioneers
are introduced, the revenue dominance of the first price auction disappears.

In addition, we also observe that in FPA in the early rounds of the eight-subject treatment, revenue
is significantly less when ambiguity is introduced, a consequence of ambiguity-loving bidders. In SPA,
ambiguity does not affect revenue over all rounds of both the eight- and the twelve-subject treatments,
which is consistent with theory. Finally, we find that the presence of auctioneers reduces FPA revenue. In
first price auctions, the auctioneers would have been significantly better off if they were forced to set a zero
reserve price. This is a consequence of auctioneers setting high reserve prices discussed in the previous
subsection.

Closely related to auctioneer revenue is bidder earnings. We expect auction mechanisms and information
conditions to have opposite effects on bidder earnings compared to auctioneer revenue. We also expect
auctioneers to reduce bidder earnings.

[Table 9 about here.]
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Table 9 presents the average bidder earnings in early rounds (1-5) and over all thirty rounds for each
session in each treatment. The last two columns report the alternative hypotheses and results of the one-
tailed permutation tests for the effects of auction mechanisms and information conditions. The last two rows
report the same information for the effects of auctioneers. We find that bidder earnings are significantly
higher in a second price auction compared to a first price auction. The fact that auctioneers significantly
reduce bidder earnings reflects the level of reserve prices.

The last group level result we examine is efficiency. Following the tradition in the auction literature, we
define efficiency as equal to one hundred percent if the object goes to the bidder with the higher valuation.
We therefore measure the frequency with which the bidder with the higher valuation wins the object. The
session level average is reported in Table 10.

RESULT 7 (Efficiency) : Without auctioneers, the average efficiency is 88.83%. With auctioneers, the
average efficiency is significantly reduced (to 71.12%). With ambiguity, FPA is significantly more efficient
than SPA.

[Table 10 about here.]

SUPPORT. Table 10 presents the average efficiency for each session in each treatment and the results of the
one-sided permutation tests. For each treatment, the difference between the twelve-subject and eight-subject
treatments is so obvious that any statistical test is superfluous.

Theoretically, both first and second price auctions should yield one hundred percent efficiency under a
zero reserve price. Without auctioneers, we find that average efficiency is fairly close to 90%. This finding
is largely consistent with theory and previous experiments. However, in the twelve-subject treatments,
efficiency is affected by the reserve prices. For example, with ambiguity, average reserve price in FPA is
significantly less than that in SPA, which leads to a higher efficiency in FPA. The fact that the presence
of active auctioneers significantly reduces efficiency suggests that the high efficiency estimates of previous
experiments might have been an artifact of a zero reserve price.

5 Conclusions

In many real world auctions, such as Internet auctions, bidder information regarding other bidders’ valu-
ations is vague. To explore the effect of this vagueness on bidder and auctioneer behavior, we study first
price and second price sealed bid auctions with independent private values, where the distribution of bidder
valuation is not known. We derive the symmetric equilibrium using the α-MEU framework. We then test
our theoretical predictions to examine how ambiguity affects bidder and auctioneer behavior and to reassess
the ranking of the first and second price sealed bid auctions.

Previous experimental studies on ambiguity mostly focus on Ellsberg individual choice experiments,
while previous auction experiments mostly assume that the distribution of bidder valuations is common
knowledge. Our study extends the experimental auction literature to a more realistic setting with ambiguity.
It also extends studies of ambiguity to an important applied setting, to determine whether findings from
individual choice experiments are robust in the auction context.

Contrary to the results of many previous studies in Ellsberg urn experiments, in our experimental auction
setting, ambiguity aversion is rejected in favor of ambiguity loving. This surprising finding suggests that
decision makers’ attitudes toward ambiguity are context dependent.

Finally, we extend previous auction experiments by using subjects as auctioneers. We study how auction-
eers affect bidder behavior, revenue, earnings and efficiency. Our findings show that auctioneers set reserve
prices higher than the theoretical prediction, with interesting consequences for auctioneer revenue, bidder
earnings and auction efficiency. Specifically, auctioneers reduce revenue in first price auctions compared
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to treatments without auctioneers. High reserve prices also reduce bidder earnings and auction efficiency.
With ambiguity-loving bidders and with real auctioneers, the first price and second price auctions generate
the same amount of revenue.

These findings have important implication for auction design in settings with ambiguity (and auction-
eers). Our results suggest that from the revenue perspective, the designer ought to be indifferent between
first and second price auctions. If efficiency is the most important objective, the designer ought to choose
first price auctions.
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APPENDIX A.

Derivation of Eq. (2): Conditional on δ ∈ [0, 1], the distribution of the opponent’s valuations is given by
δF 1 + (1 − δ) F 2. Then, in light of the α-MEU theory, bidder i’s utility is a weighted average of the utility
of a maxmin EU bidder (weight α) and a maxmax EU bidder (weight 1−α), where the set of beliefs over δ
is given by ∆. Then, conditional on the opponent strategy being sj and using the shorthand notation πi for
πi [Vi, bi, sj(Vj , r), r], the bidder i’s payoff U(bi; Vi, r, sj) is given by

Ui(bi; Vi, r, sj) = α min
G∈∆

{∫ 1

0

∫ 1

0

u (πi) d
[
δF 1(Vj) + (1 − δ) F 2(Vj)

]
dG (δ)

}
+ (1 − α) max

G∈∆

{∫ 1

0

∫ 1

0

u (πi) d
[
δF 1(Vj) + (1 − δ) F 2(Vj)

]
dG (δ)

}
= α min

G∈∆

{(∫ 1

0

δdG (δ)

) [∫ 1

0

u (πi) dF 1(Vj)

]
+

(∫ 1

0

(1 − δ) dG (δ)

) [∫ 1

0

u (πi) dF 2(Vj)

]}
+ (1 − α)

{
max
G∈∆

(∫ 1

0

δdG (δ)

) [∫ 1

0

u (πi) dF 1(Vj)

]
+

(∫ 1

0

(1 − δ) dG (δ)

) [∫ 1

0

u (πi) dF 2(Vj)

]}
= α

{
δ

[∫ 1

0

u (πi) dF 1(Vj)

]
+ (1 − δ)

[∫ 1

0

u (πi) dF 2(Vj)

]}
+ (1 − α)

{
δ

[∫ 1

0

u (πi) dF 1(Vj)

]
+ (1 − δ)

[∫ 1

0

u (πi) dF 2(Vj)

]}
=

∫ 1

0

u (πi) dFα(Vj)

= u (Vi − bi) Fα[s−1
j (bi, r)]χ{bi≥r},

where Fα =
(
αδ + (1 − α) δ

)
F 1 +

[
1 − (

αδ + (1 − α) δ
)]

F 2, and χ{bi≥r} is an indicator function.

Proof of Proposition 1: By (2), bidder i solves

si(Vi, r) ∈ arg max
bi∈[0,∞)

u (Vi − bi) Fα

[
s−1
j (bi, r)

]
χ{bi≥r}.

If Vi < r, bidder i can always obtain zero utility by bidding below r. On the other hand, bidding at or above
r can only generate negative or zero utility. As a result, si(Vi, r) < r when Vi < r. If Vi > r, bidding
at or below r or at or above Vi leads to zero or negative utility. On the other hand, bidding between r and
Vi can only generate positive or zero utility. As a result, the range of undominated bids, when Vi > r, is
characterized by r < si(Vi, r) < Vi. If Vi = r, bidding above r can only generate zero or negative utility.
As a result, si(Vi, r) ≤ r when Vi < r. Furthermore, when Vi > r, the bidding function of bidder i is
characterized by the following first order condition:

−u′ [Vi − si(Vi, r)]Fα

{
s−1
j [si(Vi, r), r]

}
+

u [Vi − si(Vi, r)]F ′
α

{
s−1
j [si(Vi, r), r]

}
∂

∂Vj
sj

(
s−1
j [si(Vi, r), r] , r

) = 0.

In a symmetric equilibrium si = sj = s, and hence if follows that if V > r,

−u′ [V − s(V, r)] Fα(V ) +
u [V − s(V, r)] F ′

α(V )
∂

∂V s (V, r)
= 0,

which can be rewritten as
∂

∂V
s (V, r) =

F ′
α (V )

Fα (V )
u [V − s(V, r)]
u′ [V − s(V, r)]

.
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Proof of Proposition 3: Fix r. First, for all V such that r < V ≤ 1
2 , Corollary 1 shows that

∂s

∂V
(V, r, θ) =

g [V − s(V, r, θ)]
V

,

and hence the functional form of s(V, r, θ) is independent of θ.
Now consider all V such that v < V ≤ 1, where v ≡ max

{
r, 1

2

}
. Corollary 1 shows that for this range

of values
∂s

∂V
(V, r, θ) = g [V − s(V, r)] h(V, θ). (7)

Suppose, by contradiction, that there exist V0 ∈ (v, 1] and θ1, θ2 ∈ [0.5, 1.5], θ1 < θ2, such that s(V0, r, θ1) <
s(V0, r, θ2). Define the set M as

M ≡ {V ∈ (v, V0) : s(V, r, θ1) = s(V, r, θ2)} ∪ {v}.

By continuity of s(·, r, θ), M is a compact set, and hence m ≡ max(M) is well-defined. This continuity
property also implies that s(V, r, θ1) < s(V, r, θ2) for all V ∈ (m, V0]. But because g(·) is strictly increas-
ing, h(V, θ) is strictly decreasing in θ, and, by construction, s(m, r, θ1) = s(m, r, θ2), it follows from (7)
that

s(V0, r, θ1) = s(m, r, θ1) +
∫ V0

m
g [V − s(V, r, θ1)] h(V, θ1)dV

> s(m, r, θ2) +
∫ V0

m
g [V − s(V, r, θ2)] h(V, θ2)dV

= s(V0, r, θ2),

which is a contradiction. Therefore it must be the case that s(V, r, θ1) ≥ s(V, r, θ2) for all V ∈ (v, 1] and
θ1, θ2 ∈ [0.5, 1.5], θ1 < θ2.

Now suppose by contradiction that there exists V0 ∈ (v, 1] and θ1, θ2 ∈ [0.5, 1.5], θ1 < θ2, such that
s(V0, r, θ1) = s(V0, r, θ2). Since h(V, θ) is continuous, positive, and strictly decreasing in θ, there must
exist ε > 0 and γ > 0 such that

h(V, θ2)
h(V, θ1)

<
1

1 + ε
for all V ∈ (V0 − γ, V0).

In addition, since s(V, r, θ) is continuous in V , g(·) is continuous, positive, and strictly increasing, s(V, r, θ1) ≥
s(V, r, θ2) for all V ∈ (v, V0], there must exist δ > 0 such that

g [V − s(V, r, θ2)]
g [V − s(V, r, θ1)]

< 1 + ε for all V ∈ (V0 − δ, V0).

But then it follows that

g [V − s(V, r, θ2)] h(V, θ2) < g [V − s(V, r, θ1)] h(V, θ1) for all V ∈ (V0 − min(δ, γ), V0) .

This result, combined with the fact that s [V0 − min(δ, γ), r, θ1] ≥ s [V0 − min(δ, γ), r, θ2], implies that

s(V0, r, θ1) = s [V0 − min(δ, γ), r, θ1] +
∫ V0

V0−min(δ,γ)
g [V − s(V, r, θ1)] h(V, θ1)dV

> s [V0 − min(δ, γ), r, θ2] +
∫ V0

V0−min(δ,γ)
g [V − s(V, r, θ2)] h(V, θ2)dV

= s(V0, r, θ2),
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which is a contradiction. Therefore it must be the case that s(V, r, θ1) > s(V, r, θ2) for all V ∈ (v, 1] and
θ1, θ2 ∈ [0.5, 1.5], θ1 < θ2, meaning that s(V, r, θ1) is strictly decreasing in θ when V ∈ (v, 1].

Proof of Corollary 2: Substituting Eq. (4) into Eq. (3) gives:

∂

∂V
s (V, r) =

{
1
β [V − s (V, r)] 1

V if r < V ≤ 1
2

1
β [V − s (V, r)] 2−θ

θ−1+(2−θ)V if max
{
r, 1

2

}
< V ≤ 1 .

The solution to this differential equation is:

s (V, r) =

 c1V
− 1

β + V
1+β if r < V ≤ 1

2
V (θ−2)+β(θ−1)

(θ−2)(1+β) + c2 [θ − 1 + (2 − θ) V ]−
1
β if max

{
r, 1

2

}
< V ≤ 1

,

where c1 and c2 are determined using the boundary condition lim
V ↓r

s(V, r) = r.

We first consider the case r < 1
2 . In this case

c1r
− 1

β +
r

1 + β
= r ⇒ c1 =

β

1 + β
r

1+β
β .

Then, by continuity at V = 1
2 ,

β

1 + β
r

1+β
β

(
1
2

)− 1
β

+
1

2 (1 + β)
=

1
2 (1 + β)

+
β

1 + β

θ − 1
θ − 2

+ c2

(
θ

2

)− 1
β

,

implying

c2 =
β

1 + β

[
r

1+β
β

(
1
2

)− 1
β

+
θ − 1
2 − θ

] (
θ

2

) 1
β

.

Next consider the case r ≥ 1
2 . In this case, the boundary condition lim

V ↓r
s(V, r) = r. gives:

r (θ − 2) + β (θ − 1)
(θ − 2) (1 + β)

+ c2 (θ − 1 + (2 − θ) r)−
1
β = r,

implying

c2 =
β

(2 − θ) (1 + β)
[θ − 1 + (2 − θ) r]

1+β
β .

So we can write the bidding function as follows:

s (V, r) =


V

1+β + β
1+β r

1+β
β V

− 1
β if r < V ≤ 1

2

V
1+β + β

1+β
θ−1
θ−2 + β

1+β

[
r

1+β
β 2

1
β + θ−1

2−θ

] (
θ
2

) 1
β [θ − 1 + (2 − θ) V ]−

1
β if r < 1

2 < V ≤ 1
V

1+β + β
1+β

θ−1
θ−2 + β

(2−θ)(1+β) [θ − 1 + (2 − θ) r]
1+β

β [θ − 1 + (2 − θ) V ]−
1
β if 1

2 ≤ r < V ≤ 1.

Proof of Proposition 5: Conditional on V1, V2, and r, the auctioneer’s revenue is given by:

RSPA (V1, V2, r) =
{

0 if max {V1, V2} < r
max {r, min{V1, V2}} if max {V1, V2} ≥ r

.
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Let EUA(r) denote the expected utility of the auctioneer when the reserve price is r. Then, for all r ∈ [0, 1],

EUA(r) =
∫ 1

0

∫ 1

0
max {r, min(V1, V2)}λ χ{max(V1,V2)≥r}dF (V2)dF (V1),

where χ{} is an indicator function. By symmetry of the distributions of V1 and V2, this can be rewritten as:

EUA(r) = 2
∫ 1

0

∫ 1

0
max {r, V2}λ χ{V1≥r}χ{V1≥V2}dF (V2)dF (V1)

= 2
∫ 1

0

∫ 1

0

[
rλχ{V1≥r}χ{r≥V2} + V λ

2 χ{V1≥V2}χ{V2>r}
]
dF (V2)dF (V1)

= 2rλF (r) [1 − F (r)] + 2
∫ 1

0

∫ 1

0
V λ

2 χ{V2>r}χ{V1≥V2}dF (V1)dF (V2)

= 2rλF (r) [1 − F (r)] + 2
∫ 1

r
V λ

2 [1 − F (V2)] dF (V2)

Recall that the auctioneer always knows the true distribution of the valuations given by F = δ0F
1 +

(1 − δ0)F 2, where δ0 is the true weight placed on F 1. F can equivalently be expressed as

F (V ) =
{

θ0V if 0 ≤ V ≤ 1
2

(θ0 − 1) + (2 − θ0)V if 1
2 < V ≤ 1

,

where θ0 ≡ δ0 + 1/2. Then, since λ ∈ (0, 1], for all r ∈ (
1
2 , 1

)
∂EUA(r)

∂r
= 2λrλ−1 [(θ0 − 1) + (2 − θ0)r] (2 − θ0)(1 − r) + 2rλ(2 − θ0)2(1 − r)

− 2rλ [(θ0 − 1) + (2 − θ0)r] (2 − θ0) − 2rλ(2 − θ0)2(1 − r)

= 2rλ−1 [(θ0 − 1) + (2 − θ0)r] (2 − θ0)(1 − r)
[
λ − r

1 − r

]
< 0.

Since EUA(r) is continuous at r = 1, it follows that EUA(r) < EUA

(
1
2

)
for all r ∈ (

1
2 , 1

]
. Therefore,

setting r = 1/2 strictly dominates any r above 1/2. For r < 1/2,

∂EUA(r)
∂r

= 2λrλ−1θ0r(1 − θ0r) + 2rλθ0(1 − θ0r) − 2rλθ2
0r − 2rλθ0(1 − θ0r)

= 2rλθ0 [λ(1 − θ0r) − θ0r]
= 2rλθ0 [λ − (1 + λ)θ0r] .

Because EUA(r) is continuous at r = 1/2, this implies that EUA(r) is single-peaked on r ∈ [
0, 1

2

]
, with

the maximum at

r∗(λ) ≡ min
{

λ

θ0(1 + λ)
,
1
2

}
.

Because r = 1/2 strictly dominates any r above 1/2, it follows that the optimum reserve price for an
auctioneer with the risk parameter λ is r∗(λ).
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Bayesian Updating:
In this part, we outline the theoretical basis for our analysis of Bayesian updating. Let δ ≡ prob {V is drawn from F1} .
In the beginning of the auction, each bidder has a single prior belief distribution of δ. We denote this distri-
bution by G0 and its density (with respect to the Lebesgue measure) by g0. For each δ, the distribution of V
can be written as:

F δ (V ) = δF 1 (V ) + (1 − δ) F 2 (V ) .

Given this, the overall compounded prior over V is given by

F (V ) =
∫ 1

0
F δ (V ) dG0 (δ) .

Recall that:

F 1 (V ) =
{

3
2V if 0 ≤ V ≤ 1

2
1
2

3
2 +

(
V − 1

2

)
1
2 if 1

2 < V ≤ 1

=
3
2
V − max{V − 1

2
, 0}.

F 2 (V ) =
{

1
2V if 0 ≤ x ≤ 1

2
1
2

1
2 +

(
V − 1

2

)
3
2 if 1

2 < V ≤ 1

=
1
2
V + max{V − 1

2
, 0}.

Thus,

F δ (V ) = max
{

1
2
V,

3
2
V − 1

2

}
+ min {V, 1 − V } δ,

and the corresponding density is given by

f δ (V ) =
1
2

+ X{V ≥ 1
2
} +

[
1 − 2X{V ≥ 1

2
}
]
δ,

where X{V ≥ 1
2
} is the indicator function of the set {V ≥ 1

2}. Using this, we can compute F as:

F (V ) =
∫ 1

0
F δ (V ) dG0 (δ)

=
∫ 1

0

[
max

{
1
2
V,

3
2
V − 1

2

}
+ min {V, 1 − V } δ

]
dG0 (δ)

= max
{

1
2
V,

3
2
V − 1

2

}
+ min {V, 1 − V }µ0, (8)

where µ0 is the mean of the distribution G0.
However, given the availability of signals, each bidder successively updates 59 times during the entire

experiment (once each round after seeing his own valuation and once each round except the last after seeing
the outcome of that round’s auction - see the main text for details). We denote the sequence of these posterior
beliefs as G1,...,G59. Also, for each k ∈ {1, ..., 60} and t ∈ {0, ..., 59}, let

Mt(k) ≡
∫ 1

0
δkdGt(δ)

be the k-th noncentral moment of Gt.
The subsequent updating is based on two types of signals.
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First type of signal: In this case, a bidder observes his own valuation, V = a. This bidder will then update
his belief Gt over δ to Gt+1. Application of the Bayes rule gives:

gt+1 (δ) =
f δ (a) gt (δ)∫ 1

0 f δ̂ (a) dGt

(
δ̂
) =

1
2 + X{a≥ 1

2
} +

(
1 − 2X{a≥ 1

2
}
)

δ

1
2 + X{a≥ 1

2
} +

(
1 − 2X{a≥ 1

2
}
)

Mt(1)
gt (δ) ,

Using this formula, it follows that

Mt+1(k) =
∫ 1

0
δkg1 (δ) dδ =

(
1
2 + X{a≥ 1

2
}
)

Mt(k) +
(
1 − 2X{a≥ 1

2
}
)

Mt(k + 1)

1
2 + X{a≥ 1

2
} +

(
1 − 2X{a≥ 1

2
}
)

Mt(1)
. (9)

Second type of signal: In this case, a bidder observes that his opponent’s valuation V ≤ a. With the
notation analogous to Case 1, we get:

gt+1 (δ) =
F δ (a) gt (δ)∫ 1

0 F δ̂ (a) dGt

(
δ̂
) =

max
{

1
2a, 3

2a − 1
2

}
+ min {a, 1 − a} δ

max
{

1
2a, 3

2a − 1
2

}
+ min {a, 1 − a}Mt(1)

gt (δ) .

Using this formula, it follows that:

Mt+1(k) =
∫ 1

0
δkg1 (δ) dδ =

max
{

1
2a, 3

2a − 1
2

}
Mt(k) + min {a, 1 − a}Mt+1(k + 1)

max
{

1
2a, 3

2a − 1
2

}
+ min {a, 1 − a}Mt(1)

. (10)

In each case, in parallel to (8), the overall updated prior over valuations associated with Gt is given by:

Ft (V ) =
(

1
2

+ µt

)
V + (1 − 2µt) max

{
V − 1

2
, 0

}
, (11)

where µt ≡ Mt(1). Consequently, a theoretical bidding function after t rounds of updating can be obtained
by replacing Fα by Ft in Eq. (3), which gives the bidding function in Corollary 2 with θ replaced by µt+0.5.
Therefore, the sequence µ1, ..., µ59 derived from updating based on the personal experience of a particular
bidder is a sufficient statistic for a theoretical prediction of that bidder’s sequence of bids. To derive this
sequence of first moments, (9) and (10) show that, working backwards, it is necessary to know M59(1),
which in turn requires knowing M58(1) and M58(2), which in turn requires knowing M57(1), M57(2) and
M57(3), etc., all the way to M0(1),..., M0(60). Therefore, to operationalize this updating procedure, we
must specify the first sixty moments of G0.

In our application, we parameterize G0 by a two-parameter family of beta distributions for which the
density g0 is given by:

g0(δ) =
Γ(a + b)
Γ(a)Γ(b)

δa−1(1 − δ)b−1,

where the two parameters a and b are positive and Γ is the standard Gamma function defined by:

Γ(z) ≡
∫ ∞

0
uz−1e−udu, z > 0,

and obeying
Γ(z + 1) = zΓ(z), z > 0. (12)

Note that, since g0 must integrate to unity, it follows that:∫ 1

0
δc−1(1 − δ)d−1dδ =

Γ(c)Γ(d)
Γ(c + d)

(13)
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for any c, d > 0. Given the form of g0, it follows that, for any k ∈ {1, ..., 60},

M0(k) =
Γ(a + b)
Γ(a)Γ(b)

∫ 1

0
δa+k−1(1 − δ)b−1dδ

=
Γ(a + b)
Γ(a)Γ(b)

Γ(a + k)Γ(b)
Γ(a + b + k)

=
a(a + 1)...(a + k − 1)

(a + b)(a + b + 1)...(a + b + k − 1)
, (14)

where the second and third equality use (13) and (12), respectively.
In our estimation, we search for values of a and b common across all bidders that best approximate bidder

behavior over all rounds, using the above updating procedure. In addition, we introduce the possibility that
bidders do not “fully” update their priors based on observed signals. In particular, we allow bidder posteriors
to be weighted averages of their priors and their Bayesian posteriors. To separate the effect in updating based
on seeing own valuation from the effect based on seeing the auction outcome, we allow different weights on
Bayesian posteriors based on these two types of signals. Letting w1 ∈ [0, 1] be the weight on the Bayesian
posterior based on seeing one’s own valuation and w2 ∈ [0, 1] be the weight on the Bayesian posterior based
on seeing the auction outcome, (9) is now modified to:

Mt+1(k) = (1 − wi)Mt(k) + wi

∫ 1

0
δkg1 (δ) dδ

= (1 − wi)Mt(k) + wi

(
1
2 + X{a≥ 1

2
}
)

Mt(k) +
(
1 − 2X{a≥ 1

2
}
)

Mt(k + 1)

1
2 + X{a≥ 1

2
} +

(
1 − 2X{a≥ 1

2
}
)

Mt(1)
, (15)

where i ∈ {1, 2} as necessary, and (10) is now modified to:

Mt+1(k) = (1 − w2)Mt(k) + w2

∫ 1

0
δkg1 (δ) dδ

= (1 − w2)Mt(k) + w2
max

{
1
2a, 3

2a − 1
2

}
Mt(k) + min {a, 1 − a}Mt+1(k + 1)

max
{

1
2a, 3

2a − 1
2

}
+ min {a, 1 − a}Mt(1)

. (16)

These two recursive equations, together with (14) and the theoretical bidding function in Corollary 2 with θ
replaced by µt + 0.5, then serve as a theoretical basis of our updating estimation. It is parameterized by a
(Parameter 1), b (Parameter 2), w1 (Weight 1), and w2 (Weight 2), with the mean of the initial prior given
by M0(1) = a/(a + b).

Computation of the Optimal Reserve Price:
First price auction: Conditional on V1, V2, and r, the auctioneer’s revenue is given by:

RFPA (V1, V2, r) =
{

0 if max {V1, V2} < r
max {s (V1, r) , s (V2, r)} if max {V1, V2} ≥ r

,

or equivalently, using the fact that s(V, r) is strictly increasing in V ,

RFPA (V1, V2, r) =
{

0 if max {V1, V2} < r
s [max {V1, V2} , r] if max {V1, V2} ≥ r.

Recall that, the auctioneer always knows the true distribution of valuations given by F = 0.7F 1 + 0.3F 2,
or, equivalently,

F (V ) =
{

1.2V if 0 ≤ V ≤ 1
2

1
21.2 +

(
V − 1

2

)
0.8 if 1

2 < V ≤ 1
.
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Therefore, the distribution of max {V1, V2} is given by:

G (a) =
{

1.22a2 if 0 ≤ a ≤ 1
2

(0.2 + 0.8a)2 if 1
2 < a ≤ 1

,

with the associated density given by:

g(a) =
{

2.88a if 0 ≤ a ≤ 1
2

1.6 (0.2 + 0.8a) if 1
2 < a ≤ 1

.

Let EUA(r) denote the expected utility of the auctioneer when the reserve price is r. Then,

EUA(r) =
∫ 1

0

∫ 1

0

[
RFPA (V1, V2, r)

]λ
dF (V1)dF (V2)

=
∫ 1

0

∫ 1

0
s [max {V1, V2} , r]λ χ{max{V1,V2}≥r}dF (V1)dF (V2)

=
∫ 1

r
s (a, r)λ g(a)da.

After substituting for s (a, r), using the bidding function in Corollary 2, we search for r that maximizes
EUA(r), using the grid {0, 0.001, ..., , 0.999, 1} for both the integrand a and the reserve price r. The inte-
gration is performed by the trapezoid approximation. We repeat this procedure for values of the risk aversion
parameters β and λ on the grid {1/6, 2/6, ..., 1} and the ambiguity parameter θ on the grid {0.5, 0.6, ..., 1.5}.
The results are presented in Table 6, which shows that the optimal reserve price is strictly increasing in all of
β, λ, and θ. Therefore, the highest reserve price under risk aversion or risk neutrality of the bidders and the
auctioneers and under ambiguity of the bidders is approximately 0.44, and it is achieved for β = λ = 1 and
θ = 1.5. In treatments with known distributions, equilibrium bidding is governed by the bidding function
in Corollary 2 with θ = θ0 = 1.2. Hence the highest reserve price is approximately 0.4167, which can be
shown to be exactly equal to 1/2.4.

Second price auction: In this case the computation is straightforward by using the closed-form solution
in Proposition 5, with θ0 = 1.2. We repeat the computation for values of the risk parameter λ on the grid
{1/6, 2/6, ..., 1}. The results are presented in the last column of Table 6. Since r∗(λ) is strictly increasing
in λ, the highest possible theoretical prediction for the reserve price under risk aversion or risk neutrality of
the auctioneers is 1/2.4 ∼= 0.4167, regardless of the presence of ambiguity.
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APPENDIX B. INSTRUCTIONS

The complete instructions for the twelve-subject, first price auction with unknown distribution treatment are shown here.
Instructions for the twelve-subject, first price auction with known distribution treatment are identical except that x is replaced by
30 and that bidders are not asked to give an estimate of x. Instructions for the corresponding eight-subject treatments are identical
to their twelve-subject counterpart except that the parts concerning auctioneers are deleted.

Instructions for the second price auctions are identical to their first price counterpart except for “The Rules of the Auction and
Payoffs” section and the “Review Questions”, hence only those two parts are shown here.

Experiment Instructions – U112

Name PCLAB Total Payoff

Introduction

• You are about to participate in a decision process in which an object will be auctioned off for each group of participants
in each of 30 rounds. This is part of a study intended to provide insight into certain features of decision processes. If you
follow the instructions carefully and make good decisions you may earn a considerable amount of money. You will be paid
in cash at the end of the experiment.

• During the experiment, we ask that you please do not talk to each other. If you have a question, please raise your hand and
an experimenter will assist you.

Procedure

• You each have drawn a laminated slip, which corresponds to your PC terminal number. If the number on your slip is from
PCLAB 2 to PCLAB 9, you will stay in this room and you will be a bidder for the entire experiment. If the number on your
slip is from PCLAB 10 to PCLAB 13, you will go to Room 212 after the instruction, and you will be an auctioneer for the
entire experiment.

• In each of 30 rounds, you will be randomly matched with two other participants into a group. Each group has an auctioneer
and two bidders. You will not know the identities of the other participants in your group. Your payoff each round depends
ONLY on the decisions made by you and the other two participants in your group.

• In each of 30 rounds, each bidder’s value for the object will be randomly drawn from one of two distributions:

– High value distribution: If a bidder’s value is drawn from the high value distribution, then

∗ with 25% chance it is randomly drawn from the set of integers between 1 and 50, where each integer is equally
likely to be drawn.

∗ with 75% chance it is randomly drawn from the set of integers between 51 and 100, where each integer is
equally likely to be drawn.

For example, if you throw a four-sided die, and if it shows up 1, your value will be equally likely to take on an integer
value between 1 and 50. If it shows up 2, 3 or 4, your value will be equally likely to take on an integer value between
51 and 100.

– Low value distribution: If a bidder’s value is drawn from the low value distribution, then

∗ with 75% chance it is randomly drawn from the set of integers between 1 and 50, where each integer is equally
likely to be drawn.

∗ with 25% chance it is randomly drawn from the set of integers between 51 and 100, where each integer is
equally likely to be drawn.

For example, if you throw a four-sided die, and if it shows up 1, 2 or 3, your value will be equally likely to take on an
integer value between 1 and 50. If it shows up 4, your value will be equally likely to take on an integer value between
51 and 100.

– Therefore, if your value is drawn from the high value distribution, it can take on any integer value between 1 and 100,
but it is three times more likely to take on a higher value, i.e., a value between 51 and 100.

Similarly, if your value is drawn from the low value distribution, it can take on any integer value between 1 and 100,
but it is three times more likely to take on a lower value, i.e., a value between 1 and 50.

– In each of 30 rounds, each bidder’s value will be randomly and independently drawn from the high value distribution
with a predetermined chance of x%, and from the low value distribution with (100 − x)% chance. You will not be
told what x is. You will not be told which distribution your value is drawn from either. The other bidders’ values
might be drawn from a distribution different from your own. In any given round, the chance that your value is drawn
from either distribution does not affect how other bidders’ values are drawn.

Auctioneers will be informed of the value of x privately on their screen.
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• Each round consists of the following stages:

– Each auctioneer will set a minimum selling price, which can be any integer between 1 and 100, inclusive.

– Meanwhile, each bidder will be asked to give an estimate of the chance that the value of the other bidder in the
group is drawn from the high value distribution, i.e., an estimate of x. We then ask how confident you are about your
estimate. You can choose one among the following five categories: not confident at all, slightly confident, moderately
confident, fairly confident, and very confident.

– Bidders are informed of the minimum selling prices of their auctioneers, and then each bidder will simultaneously
and independently submit a bid, which can be any integer between 1 and 100, inclusive. If you do not want to buy,
you can submit any positive integer below the minimum selling price.

– The bids are collected in each group and the object is allocated according to the rules of the auction explained in the
next section.

– Bidders will get the following feedback on their screen: your value, your bid, the minimum selling price, the winning
bid, whether you got the object, and your payoff.

Auctioneers will get the following feedback: whether you sold the object, your minimum selling price, the bids, and
your payoff.

• The process continues.

Rules of the Auction and Payoffs

• Bidders: In each round,

– if your bid is less than the minimum selling price, you don’t get the object:
Your Payoff = 0

– if your bid is greater than or equal to the minimum selling price, and:

∗ if your bid is greater than the other bid, you get the object and pay your bid:
Your Payoff = Your Value - Your Bid;

∗ if your bid is less than the other bid, you don’t get the object:
Your Payoff = 0.

∗ if your bid is equal to the other bid, the computer will break the tie by flipping a fair coin. Therefore,

· with 50% chance you get the object and pay your bid:
Your Payoff = Your Value - Your Bid;

· with 50% chance you don’t get the object:
Your Payoff = 0.

• Auctioneers: In each round, you will receive two bids from your group.

– If both bids are less than your minimum selling price, the object is not sold, and :
Your Payoff = 0;

– if at least one bid is greater than or equal to your minimum selling price, you sell the object to the higher bidder and
Your Payoff = the Higher Bid.

• For example, if the minimum selling price is 1, bidder A bids 25, and bidder B bids 55, since 55 > 1 and 55 > 25, bidder
B gets the object. Bidder A’s payoff = 0; bidder B’s payoff = her value - 55; the auctioneer’s payoff = 55.

• There will be 30 rounds. There will be no practice rounds. From the first round, you will be paid for each decision you
make.

• Your total payoff is the sum of your payoffs in all rounds.

• Bidders: the exchange rate is $1 for points.

• Auctioneers: the exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there any questions?

Review Questions: you will have ten minutes to finish the review questions. Please raise your hand if you have any questions or if
you finish the review questions. The experimenter will check each participant’s answers individually. After ten minutes we will go
through the answers together.
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1. Suppose your value is 60 and you bid 62.
If you get the object, your payoff = .
If you don’t get the object, your payoff = .

2. Suppose your value is 60 and you bid 60.
If you get the object, your payoff = .
If you don’t get the object, your payoff = .

3. Suppose your value is 60 and you bid 58.
If you get the object, your payoff = .
If you don’t get the object, your payoff = .

4. The minimum selling price is 30 and your bid is 25, your payoff = .

5. True or false:

(a) If a bidder’s value is 25, it must have been drawn from the low distribution.

(b) If a bidder’s value is 60, it must have been drawn from the high distribution.

(c) You will be playing with the same two participants for the entire experiment.

(d) A bidder’s payoff depends only on his/her own bid.

(e) If you are an auctioneer and your minimum selling price is higher than both bids, your payoff will be zero.

Experiment Instructions – U212

· · · · · ·

Rules of the Auction and Payoffs

• Bidders: In each round,

– if your bid is less than the minimum selling price, you don’t get the object:
Your Payoff = 0

– if your bid is greater than or equal to the minimum selling price, and:

∗ if your bid is greater than the other bid, you get the object. The price you pay depends on the minimum selling
price and the other bid:

· if the other bid is greater than or equal to the minimum selling price, you pay the other bid:
Your Payoff = Your Value - the Other Bid;

· if the other bid is less than the minimum selling price, you pay the minimum selling price:
Your Payoff = Your Value - the Minimum Selling Price;

∗ if your bid is less than the other bid, you don’t get the object:
Your Payoff = 0.

∗ if your bid is equal to the other bid, the computer will break the tie by flipping a fair coin. Therefore,

· with 50% chance you get the object and pay the other bid:
Your Payoff = Your Value - the Other Bid;

· with 50% chance you don’t get the object:
Your Payoff = 0.

• Auctioneers: In each round, you will receive two bids from your group.

– If both bids are less than your minimum selling price, the object is not sold, and :
Your Payoff = 0;

– if both bids are greater than or equal to your minimum selling price, you sell the object to the higher bidder and
Your Payoff = the Lower Bid.

– if one bid is greater than or equal to your minimum selling price and the other bid is less than your minimum selling
price, you sell the object to the higher bidder and
Your Payoff = the Minimum Selling Price.

34



• For example, if the minimum selling price is 1, bidder A bids 25, and bidder B bids 55, since 55 > 1 and 55 > 25, bidder
B gets the object.
Bidder A’s payoff = 0;
bidder B’s payoff = bidder B’s value - bidder A’s bid = bidder B’s value - 25;
the auctioneer’s payoff = 25.

• There will be 30 rounds. There will be no practice rounds. From the first round, you will be paid for each decision you
make.

• Your total payoff is the sum of your payoffs in all rounds.

• Bidders: the exchange rate is $1 for points.

• Auctioneers: the exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there any questions?

Review Questions: you will have ten minutes to finish the review questions. Please raise your hand if you have any questions or if
you finish the review questions. The experimenter will check each participant’s answers individually. After ten minutes we will go
through the answers together.

1. Suppose the minimum selling price is 1, your value is 60, and you bid 62.
If the other bid is 59, you get the object. Your payoff = .
If the other bid is 61, you get the object. Your payoff = .
If the other bid is 70, you don’t get the object. Your payoff = .

2. Suppose the minimum selling price is 1, your value is 60, and you bid 60.
If the other bid is 55, you get the object. Your payoff = .
If the other bid is 60,

• with chance you get the object, your payoff = ;

• with chance you don’t get the object, your payoff = .

If the other bid is 70, you don’t get the object. Your payoff = .

3. Suppose the minimum selling price is 1, your value is 60, and you bid 57.
If the other bid is 55, you get the object. Your payoff = .
If the other bid is 58, you don’t get the object. Your payoff = .
If the other bid is 70, you don’t get the object. Your payoff = .

4. The minimum selling price is 30 and your bid is 25, your payoff = .

5. True or false:

(a) If a bidder’s value is 25, it must have been drawn from the low distribution.

(b) If a bidder’s value is 60, it must have been drawn from the high distribution.

(c) You will be playing with the same two participants for the entire experiment.

(d) A bidder’s payoff depends only on his/her own bid.

(e) If you are an auctioneer and your minimum selling price is higher than both bids, your payoff will be zero.
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Information No. Subjects Auction Treatment Exchange Rates Total No.
Conditions Per Session Mechanisms Abbreviation Bidders Auctioneers Subjects

8 1st Price K18 20 - 40
Known 8 2nd Price K28 20 - 40

Distribution 12 1st Price K112 12 60 60
12 2nd Price K212 12 60 60
8 1st Price U18 20 - 40

Unknown 8 2nd Price U28 20 - 40
Distribution 12 1st Price U112 12 60 60

12 2nd Price U212 12 60 60

Table 1: Features of Experimental Sessions

Treatment Round All v 0 ≤ v ≤ 0.5 0.5 < v ≤ 1
1-1 0.504 (40,40) 0.204 (26,19) 0.022 (14,21)
2-30 0.133 (5,5) 0.133 (5,5) 0.183 (5,5)
1-3 0.006 (5,5) 0.062 (5,5) 0.540 (5,5)

8-subject 4-30 0.310 (5,5) 0.183 (5,5) 0.133 (5,5)
1-5 0.012 (5,5) 0.038 (5,5) 0.310 (5,5)
6-30 0.242 (5,5) 0.310 (5,5) 0.133 (5,5)
1-30 0.133 (5,5) 0.183 (5,5) 0.183 (5,5)

1-1 0.555 (29,21) 0.89 (10,9) 0.680 (19,12)
2-30 0.012 (5,5) 0.012 (5,5) 0.038 (5,5)
1-3 0.062 (5,5) 0.460 (5,5) 0.075 (5,5)

12-subject 4-30 0.012 (5,5) 0.012 (5,5) 0.093 (5,5)
1-5 0.012 (5,5) 0.093 (5,5) 0.183 (5,5)
6-30 0.012 (5,5) 0.012 (5,5) 0.093 (5,5)
1-30 0.012 (5,5) 0.012 (5,5) 0.062 (5,5)

Table 2: Comparison of Bids with and without Ambiguity

Notes: 1. The table lists one-sided p-values for the Wilcoxon ranksum tests that bidders bid more under the known distribution than

under an unknown distribution of valuations.

2. To assure independence of individual observations, first-period only tests use all the observations individually, while all the other

tests use session means. Number of independent observations under the known and unknown distribution is listed in parentheses

for each test.
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Treatment Restriction on θ Sample Obs. β Coefficient Std. Error 95% Confidence Interval
K18 θ = 1.2 All Values 1200 0.3622 0.0242 0.3199 0.4160
K18 N/A Vit ≤ 0.5 742 0.3573 0.0191 0.3169 0.3900
K18 θ = 1.2 Vit > 0.5 458 0.3633 0.0262 0.3185 0.4234
K18 Unrestricted All Values 1200 0.3313 0.0203 0.2863 0.3625

(θ = 1.288 0.0549 1.1809 1.3914)

K112 θ = 1.2 r < Vit 637 0.5651 0.0427 0.4953 0.6621
K112 N/A r < Vit ≤ 0.5 192 0.4070 0.0666 0.3190 0.5783
K112 θ = 1.2 r ≤ 0.5 < Vit 384 0.5804 0.0513 0.4971 0.6919
K112 θ = 1.2 0.5 < r < Vit 61 0.4558 0.0641 0.3928 0.6126
K112 Unrestricted r < Vit 637 0.4855 0.1021 0.3727 0.7947

(θ = 1.3191 0.1417 0.9474 1.5051)
Note: All standard errors and confidence intervals are bootstrapped with adjustment for clustering at session level.

Table 3: Estimation of Bidders’ Risk Parameter (β)
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Treatments β MinSS Par. 1 Par. 2 Mean Weight 1 Weight 2 Confidence Interval
2.5 5 95 97.5

0.32 10.0273 0.0018 0.0002 0.9062 0 1 0.3438 0.5156 0.9805 0.9922
8-subject 0.3622 9.9766 0.0016 0.0003 0.8438 0 1 0.1250 0.2031 0.9570 0.9688

0.42 9.8495 0.5312 0.5312 0.5000 1 1 0.0703 0.0781 0.9082 0.9219
0.40 6.9534 0.0019 0.0001 0.9961 1 1 0.8516 0.8906 0.9980 0.9990

12-subject 0.5651 6.8936 24 8 0.7500 0 1 0.5000 0.5625 0.8359 0.8438
0.66 6.9470 19.5 12.5 0.6094 0 1 0.3125 0.3906 0.7031 0.7031

Notes:

1. Par. 1 and Par. 2 refer to the two parameters of the beta distribution, respectively.

2. Weights 1 and 2 are the weights on the Bayesian posteriors based on a bidder’s observations of his own valuations, and of auction

outcomes, respectively.

Table 4: Estimations of Initial Prior Distribution Using Updating

Dependent Variable: Bid in Second Price Auction
Rounds 1-5 Rounds 1-10 Rounds 11-30

Value (Known Case) 1.0199 1.0371 1.0627
(0.0140)* (0.0141)*** (0.0206)***

Value (Unknown Case) 1.0079 1.0127 1.0350
(0.0167) (0.0184) (0.0160)**

Observations 644 1249 2342
Test of Known=Unknonwn:

P-value of χ2(1) 0.5786 0.2826 0.2876
Notes:

1. Standard errors in parentheses are adjusted for clustering at the session level.

2. The asterisks next to the standard errors display significance in one-sided tests of the null hypothesis of the coefficient being

unity against the alternative hypothesis of the coefficient being more than unity.

3. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 5: Effects of Ambiguity on Bids in Second Price Auctions
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FPA: θ SPA
β λ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0.1192
2/6 0 0 0 0 0 0 0 0 0 0 0 0.2082
3/6 0 0 0 0 0 0 0 0 0 0 0 0.2778
4/6 0 0 0 0 0 0 0 0 0 0 0 0.3334
5/6 0 0 0 0 0 0 0 0 0 0 0 0.3787

1 0 0 0 0 0 0 0 0 0 0 0 0.4167
2/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0.1192

2/6 0 0 0 0 0 0 0 0 0 0 0 0.2082
3/6 0 0 0 0 0 0 0 0 0 0 0 0.2778
4/6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.3334
5/6 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.3787

1 0.0240 0.0240 0.0250 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300 0.0320 0.0340 0.4167
3/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0.1192

2/6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.2082
3/6 0.0200 0.0210 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0290 0.0300 0.2778
4/6 0.1010 0.1050 0.1100 0.1140 0.1200 0.1260 0.1320 0.1390 0.1470 0.1550 0.1650 0.3334
5/6 0.1710 0.1780 0.1860 0.1940 0.2030 0.2130 0.2230 0.2350 0.2470 0.2600 0.2740 0.3787

1 0.2250 0.2350 0.2460 0.2570 0.2680 0.2810 0.2940 0.3080 0.3220 0.3370 0.3540 0.4167
4/6 1/6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.1192

2/6 0.0380 0.0390 0.0410 0.0420 0.0440 0.0460 0.0480 0.0500 0.0520 0.0550 0.0580 0.2082
3/6 0.1200 0.1250 0.1300 0.1350 0.1410 0.1460 0.1530 0.1590 0.1660 0.1730 0.1810 0.2778
4/6 0.1890 0.1970 0.2050 0.2130 0.2220 0.2300 0.2390 0.2480 0.2580 0.2670 0.2780 0.3334
5/6 0.2430 0.2540 0.2640 0.2740 0.2850 0.2960 0.3060 0.3170 0.3280 0.3390 0.3500 0.3787

1 0.2870 0.3000 0.3120 0.3240 0.3360 0.3470 0.3590 0.3710 0.3830 0.3940 0.4060 0.4167
5/6 1/6 0.0120 0.0130 0.0130 0.0140 0.0140 0.0150 0.0150 0.0160 0.0160 0.0170 0.0170 0.1192

2/6 0.0930 0.0970 0.1000 0.1040 0.1080 0.1120 0.1160 0.1200 0.1250 0.1300 0.1350 0.2082
3/6 0.1720 0.1780 0.1850 0.1920 0.1990 0.2060 0.2130 0.2200 0.2270 0.2340 0.2410 0.2778
4/6 0.2340 0.2430 0.2520 0.2610 0.2690 0.2780 0.2870 0.2950 0.3040 0.3120 0.3200 0.3334
5/6 0.2830 0.2940 0.3050 0.3150 0.3250 0.3350 0.3440 0.3540 0.3630 0.3720 0.3800 0.3787

1 0.3230 0.3360 0.3480 0.3590 0.3700 0.3800 0.3900 0.4000 0.4100 0.4190 0.4280 0.4167
1 1/6 0.0370 0.0390 0.0400 0.0410 0.0430 0.0440 0.0460 0.0480 0.0490 0.0510 0.0530 0.1192

2/6 0.1290 0.1340 0.1380 0.1430 0.1480 0.1530 0.1580 0.1630 0.1680 0.1730 0.1780 0.2081
3/6 0.2040 0.2110 0.2190 0.2260 0.2330 0.2400 0.2470 0.2530 0.2600 0.2670 0.2730 0.2778
4/6 0.2620 0.2720 0.2810 0.2900 0.2980 0.3060 0.3140 0.3210 0.3290 0.3360 0.3430 0.3334
5/6 0.3090 0.3200 0.3300 0.3400 0.3490 0.3580 0.3670 0.3750 0.3820 0.3900 0.3970 0.3787

1 0.3470 0.3600 0.3710 0.3810 0.3910 0.4000 0.4090 0.4167 0.4250 0.4330 0.4400 0.4167

Table 6: Computed Optimal Reserve Price in First and Second Price Auctions
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Rounds 1-5 Session 1 Session 2 Session 3 Session 4 Session 5 H1 p-value
K112 0.4905 0.2285 0.4205 0.3870 0.4135 K1 > K2 0.0278**
U112 0.2310 0.2075 0.3160 0.4005 0.2500 U1 < U2 0.0476**
K212 0.2630 0.2700 0.3290 0.3155 0.2150 K1 > U1 0.0516*
U212 0.4990 0.3590 0.2360 0.3790 0.5690 K2 < U2 0.0278**

Rounds 1-30
K112 0.4571 0.2938 0.4493 0.3547 0.4341 K1 < K2 0.3611
U112 0.2535 0.1707 0.3295 0.3741 0.2522 U1 < U2 0.0000***
K212 0.4964 0.4651 0.3163 0.4763 0.2978 K1 > U1 0.0198**
U212 0.4448 0.5276 0.4222 0.4152 0.5164 K2 < U2 0.1548

Notes:

1. The null hypothesis is that the average reserve price is equal in the two treatments.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 7: Average Reserve Price and Results of Permutation Tests (one-tailed)

Rounds 1-5 Session 1 Session 2 Session 3 Session 4 Session 5 H1 p-value
K18 0.4665 0.4685 0.4235 0.5170 0.5485 K1 > K2 0.0040***
U18 0.3705 0.4795 0.4280 0.4420 0.3905 U1 > U2 0.0556*
K28 0.2815 0.2665 0.2600 0.3825 0.3795 K1 > U1 0.0397**
U28 0.2935 0.3870 0.4175 0.3130 0.3990 K2 < U2 0.0992*

Rounds 1-30
K18 0.4459 0.3869 0.4443 0.4648 0.4559 K1 > K2 0.0079***
U18 0.3638 0.4419 0.4255 0.4277 0.4499 U1 > U2 0.0159**
K28 0.3335 0.3265 0.3423 0.3948 0.3506 K1 > U1 0.2341
U28 0.2953 0.3653 0.3628 0.3131 0.3588 K2 > U2 0.3730

Rounds 1-5
K112 0.4430 0.4100 0.4625 0.3900 0.3485 K1 > K2 0.0238*
U112 0.3540 0.4840 0.4015 0.3085 0.3925 U1 < U2 0.2540
K212 0.2760 0.3405 0.3750 0.3925 0.3080 K1 > U1 0.2659
U212 0.4120 0.4840 0.3730 0.4550 0.3445 K2 < U2 0.0278**

Rounds 1-30
K112 0.3579 0.3918 0.3833 0.4053 0.3523 K1 > K2 0.0317**
U112 0.3740 0.3968 0.3927 0.3837 0.3844 U1 > U2 0.1190
K212 0.3554 0.3405 0.3786 0.3445 0.3434 K1 < U1 0.2063
U212 0.3540 0.3821 0.4146 0.3531 0.3455 K2 < U2 0.1111

Comparison of 8- and 12-subject treatments
K18 > K112 0.0119** U18 > U112 0.0278** K28 < K212 0.4008 U28 < U212 0.0873*

Notes:

1. The null hypothesis is that the average revenue is equal in the two treatments.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 8: Average Revenue and Results of Permutation Tests (one-tailed)
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Rounds 1-5 Session 1 Session 2 Session 3 Session 4 Session 5 H1 p-value
K18 0.0703 0.0653 0.0793 0.0635 0.0175 K1 < K2 0.0000***
U18 0.0550 0.0968 0.0555 0.0675 0.0518 U1 < U2 0.0159**
K28 0.1178 0.1530 0.1940 0.1500 0.1393 K1 < U1 0.3333
U28 0.0953 0.0690 0.0838 0.1860 0.1448 K2 > U2 0.0952*

Rounds 1-30
K18 0.0912 0.0914 0.0883 0.0788 0.0623 K1 < K2 0.0000***
U18 0.1194 0.0869 0.0785 0.0912 0.0785 U1 < U2 0.0079***
K28 0.1230 0.1426 0.1252 0.1152 0.1299 K1 < U1 0.2421
U28 0.1505 0.1115 0.1045 0.1540 0.1366 K2 < U2 0.3532

Rounds 1-5
K112 0.0405 0.0630 0.0723 0.0728 0.0635 K1 < K2 0.0079***
U112 0.0800 0.0543 0.0830 0.0343 0.0643 U1 > U2 0.3135
K212 0.0718 0.1165 0.1265 0.0853 0.1165 K1 < U1 0.2421
U212 0.0088 -0.0028 0.0705 0.1198 0.0600 K2 > U2 0.0357**

Rounds 1-30
K112 0.0601 0.0774 0.0670 0.0773 0.0663 K1 < K2 0.1230
U112 0.0882 0.0730 0.0831 0.0740 0.0777 U1 < U2 0.3492
K212 0.0665 0.0739 0.1091 0.0692 0.0943 K1 < U1 0.0397**
U212 0.0800 0.0223 0.0780 0.0899 0.0768 K2 > U2 0.2262

Comparison of 8- and 12-subject treatments
K18 > K112 0.0516* U18 > U112 0.0873* K28 > K212 0.004*** U28 > U212 0.004***

Notes:

1. The null hypothesis is that average earning is equal in the two treatments.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 9: Bidder Earnings in Early rounds and Over All Rounds

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 H1 p-value
K18 0.8667 0.9083 0.9167 0.9083 0.8750 K1 > K2 0.3373
U18 0.8833 0.8750 0.9000 0.8917 0.9083 U1 > U2 0.3214
K28 0.8583 0.9167 0.8917 0.8833 0.9000 K1 > U1 0.3810
U28 0.9333 0.7833 0.8250 0.9000 0.9417 K2 > U2 0.3413
K112 0.6500 0.7000 0.6583 0.7583 0.6417 K1 < K2 0.1429
U112 0.7583 0.8833 0.7417 0.7583 0.7833 U1 > U2 0.0159**
K212 0.6583 0.6917 0.8083 0.6500 0.7917 K1 < U1 0.0040***
U212 0.6333 0.5750 0.7667 0.7083 0.6083 K2 > U2 0.1190

Notes:

1. The null hypothesis is that efficiency is equal in the two treatments.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 10: Efficiency in 8-subject and 12-subject Treatments and Results of Permutation Tests (one-tailed)

41



Figure 1: Cumulative Distribution Functions F 1 and F 2
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