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This study clarifies the conditions under which learning in games produces con-
vergence to Nash equilibria in practice. We experimentally investigate the role of
supermodularity, which is closely related to the more familiar concept of strategic
complementarities, in achieving convergence through learning. Using a game from
the literature on solutions to externalities, we find that supermodular and “near-
supermodular” games converge significantly better than those far below the thresh-
old of supermodularity. From a little below the threshold to the threshold, the
improvement is statistically insignificant. Increasing the parameter far beyond the
threshold does not significantly improve convergence. (JEL C91, D83)

When do players learn to play Nash equilib-
ria? The answer to this important question will
help us identify when the outcomes predicted by
theory will be realized in competitive environ-
ments involving real people. This question has
been examined both theoretically (see Drew
Fudenberg and David Levine, 1998, for a sur-
vey) and experimentally (see Colin Camerer,
2003, for a survey).

According to the theoretical literature, games
with strategic complementarities (Paul Milgrom
and John Roberts, 1991; Milgrom and Chris
Shannon, 1994) have robust dynamic stability
properties: under numerous learning dynamics,

they converge to the set of Nash equilibria that
bound the serially undominated set. The learn-
ing dynamics include Bayesian learning, ficti-
tious play, adaptive learning, Cournot best
reply, and many others. These games include
the supermodular games of Donald Topkis
(1979), Xavier Vives (1985, 1990), Russell
Cooper and Andrew John (1988), and Milgrom
and Roberts (1990). In supermodular games,
each player’s marginal utility of increasing her
strategy rises with increases in her rival’s strat-
egies, so that (roughly) the players’ strategies
are “strategic complements.”

Existing literature recognizes that games with
strategic complementarities encompass impor-
tant economic applications of noncooperative
game theory, for example, macroeconomics un-
der imperfect competition (Cooper and John,
1988), search (Peter A. Diamond, 1982), bank
runs (Douglas W. Diamond and Philip H.
Dybvig, 1983; Andrew Postlewaite and Vives,
1987), network and adoption externalities
(Dybvig and Chester S. Spatt, 1983), and mech-
anism design (Chen, 2002).

Past experimental studies of learning and
mechanism design suggest that, in addition
to equilibrium efficiency, mechanism choice
should depend on whether players learn to play
the equilibrium and the nature of play on
the path to equilibrium. In reviewing the ex-
perimental literature on incentive-compatible
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mechanisms for pure public goods, Chen (forth-
coming) finds that mechanisms with strategic
complementarities, such as the Groves-Ledyard
mechanism under a high punishment parameter,
converge robustly to the efficient equilibrium
(Chen and Charles R. Plott, 1996; Chen and
Fang-Fang Tang, 1998). Conversely, those far
away from the threshold of strategic comple-
mentarities do not seem to converge (Vernon L.
Smith, 1979; Ronald M. Harstad and Michael
Marrese, 1982). In previous experiments, pa-
rameters are set either far away from the thresh-
old for strategic complementarities (e.g., Chen
and Tang, 1998) or very close to the threshold
(e.g., Josef Falkinger et al., 2000).1 These ex-
periments do not, however, systematically set
the parameters below, close to, at, and above the
threshold to assess the effect of strategic
complementarities on convergence. This is the
first such systematic experimental study of
games with strategic complementarities.2 Con-
sequently, this study answers three important
questions that the theory on games with strate-
gic complementarities does not address. First,
as the parameters approach the threshold of
strategic complementarities, will play converge
to equilibrium gradually or abruptly? Second, is
there a clear performance ranking among games
with strategic complementarities? Third, how
important is strategic complementarity com-
pared to other factors? The answer to the first
question can help us assess, a priori, whether a
game “close” to being supermodular, such as
the Falkinger mechanism (Falkinger, 1996),
might also have good convergence properties.
The answer to the second question will help us
choose the best parameters within the class of
games with strategic complementarities. The
answer to the third question will help us assess
the importance of strategic complementarities
in learning and convergence.

To address these questions, this study adopts
an experimental game from the literature on
solutions to externalities. Hal R. Varian (1994)

proposes a simple class of two-stage mecha-
nisms, the compensation mechanisms, in which
subgame-perfect equilibria implement efficient
allocations. In a generalized version of Varian’s
mechanism (John Cheng, 1998), one can vary,
without altering the equilibrium, a parameter
that determines whether the condition for stra-
tegic complementarities is satisfied.

There have been two experimental studies of
the compensation mechanisms, neither of which
adopts a version with strategic complementari-
ties. James Andreoni and Varian (1999) study
the mechanism in the context of the Prisoners’
Dilemma. They find that adding a commitment
stage to the standard Prisoners’ Dilemma game
nearly doubles the amount of cooperation to
two-thirds. Yasuyo Hamaguchi et al. (2003)
investigate a version with a larger strategy space
and find 20-percent Nash equilibrium play.

In this paper, we examine the compensation
mechanism in an economic environment with a
much larger strategy space. Furthermore, we
choose various versions to study systematically
the effect of strategic complementarities on
convergence.

The paper is organized as follows. Section I
introduces games with strategic complementa-
rities and presents theoretical properties of the
compensation mechanisms. Section II presents
the experimental design. Section III introduces
the set of hypotheses. Section IV presents ex-
perimental results on the level and speed of
convergence, as well as efficiency. Section V
presents the calibration of three learning mod-
els, validation of the models on a hold-out sam-
ple, and simulation of performance in the long
run using a calibrated learning model. Section
VI discusses our findings and Section VII
concludes.

I. Strategic Complementarity and the
Compensation Mechanisms

In this section, we first introduce games with
strategic complementarities and their theoretical
properties. We then introduce and analyze a
family of mechanisms in this class of games,
namely the compensation mechanisms.

Games with strategic complementarities
(Milgrom and Shannon, 1994) are those where,
given an ordering of strategies, higher actions
by one player provide an incentive for the other

1 Proofs of supermodularity of the Groves-Ledyard and
the Falkinger mechanisms are presented in Chen (in press).

2 By systematically varying the free parameter in the
Groves-Ledyard mechanism, Jasmina Arifovic and John O.
Ledyard (2001) study learning dynamics and mechanism
convergence using genetic algorithms compared with ex-
perimental data.
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players to take higher actions as well. These
games include supermodular games in which
the incremental return to any player from in-
creasing her strategy is a nondecreasing func-
tion of the strategy choices of other players
(increasing differences). Furthermore, if a play-
er’s strategy space has more than one dimen-
sion, components of a player’s strategy are
complements (supermodularity). Membership
in this class of games is easy to check. Indeed,
for smooth functions in �n, letting Pi be the
strategy space and �i be the payoff function of
player i, the following theorem characterizes
increasing differences and supermodularity.

THEOREM 1 (Topkis, 1978): Let �i be twice
continuously differentiable on Pi. Then �i has
increasing differences in (pi, pj) if and only if
�2�i/�pih�pjl � 0 for all i � j and all 1 � h �
ki and all 1 � l � kj; and �i is supermodular in
pi if and only if �2�i/�pih�pil � 0 for all i and all
1 � h � l � ki.

Increasing differences means that an increase
in the strategy of player i’s rivals raises her
marginal utility of playing a high strategy. The
supermodularity requirement ensures comple-
mentarity among components of a player’s
strategies and is automatically satisfied in a
one-dimensional strategy space. Note that a
supermodular game is a game with strategic
complementarities, but the converse is not
true.

Supermodular games have interesting theo-
retical properties. In particular, they are robustly
stable. Milgrom and Roberts (1990) prove that,
in these games, learning algorithms consistent
with adaptive learning converge to the set
bounded by the largest and the smallest Nash
equilibrium strategy profiles. Intuitively, a se-
quence is consistent with adaptive learning if
players “eventually abandon strategies that per-
form consistently badly in the sense that there
exists some other strategy that performs strictly
and uniformly better against every combination
of what the competitors have played in the
not-too-distant past” (Milgrom and Roberts,
1990). This includes numerous learning dynam-
ics, such as Bayesian learning, fictitious play,
adaptive learning, and Cournot best reply.
While strategic complementarity is sufficient
for convergence, it is not a necessary condition.

Thus, while games with strategic complemen-
tarities ought to converge robustly to the Nash
equilibrium, games without strategic comple-
mentarities may also converge under specific
learning algorithms. Whether these specific
learning algorithms are a realistic description of
human learning is an empirical question.

While the theory on games with strategic
complementarities predicts convergence to
equilibrium, it does not address four practical
issues. First, as the parameters of a game ap-
proach the threshold of strategic complementa-
rities, does play converge gradually or abruptly?
Second, is convergence faster further past the
threshold? Third, how important is strategic
complementarity compared to other features of
a game that might also induce convergence to
equilibrium? Last, for supermodular games with
multiple Nash equilibria, will players learn to
coordinate on a particular equilibrium? We
choose a game that allows us to answer the first
three questions. The fourth question has been
addressed by John Van Huyck et al. (1990) and
James Cox and Mark Walker (1998).3

Specifically, we use the compensation mech-
anism to study the role of strategic comple-
mentarities in learning and convergence to
equilibrium play. In the mechanism, each of two
players offers to compensate the other for the
“costs” of the efficient choice. Assume that
when player 1’s production equals x, her net
profit is rx � c(x), where r is the market price
and c� is a differentiable, positive, increasing,
and convex cost function. Production causes an
externality on player 2, whose payoff is �e(x),

3 Cox and Walker (1998) study whether subjects can
learn to play Cournot duopoly strategies in games with two
kinds of interior Nash equilibrium. Their type I duopoly has
a stable interior Nash equilibrium under Cournot best-reply
dynamics and therefore is dominance solvable (Herve Mou-
lin, 1984). Their type II duopoly has an unstable interior
Nash equilibrium and two boundary equilibria under
Cournot best-reply dynamics, and therefore is not domi-
nance solvable. They found that after a few periods subjects
did play stable interior, dominance-solvable equilibria, but
they did not play the unstable interior equilibria nor the
boundary equilibria. It is interesting to note that these
duopoly games are submodular games. Being two-player
games, they are also supermodular (Rabah Amir, 1996).
Results of Cox and Walker (1998) illustrate the importance
of uniqueness together with supermodularity in inducing
convergence.
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also assumed to be differentiable, positive, in-
creasing, and convex. The mechanism is a two-
staged game where the unique subgame-perfect
Nash equilibrium induces the Pareto-efficient
outcome of x such that r � e�(x) � c�(x). In the
first stage (the announcement stage), player 1
announces p1, a per-unit subsidy to be paid to
player 2, while player 2 simultaneously an-
nounces p2, a per-unit tax to be paid by player 1.
Announcements are revealed to both players. In
the second stage (the production stage), player 1
chooses a production level x. The payoff to
player 1 is �1 � rx � c(x) � p2x � �(p1 �
p2)2, while the payoff to player 2 is �2 �
p1x � e( x), where � � 0 is a free punishment
parameter chosen by the designer.

We study a generalized version of the com-
pensation mechanism (Cheng, 1998), which
adds a punishment term, ��(p1 � p2)2, to
player 2’s payoff function, thus making the pay-
off functions

(1) �1 � rx � c�x	 � p2 x � �� p1 � p2 	2,

�2 � p1x � e�x	 � ��p1 � p2	2.

Using the generalized version, we solve the
game by backward induction. In the production
stage, player 1 chooses the quantity that solves
maxx rx � c(x) � p2x � �(p1 � p2)2. The first
order condition, r � c�(x) � p2 � 0, character-
izes the best response in the second stage, x(p2).
In the announcement stage, player 1 solves
maxp1

rx � c(x) � p2x � �(p1 � p2)2. The first
order condition is

(2)
��1

�p1
� �2��p1 � p2	 � 0

which yields the best response function for
player 1 as p1 � p2. Player 2 simultaneously
solves maxp2

p1x(p2) � e(x(p2)) � �(p1 �
p2)2. The first order condition is

(3)
��2

�p2
� p1 x�� p2 	 � e��x	x�� p2 	

� 2��p1 � p2	 � 0

which characterizes player 2’s best response
function.

The unique subgame-perfect equilibrium has
p1 � p2 � p*, where p* is the Pigovian tax
which induces the efficient quantity, x*. As the
equilibrium does not depend on the value of �,
it holds for the original version where � � 0.
When � is set appropriately, however, the
generalized version is a supermodular mecha-
nism. The following proposition characterizes
the necessary and sufficient condition for
supermodularity.

PROPOSITION 1 (Cheng, 1998): The gener-
alized version of the compensation mechanism
is supermodular if and only if � � 0 and � �
� 1

2
x�(p2).

The proof is simple. First, as the strategy
space is one-dimensional, the supermodularity
condition is automatically satisfied. Second, we
use Theorem 1 to check for increasing differ-
ences. For player 1, from equation (2), we have
�2�1/�p1�p2 � 2� � 0, while for player 2, from
equation (3), we have �2�2/�p1�p2 � x�(p2) �
2�. Therefore, �2�2/�p1�p2 � 0 if and only if
� � � 1

2
x�(p2).

To obtain analytical solutions, we use a qua-
dratic cost function c(x) � cx2, where c � 0,
and a quadratic externality function e(x) � ex2,
where e � 0. We now summarize the best
response functions, equilibrium solutions, and
stability analysis in this environment.

PROPOSITION 2: Quadratic cost and exter-
nality functions yield the following character-
izations:

(i) The best response functions for players 1
and 2 are:

(4) p1 � p2 ;

(5) p2 �

� �
1

4c

� 	
e

4c2

p1 	

er

4c2

� 	
e

4c2

; and

x � max�0,
r � p2

2c � .

(ii) The subgame-perfect Nash equilibrium is
characterized as
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�p*1 , p*2 , x*	

� � er

e 	 c
,

er

e 	 c
,

r

2�e 	 c	� .

(iii) If players follow Cournot best-reply dy-
namics, (p*1, p*2) is a globally asymptoti-
cally stable equilibrium of the continuous
time dynamical system for any � � 0 and
� � 0.

(iv) The game is supermodular if and only if
� � 0 and � � 1/4c.

PROOF:
See Appendix.

The best-response functions presented in part
(i) of Proposition 2 reveal interesting incentives.
While player 1 has an incentive to always match
player 2’s price, player 2 has an incentive to
match only when player 1 plays the equilibrium
strategy. Also, at the threshold for strategic
complementarity, � � 1/4c, player 2 has a dom-
inant strategy, p2 � er/(e � c) � p*2. Part (iii) of
Proposition 2 extends Cheng (1998), who
shows that the original version of the compen-
sation mechanism (� � 0) is globally stable
under continuous-time Cournot best-reply dy-
namics.4 Cournot best-reply is, however, a rel-
atively poor description of human learning
(Richard Boylan and Mahmoud El-Gamal,
1993). Therefore, global stability under Cournot
best reply for any � � 0 does not imply equi-
librium convergence among human subjects.
Part (iv) characterizes the threshold for strategic
complementarity in our experiment, a more ro-
bust stability criterion than that characterized by
part (iii).

An intuition for how strategic complementa-
rities affect the outcome of adaptive learning
can be gained from analysis of the best response
functions, equations (4) and (5). While player
1’s best response function is always upward
sloping, player 2’s best response function, equa-
tion (5), is nondecreasing if and only if � �
1/4c, i.e., when the game is supermodular. Be-
yond the threshold for strategic complementar-
ity, both best-response functions are upward

sloping and they intersect at the equilibrium. It
is easy to verify graphically that adaptive learn-
ers, e.g., Cournot best reply, will converge to
the equilibrium regardless of where they start.

To examine how �, which is unrelated to
strategic complementarity, might affect behav-
ior, we observe that when player 1 deviates
from the best response by 
, i.e., p1 � p2 � 
,
his profit loss is 
�1 � ��
2. This profit loss,
which is proportional to the magnitude of �, is
the deviation cost for player 1. Based on previ-
ous experimental evidence, the incentive to de-
viate from best response decreases when the
deviation cost increases. Chen and Plott (1996)
call it the General Incentive Hypothesis, i.e., the
error of game theoretic models decreases as the
incentive to best-respond increases. We there-
fore expect that an increase in � improves
player 1’s convergence to equilibrium. When
player 1 plays equilibrium strategy, player 2’s
best response is to play equilibrium strategy as
well. Therefore, we expect that an increase in �
might improve player 2’s convergence to equi-
librium as well. It is not clear, however, whether
the �-effects systematically change the effects
of the supermodularity parameter �. We rely on
experimental data to test the interaction of the
�-effects on �-effects.

II. Experimental Design

Our experimental design reflects both theo-
retical and technical considerations. Specifi-
cally, we chose an environment that allows
significant latitude in varying the free parame-
ters to better assess the performance of the
compensation mechanism around the threshold
of strategic complementarity. We describe this
environment and the experimental procedures
below.

A. The Economic Environment

We use the general payoff functions pre-
sented in equation (1) with quadratic cost and
externality functions to obtain analytical solu-
tions: c(x) � cx2 and e(x) � ex2. We use the
following parameters: c � 1/80, e � 1/40, r �
24. From Proposition 2, the subgame-perfect
Nash equilibrium is (p*1, p*2, x*) � (16, 16, 320)
and the threshold for strategic complementarity
is � � 1/4c � 20.

4 Cheng (1998) also shows that the original mechanism
is locally stable under discrete-time Cournot best-reply dy-
namics.
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In the experiment, each player chooses pi �
{0, 1, ... , 40}. Without the compensation mech-
anism, the profit-maximizing production level is
x � r/2c � 960, three times higher than the
efficient level. To reduce the complexity of
player 1’s problem, we use a grid size of 10 for
the quantity and truncate the strategy space, i.e.,
player 1 chooses X � {0, 1, ... , 50}, where X �
x/10. The payoff functions presented to the sub-
jects are adjusted accordingly. Truncating the
strategy space to X � 50 also reduces the pos-
sibility of player 2’s bankruptcy. To reduce
payoff asymmetry, we give player 1 a lump-
sum payment of 250 points each round. There-
fore, the equilibrium payoffs under the
mechanism for the two players are �1 � 1530
and �2 � 2560.

The functional forms and specific parameter
values are chosen for several reasons. First,
equilibrium solutions are integers. Second,
equilibrium prices and quantities do not lie in
the center of the strategy space, thus avoiding
equilibrium convergence as a result of focal
points. Third, there is a salient gap between
efficiency with and without the mechanism.
Without the mechanism, the profit-maximizing
production level is X � 50, resulting in an
efficiency level of 68.4 percent.5 With the
mechanism, the system achieves 100-percent
efficiency in equilibrium. Finally, since the
threshold for strategic complementarity is � �
20, there is a large number of integer � values to
choose from both below and above the
threshold.

To study how strategic complementarity af-
fects equilibrium convergence, we keep � � 20,
and vary � � 0, 18, 20, and 40. To study
whether � affects convergence, we also keep
� � 10, and vary � � 0, 20.

B. Experimental Procedures

Our experiment involves 12 players per
session—six player 1s (called Red players in the

instructions) and six player 2s (Blue players).
Each player remains the same type throughout
the experiment. At the beginning of each ses-
sion, subjects randomly draw a PC terminal
number. Each then sits in front of the corre-
sponding terminal and is given printed instruc-
tions. After the instructions are read aloud,
subjects are encouraged to ask questions. The
instruction period lasts between 15 and 30
minutes.

Each round a player 1 is randomly matched
with a player 2. Subjects are randomly re-
matched each round to minimize repeated game
effects. The random rematching protocol also
minimizes the possibility that players collude
on a high-subsidy and low-tax outcome.6 Each
session consists of 60 rounds. As we are inter-
ested in learning, there are no practice rounds.
Each round consists of two stages:

(i) Announcement Stage: Each player simulta-
neously and independently chooses a price,
pi � {0, 1, ... , 40};

(ii) Production Stage: After (p1, p2) are chosen,
player 1’s computer displays player 2’s
price and a payoff table showing her payoff
for each X � {0, 1, ... , 50}. Player 1 then
chooses a quantity, X. The server calculates
payoffs and sends each player his payoff,
the quantity chosen, and the prices submit-
ted by him and his match.

To summarize, each subject knows both pay-
off functions, the choices made each round by
himself and his match, as well as his per-period
and cumulative payoffs. At any point, subjects
have ready access to all of this information. The
mechanism is thus implemented as a game of
complete information. We do not know, how-
ever, how subjects processed this information,
nor do we know their beliefs about the rational-

5 We compute the efficiency level by using the ratio of
total earnings without the mechanism and total earnings
with the mechanism. Without the mechanism, at the pro-
duction level of X � 50 (or x � 500), total earning is �1 �
�2 � (rx � cx2) � ex2 � 2625. Therefore, the efficiency
level is 2625/(1280 � 2560) � 0.684.

6 If the players could commit to maximizing joint profits
by choosing p1 and p2 cooperatively and x noncoopera-
tively, they would choose, by equation (1), (p1, p2, x) �
(4(� � �)er/[4(� � �)(e � c) � 1], r(4e(� � �) � 1)/[4(� �
�)(e � c) � 1], 2r(� � �)/[4(� � �)(e � c) � 1]). With our
choice of parameters, we get: p1 � 24, p2 � 12 for � � 20
and � � 0; p1 � 19.2, p2 � 14.4 for � � 20 and � � 20;
and p1 � 18, p2 � 15 for � � 20 and � � 40; etc. If, in
addition, they could choose (p1, p2, x) cooperatively, then for
our parameter values, we get (p1 � p2, x) � (min{480/[3(� �
�) � 20], 40}, min{960(� � �)/[3(� � �) � 20], 50}).
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ity of others. Both of these factors introduce
uncertainty in the environment.

Table 1 presents features of the experimental
sessions, including parameters, number of inde-
pendent sessions in each treatment, whether the
mechanism is supermodular in that treatment,
and equilibrium prices and quantities. Overall,
27 independent computerized sessions were
conducted in the Research Center for Group
Dynamics (RCGD) lab at the University of
Michigan from April to July 2001, and in April
2003. We used zTree to program our experi-
ments. Our subjects were students from the Uni-
versity of Michigan. No subject was used in
more than one session, yielding 324 subjects.
Each session lasted approximately one-and-a-
half hours. The exchange rate for all treatments
was one dollar for 4,250 points. The average
earnings was $22.82. Data are available from
the authors upon request.

III. Hypotheses

Given the design above, we next identify our
hypotheses. To do so, we first define and discuss
two measures of convergence: the level and
speed.7 In theory, convergence implies that all
players play the stage game equilibrium and no
deviation is observed. This is not realistic, how-
ever, in an experimental setting. Therefore, we
define the following measures.

DEFINITION 1: The level of convergence at
round t, L(t), is measured by the proportion of
Nash equilibrium play in that round. The level
of convergence for a block of rounds, Lb(t1, t2),
measures the average proportion of Nash equi-
librium play between rounds t1 and t2, i.e., Lb(t1,
t2) � ¥t�t1

t2 L(t)/(t2 � t1 � 1), where 0 � t1 �
t2 � T and T is the total number of rounds.

We define the level of convergence for both a
round and a block of rounds. The block conver-
gence measure smooths out inter-round
variation.

Ideally, the speed of convergence should
measure how quickly all players converge to
equilibrium strategies. In our experimental set-
ting, however, we never observe perfect con-
vergence. We therefore use a more general
definition for the speed of convergence.

DEFINITION 2: For a given level of conver-
gence, L* � (0, 1], the speed of convergence is
measured by the first round in which the level of
convergence reaches L* and does not subse-
quently drop below this level, i.e., � such that
L(t) � L* for any t � �.

We use Definition 2 for analysis of conver-
gence speed in simulations. Due to oscillation in
experimental data, Definition 2 is not practical.
We use the following observation which en-
ables us to measure convergence speed using
estimates for the slope of L(t), 
L(t) � L(t �
1) � L(t), obtained in regression analysis. Let
Ly(t) be the convergence level of treatment y at

7 We thank anonymous referees for suggesting this sep-
aration and appropriate measures.

TABLE 1—FEATURES OF EXPERIMENTAL SESSIONS

Parameters and treatments Properties Equilibrium

�

Supermodular (p*1, p*2, X*)10 20

�10�00 �20�00
0 (4 sessions) (5 sessions)

�20�18
� 18 (4 sessions) No (16, 16, 32)

�10�20 �20�20
20 (5 sessions) (5 sessions)

�20�40
40 (4 sessions) Yes (16, 16, 32)
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time t. We now relate the slope of L(t) and the
initial level of convergence L(1) to the speed of
convergence.

OBSERVATION 1: If L1(1) � L2(1) and

L1(t) � 
L2(t) for all t � [1, T � 1], then,
given any L* � (0, 1], the first treatment con-
verges more quickly than the second treatment.

Based on theories presented in Section I, we
now form our hypotheses about the level and
speed of convergence. While theories of strate-
gic complementarities do not make any predic-
tions about the speed of convergence, we form
our hypotheses based on previous experiments
that incidentally address games with strategic
complementarities.

HYPOTHESIS 1: When � � 20, increasing �
from 0 to 20 significantly increases (a) the level
and (b) the speed of convergence.

Hypothesis 1 is based on the theoretical predic-
tion that games with strategic complementari-
ties converge to the unique Nash equilibrium, as
well as on previous experimental findings that
supermodular games perform robustly better
than their non-supermodular counterparts.

HYPOTHESIS 2: When � � 20, increasing �
from 0 to 18 significantly increases (a) the level
and (b) the speed of convergence.

Hypothesis 2 is based on the findings of
Falkinger et al. (2000) that average play is close
to equilibrium when the free parameter is
slightly below the supermodular threshold.

HYPOTHESIS 3: When � � 20, increasing �
from 18 to 20 significantly increases (a) the
level and (b) the speed of convergence.

Since we have not found any previous experi-
mental studies that compare the performance of
games with strategic complementarities with
those near the threshold, Hypothesis 3 is pure
speculation.

HYPOTHESIS 4: When � � 20, increasing
� from 20 to 40 does not significantly in-
crease either (a) the level or (b) the speed of
convergence.

Since we have not found any previous experi-
mental studies within the class of games with
strategic complementarities, Hypotheses 4 is
again our speculation.

HYPOTHESIS 5: When � � 0 or 20, increas-
ing � from 10 to 20 significantly increases (a)
the level and (b) the speed of convergence.

HYPOTHESIS 6: Changing � from 10 to 20
significantly increases the improvement in (a)
the level and (b) the speed of convergence that
results from increasing � from 0 to 20.

Hypothesis 5 is based on experimental findings
supporting the General Incentive Hypothesis.
Hypothesis 6 is our speculation.

Hypotheses 1 through 6 are concerned with
only one measure of performance, convergence
to equilibrium. Other measures, such as effi-
ciency and budget balance, can be largely de-
rived from convergence patterns. Therefore,
although we omit the formal hypotheses, we
present results regarding these measures in Sec-
tions IV and V.

IV. Experimental Results

In this section, we compare the performance
of the mechanism as we vary � and �. At the
individual level, we look at both the level and
speed of convergence to subgame-perfect equi-
librium and near equilibrium in each of the six
different treatments. At the aggregate level, we
examine the efficiency and budget imbalance
generated by each treatment. In the following
discussion, we focus on prices rather than on
quantity. Recall that player 1’s best response in
the production stage is uniquely determined by
p2, and that player 1 has all of the information
needed to select this best response. In our ex-
periment, deviations in the production stage
tend to be small (the average absolute deviation
is less than 1 in 23 of 27 sessions) and does not
differ significantly among treatments. There-
fore, it is not surprising that, in all of our anal-
yses, the results for quantities largely mirror the
results for player 2’s price.8

Recall that subgame perfect Nash equilib-

8 Tables are available from the authors upon request.
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rium for a stage game is (p*1, p*2, X*) � (16, 16,
32). Since the strategy space in this experiment
is rather large and the payoff function is rela-
tively flat near equilibrium, a small deviation
from equilibrium is not very costly. For exam-
ple, in the �20�20 treatment, a one-unit unilat-
eral deviation from equilibrium prices costs
player 1 $0.005 and player 2 $0.014. Therefore,
we check the 
-equilibrium play by looking at
the proportion of price announcements within
�1 of the equilibrium price, and the quantity
announcement within �4 of the equilibrium
quantity, since a one-unit change in p2 results in
a four-unit best-response quantity change.
Therefore, the 
-equilibrium prediction is (
-p*1,

-p*2, 
-x*) � ({15, 16, 17}, {15, 16, 17},
{28, ... , 32, ... , 36}).

Figures 1 and 2 contain box and whiskers
plots for the prices of each treatment for all 60
rounds by players 1 and 2, respectively. The box
represents the ranges of the twenty-fifth and
seventy-fifth percentiles of prices, while the
whiskers extend to the minimum and maximum
prices in each round. The horizontal line within
each box represents the median price. Com-
pared with the �00 treatments, equilibrium
price convergence is clearly more pronounced
in the supermodular and near-supermodular
treatments.

To analyze the performance of the compen-
sation mechanism, we first compare the conver-
gence level achieved in the last 20 rounds of
each treatment. Table 2 reports the level of
convergence (Lb(41, 60)) to subgame-perfect
Nash equilibrium (panels A and B) and 
-Nash
equilibrium (panels C and D) for each session
under each of the six different treatments, as
well as the alternative hypotheses and the cor-
responding p-values of one-tailed permutation
tests9 under the null hypothesis that the con-
vergence levels in the two treatments (column

[8]) are the same. While the proportion of

-equilibrium play is much higher than the pro-
portion of equilibrium play, the results of the
permutation tests largely follow similar pat-
terns. We now formally test our hypotheses
regarding convergence level. Parts (i) to (iii) of
Result 1 present the effects of the degree of
strategic complementarity (�-effects). Parts (iv)
and (v) present effects due to changes in �
(�-effects).

RESULT 1 (Level of Convergence in the
Last 20 Rounds):

(i) When � � 20, increasing � from 0 to 18
and from 0 to 20 significantly10 increases
the level of convergence in p*1, p*2 and 
-p*2;

(ii) When � � 20, increasing � from 18 to 20
does not change the level of convergence
significantly;

(iii) When � � 20, increasing � from 20 to 40
does not change the level of convergence
significantly;

(iv) When � � 0, increasing � from 10 to 20
weakly increases the level of convergence
in p*2, and significantly increases the level
of convergence in 
-p*2, but has no signif-
icant effects on p*1 or 
-p*1;

(v) When � � 20, increasing � from 10 to 20
weakly increases the level of convergence
in p*1, but not in 
-p*1, p*2, or 
-p*2.

SUPPORT: The last two columns of Table
2 report the corresponding alternative hypothe-
ses and permutation test results.

By part (i) of Result 1, we accept Hypotheses
1(a) and 2(a). Part (i) also confirms previous
experimental findings that supermodular games
perform significantly better than those far from
the supermodular threshold. Furthermore, near-
supermodular games also perform significantly
better than those far from the threshold.

By part (ii), however, we reject Hypothesis
3(a). This is the first experimental result that
shows that, from a little below the supermodular
threshold (� � 18) to the threshold (� � 20),

9 The permutation test, also known as the Fisher random-
ization test, is a nonparametric version of a difference of
two means t-test. (See, e.g., Sidney Siegel and N. John
Castellan, 1988.) The idea is simple and intuitive: by pool-
ing all independent observations, the p-value is the exact
probability of observing a separation between the two treat-
ments as the one observed when the pooled observations are
randomly divided into two equal-sized groups. This test
uses all of the information in the sample, and thus has
100-percent power-efficiency. It is among the most power-
ful of all statistical tests.

10 When presenting results throughout the paper, we
follow the convention that a significance level of 5 percent
or less is significant, while a significance level between 5
percent and 10 percent is weakly significant.

1513VOL. 94 NO. 5 CHEN AND GAZZALE: LEARNING IN GAMES



improvement in convergence level is statisti-
cally insignificant. In other words, we do not
see a dramatic improvement at the threshold.
This implies that the performance of near-
supermodular games, such as the Falkinger
mechanism, ought to be comparable to that of
supermodular games.

By contrast, we accept Hypothesis 4(a) by
part (iii). This is the first experimental result
systematically comparing convergence levels of
supermodular games, where theory is silent.
The convergence level does not significantly
improve as � increases from the threshold, 20,
to 40. Therefore, the marginal returns for being
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FIGURE 1. DISTRIBUTION OF ANNOUNCED PRICES IN EXPERIMENTAL TREATMENTS: PLAYER 1
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“more supermodular” diminish once the payoffs
become supermodular.

Proposition 2 predicts convergence under
Cournot best reply for any � � 0. However,
there is a significant difference in convergence
level as � increases from 0 to 18, 20, and

beyond. We investigate in Section V whether
this difference persists in the long run.

While parts (i) to (iii) present the �-effects,
parts (iv) and (v) examine the �-effects and we
partially accept Hypothesis 5(a). Recall from
equation (5) and subsequent discussions that, at
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FIGURE 2. DISTRIBUTION OF ANNOUNCED PRICES IN EXPERIMENTAL TREATMENTS: PLAYER 2
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the threshold of strategic complementarity � �
20, player 2’s Nash equilibrium strategy is also
a dominant strategy. The finding of no �-effect
on player 2’s equilibrium play when � � 20 is
consistent with this observation.

To determine the effects of strategic comple-
mentarities and other factors on convergence
speed, and to investigate further their effects on
convergence level, we use probit models with
clustering at the individual level. The results
from these models are presented in Table 3. The
dependent variable is 
-p*1 in specifications (1)
and (3), and 
-p*2 in specifications (2) and (4).

In specifications (1) and (2), the independent
variables are: treatment dummies, Dy, where
y � �10�00, �20�00, �18, �10�20 and �40;
ln(Round); and a constant. We use dummies for
different values of � and � rather than direct
parameter values to avoid assuming a linear
relationship of parameter effects, and omit the
dummy for �20�20. Therefore, in these two
specifications, restricting learning speed to be
the same across treatments, the estimated coef-
ficient of Dy captures the difference in the
convergence level between treatments y and
�20�20. Results from these specifications are

TABLE 2—LEVEL OF CONVERGENCE IN THE LAST 20 ROUNDS

Panel A: Proportion of player 1 Nash equilibrium price (p*1) Permutation tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

�10�00 0.000 0.008 0.158 0.008 0.044 �10�00 � �20�00 0.397
�20�00 0.000 0.083 0.083 0.042 0.058 0.053 �20�00 � �20�20 0.008***
�20�18 0.125 0.117 0.100 0.192 0.133 �20�00 � �20�18 0.008***
�10�20 0.242 0.067 0.067 0.067 0.208 0.130 �10�20 � �20�20 0.064*
�20�20 0.325 0.267 0.208 0.058 0.367 0.245 �20�18 � �20�20 0.064*
�20�40 0.175 0.400 0.158 0.133 0.217 �20�20 � �20�40 0.643

Panel B: Proportion of player 2 Nash equilibrium price (p*2) Permutation tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

�10�00 0.025 0.042 0.025 0.067 0.040 �10�00 � �20�00 0.056*
�20�00 0.067 0.083 0.033 0.075 0.050 0.062 �20�00 � �20�20 0.032**
�20�18 0.133 0.292 0.108 0.258 0.198 �20�00 � �20�18 0.008***
�10�20 0.392 0.108 0.175 0.067 0.667 0.282 �10�20 � �20�20 0.504
�20�20 0.308 0.117 0.483 0.017 0.450 0.275 �20�18 � �20�20 0.238
�20�40 0.325 0.492 0.233 0.233 0.321 �20�20 � �20�40 0.365

Panel C: Proportion of player 1 
-Nash equilibrium price (
-p*1) Permutation tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

�10�00 0.108 0.200 0.350 0.158 0.204 �10�00 � �20�00 0.183
�20�00 0.067 0.458 0.358 0.183 0.425 0.298 �20�00 � �20�20 0.087*
�20�18 0.317 0.625 0.300 0.583 0.456 �20�00 � �20�18 0.103
�10�20 0.475 0.200 0.300 0.375 0.492 0.368 �10�20 � �20�20 0.194
�20�20 0.450 0.558 0.475 0.133 0.775 0.478 �20�18 � �20�20 0.444
�20�40 0.458 0.492 0.375 0.442 0.442 �20�20 � �20�40 0.643

Panel D: Proportion of player 2 
-Nash equilibrium price (
-p*2) Permutation tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

�10�00 0.133 0.200 0.242 0.225 0.200 �10�00 � �20�00 0.016**
�20�00 0.300 0.400 0.200 0.275 0.333 0.302 �20�00 � �20�20 0.016**
�20�18 0.717 0.667 0.342 0.700 0.606 �20�00 � �20�18 0.016**
�10�20 0.650 0.517 0.542 0.400 0.892 0.600 �10�20 � �20�20 0.564
�20�20 0.533 0.592 0.642 0.225 0.900 0.578 �20�18 � �20�20 0.556
�20�40 0.825 0.792 0.467 0.517 0.650 �20�20 � �20�40 0.294

Note: Significant at: * 10-percent level; ** 5-percent level; *** 1-percent level.
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largely consistent with Result 1 which uses a
more conservative test. The coefficients of
ln(Round) are both positive and highly signifi-
cant, indicating that players learn to play equilib-
rium strategies over time. The concave functional
form, ln(Round), which yields a better log-
likelihood than either the linear or quadratic func-
tional form, indicates that learning is rapid at the
beginning and decreases over time. We will ex-
amine learning in more detail in Section V.

In specifications (3) and (4), we use
ln(Round), interaction of each of the treatment
dummies with ln(Round), and a constant as
independent variables. The interaction term al-
lows different slopes for different treatments.
Compared with the coefficient of ln(Round), the

coefficient for the interaction term, Dy
ln(Round), captures the slope differences be-
tween treatment y and �20�20. By Observation
1, as we cannot reject the hypotheses that initial
round probability of equilibrium play is the
same across all treatments,11 we can compare
the slope of L(t), 
L(t), between different treat-
ments. From the probit specification, L(t) �
(constant � Db ln(t)), where D is the 1 � 5
vector of treatment dummies and b is the 5 � 1
vector of estimated coefficients, we can derive

11 When including treatment dummies in this specifica-
tion, Wald tests on the hypothesis that the treatment dummy
coefficients are all zero yield p-values of 0.2703 for 
-p*1,
and 0.3383 for 
-p*2.

TABLE 3—CONVERGENCE SPEED: PROBIT MODELS WITH CLUSTERING AT INDIVIDUAL LEVEL

Dependent variable: 
-Nash equilibrium play

(1) 
-Nash
price 1

(2) 
-Nash
price 2

(3) 
-Nash
price 1

(4) 
-Nash
price 2

D�10�00 �0.143 �0.268
(0.048)*** (0.050)***

D�20�00 �0.090 �0.217
(0.060) (0.057)***

D�18 �0.005 0.004
(0.071) (0.069)

D�10�20 �0.080 0.025
(0.060) (0.073)

D�40 0.000 0.078
(0.068) (0.078)

ln(Round) 0.115 0.167 0.131 0.183
(0.014)*** (0.017)*** (0.021)*** (0.022)***

D�10�00ln(Round) �0.050 �0.095
(0.019)*** (0.022)***

D�20�00ln(Round) �0.031 �0.073
(0.020) (0.021)***

D�18ln(Round) �0.001 0.004
(0.020) (0.021)

D�10�20ln(Round) �0.024 0.008
(0.019) (0.022)

D�40ln(Round) �0.002 0.023
(0.019) (0.024)

Observations 9720 9720 9720 9720
Number of groups 162 162 162 162
Log pseudo-likelihood �5562.890 �5824.055 �5557.424 �5793.013

D�10�00 � D�20�00 1.50 1.31
D�10�00ln(Round) � D�20�00ln(Round) 1.33 1.23
D�10�20 � D�10�00 � �D�20�00 0.05 1.07
D�10�20ln(Round) � D�10�00ln(Round)

� �D�20�00ln(Round)
0.05 1.03

Notes: Coefficients are probability derivatives. Robust standard errors in parentheses are adjusted for clustering at the
individual level. Significant at: * 10-percent level; ** 5-percent level; *** 1-percent level. Dy is the dummy variable for
treatment y. Excluded dummy is D�20�20. The bottom panel presents null hypotheses and Wald �2(1) test statistics.
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the slope of the probability function for treat-
ment y with respect to t, 
Ly(t) � �(con-
stant � Db)by/t. All coefficients reported in
Table 3 are increments of probability deriva-
tives, �(constant � Db)by, compared to the
baseline case of �20�20.

RESULT 2 (Speed of Convergence):

(i) When � � 20, increasing � from 0 to 18
and from 0 to 20 significantly increases the
speed of convergence in 
-p*1 and 
-p*2;

(ii) When � � 20, increasing � from 18 to 20
has no significant effect on convergence
speed;

(iii) When � � 20, increasing � from 20 to 40
has no significant effect on convergence
speed;

(iv) When � � 0, increasing � from 10 to 20
has no significant effects on convergence
speed;

(v) When � � 20, increasing � from 10 to 20
has no significant effects on convergence
speed.

SUPPORT: Models (3) and (4) in Table 3 re-
port analyses on convergence speed. For each
independent variable, the coefficients, standard
errors (in parentheses), and significance levels
are reported. The second Wald test looks at
whether the coefficient of D�10�00ln(Round)
equals that of D�20�00ln(Round).

Part (i) of Result 2 supports Hypotheses 1(b)
and 2(b), while by part (ii) we reject Hypothesis
3(b). Part (iii) supports Hypothesis 4(b). Parts
(iv) and (v) reject Hypothesis 5(b). Result 2
provides the first empirical evidence on the role
of strategic complementarity and the speed of
convergence.

Although part (ii) indicates that increasing �
from 18 to 20 does not significantly change
convergence speed, we now investigate whether
there are any differences between �18 and the
supermodular treatments. In particular we com-
pare �20�18 with �20�20 and �20�40.12 In
Result 1, we show that these treatments achieve

the same convergence level. Also, we cannot
reject the hypothesis that round-one prices for
each player are drawn for the same distribution
for each treatment.13 As the treatments all start
and converge to similar levels of equilibrium
play, we use a more flexible functional form to
look for differences in speed.

In Table 4, we report the results of probit
regressions comparing �20�18 with the two
�20 supermodular treatments. We use Round,
ln(Round), and their interactions with �20�18
as independent variables to allow different con-
vergence speeds to the same level of conver-
gence. In model (1), the dependent variable is
player 1 
-equilibrium play. There is no signif-
icant difference between �20�18 and the �20
supermodular treatments. In model (2), the de-
pendent variable is player 2 
-equilibrium play.
There are significant differences between the
near-supermodular and �20 supermodular treat-
ments. In early rounds, ln(Round) is large relative
to Round. The negative and weakly significant
coefficient on D�20�18ln(Round) implies a lower
probability of early-round equilibrium play in

12 We omit �10�20 from this analysis. First, it does not
achieve the same 
-p*1 convergence level as the other su-
permodular treatments. Second, omitting it avoids the pos-
sibility of an �-effect.

13 Kolmogorov-Smirnov test result tables are available
by request.

TABLE 4—CONVERGENCE SPEED

Probit models with individual-level clustering comparing
�20�18 with the �20 supermodular treatments achieving

similar convergence levels

Dependent variable: 
-Nash
equilibrium play

(1) 
-Nash
price 1

(2) 
-Nash
price 2

ln(Round) 0.054 0.216
(0.040) (0.043)***

Round 0.004 �0.001
(0.002)* (0.002)

D�20�18ln(Round) �0.013 �0.066
(0.032) (0.035)*

D�20�18Round 0.001 0.006
(0.002) (0.003)**

Observations 4680 4680
Log pseudo-likelihood �2879.07 �2993.85

Notes: Coefficients reported are probability derivatives. Ro-
bust standard errors in parentheses. Significant at: * 10-
percent level; ** 5-percent level; *** 1-percent level. Dy is
the dummy variable for treatment y. Excluded dummies are
D�20�20 and D�20�40.
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�20�18 relative to the supermodular treatments.
The �18 treatment does catch up to these treat-
ments, which is reflected in the positive and
significant coefficient on D�20�18 interacted
with Round. This result suggests a difference
between supermodular and near-supermodular
treatments: while they achieve similar conver-
gence levels, the supermodular treatments per-
form better in early rounds and thus might
reach certain convergence levels faster than
their near-supermodular counterparts.

The previous discussion examines the sepa-
rate effects of strategic complementarity (�-
effects) and � (�-effects) on convergence.
Varying � allows us, however, to test the im-
portance of strategic complementarity relative
to other features of mechanism design. Having a
full factorial design in the parameters � � 10,
20 and � � 0, 20, we can study whether �
affects the role of strategic complementarity. In
particular, as � increases from 0 to 20, we
expect improvement in convergence level and
speed. We study whether this improvement
changes when � increases from 10 to 20.

The last two Wald tests in the bottom panel
of Table 3 separately examine the �-effects
on the change in convergence level and speed
resulting from increasing � from 0 to 20
(�-effects on �-effects). Changing � from 10 to
20 does not significantly change the improve-
ment in either convergence level or speed. This
is the first empirical result examining the ef-
fects of other factors on the role of strategic
complementarity.

So far, we have discussed the performance of
the mechanism relative to equilibrium predic-
tions and individual behavior. We now turn to
group-level welfare results. Since the compen-
sation mechanism balances the budget only in

equilibrium, total payoffs off the equilibrium
path can be only weakly related to efficient
payoffs. Therefore, we use two separate mea-
sures to capture welfare implications: an effi-
ciency measure and a measure of budget
imbalance.

We first define the per-round efficiency mea-
sure which includes neither the tax/subsidy nor
the penalty terms, i.e.,

e�t	 �
rx�t	 � c�x�t		 � e�x�t		

rx* � c�x*	 � e�x*	

where x* is the efficient quantity. The efficiency
achieved in a block, e(t1, t2), where 0 � t1 �
t2 � 60, is then defined as

e�t1 , t2 	 � �
t � t1

t2 e�t	

t2 � t1 	 1
.

RESULT 3 (Efficiency in the Last 20
Rounds):

(i) When � � 20, increasing � from 0 to 18
significantly improves efficiency, while in-
creasing � from 0 to 20 weakly improves
efficiency;

(ii) When � � 20, increasing � from 18 to 20
has no significant effect on efficiency;

(iii) When � � 20, increasing � from 20 to 40
weakly improves efficiency;

(iv) When � � 0, increasing � from 10 to 20
weakly improves efficiency;

(v) When � � 20, increasing � from 10 to 20
has no significant effect on efficiency.

SUPPORT: Table 5 presents the efficiency
measure for each session in each treatment

TABLE 5—EFFICIENCY MEASURE

Efficiency: Last 20 rounds

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

�10�00 0.600 0.671 0.804 0.858 0.733 �10�00 � �20�00 0.087*
�20�00 0.650 0.870 0.907 0.873 0.825 0.825 �20�00 � �20�20 0.095*
�20�18 0.963 0.952 0.889 0.959 0.941 �20�00 � �20�18 0.016**
�10�20 0.958 0.919 0.905 0.881 0.984 0.929 �10�20 � �20�20 0.714
�20�20 0.888 0.937 0.939 0.780 0.971 0.903 �20�18 � �20�20 0.833
�20�40 0.973 0.962 0.943 0.949 0.957 �20�20 � �20�40 0.064*

Note: Significant at: * 10-percent level; ** 5-percent level; *** 1-percent level.
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in the last 20 rounds, the alternative hypoth-
eses, and the results of one-tailed permutation
tests.

Result 3 is largely consistent with Result 1,
indicating that supermodular and near-
supermodular mechanisms induce a signifi-
cantly higher proportion of equilibrium play
than mechanisms far from the supermodular
threshold. The new finding is that increasing �
from the threshold 20 to 40 weakly improves
efficiency.

Second, the budget surplus at round t is the
sum of the penalty terms, plus tax, minus sub-
sidy in that round, i.e., s(t) � (� � �)(p1(t) �
p2(t))2 � p2(t)x(t) � p1(t)x(t). Examining the
session-level budget surplus across all rounds,
we find the following results. First, 22 out of 27
sessions result in a budget surplus. This comes
from a combination of our choice of parameters
and the dynamics of play. Second, the only
significant difference across treatments is that
budget surpluses under �20�18 and �20�20
are significantly lower than those under
�20�40 ( p-values � 0.029 and 0.024 respec-
tively). This finding points to a potential cost
of driving up the punishment parameter, �. In
other words, before the system equilibrates, a
high punishment parameter can worsen the
budget imbalance problem inherent in the
mechanism.

Overall, Results 1 through 3 suggest the fol-
lowing observations regarding games with stra-
tegic complementarities. First, in terms of
convergence level and speed, supermodular and
near-supermodular games perform significantly
better than those far under the threshold. Sec-
ond, while there is no significant difference
between supermodular and near-supermodular
games in terms of convergence level, early per-
formance differences may lead to supermodular
treatments reaching certain convergence levels
more quickly. Third, beyond the threshold, in-
creasing � has no significant effect on either the
level or the speed of convergence, but has the
disadvantage of risking higher budget imbal-
ance. Last, for a given �, increasing � has
partial effects on convergence level, but no
significant effect on convergence speed. To
check the persistence of these experimental re-
sults in the long run, we use simulations in
Section V.

V. Simulation Results: Continued Dynamics

Our experiment examines the relationship be-
tween strategic complementarity and conver-
gence to equilibrium. Learning theory predicts
long-run convergence. Figures 1 and 2 show
that convergence continues to improve in later
rounds for several treatments, suggesting con-
tinued dynamics. Due to time, attention, and
resource constraints, it was not feasible to run
the experiment for much longer than 60
rounds. Therefore, we rely on simulations to
study continued convergence beyond 60
rounds.

To do so, we look for a learning algorithm
which, when calibrated, closely approximates
the observed dynamic paths over 60 rounds.
The large empirical literature on learning in
games (see, e.g., Camerer, 2003, for a survey)
suggests many models. Our interest here is not
to compare the performance of various learning
models. We look for learning models that match
two criteria. First, we require a model that per-
forms well in a variety of experimental games.
Second, given our experiment has complete in-
formation about the payoff structure, the model
needs to incorporate this information. In the
following subsections, we first introduce three
learning models which meet our criteria. We
then look at how well the learning models pre-
dict the experimental data by calibrating each
algorithm on a subset of the experimental data
and validating the models on a hold-out sample.
We then report the forecasting results using one
of the calibrated algorithms.

A. Three Learning Models

The models we examine are stochastic ficti-
tious play with discounting (hereafter shortened
as sFP) (Yin-Wong Cheung and Daniel Fried-
man, 1997; Fudenberg and Levine, 1998), func-
tional EWA (fEWA) (Teck-Hua Ho et al.,
2001) and the payoff assessment learning model
(PA) (Rajiv Sarin and Farshid Vahid, 1999).
We now give a brief overview of each model.
Interested readers are referred to the originals
for complete descriptions.

The particular version of sFP that we use is
logistic fictitious play (see, e.g., Fudenberg and
Levine, 1998). A player predicts the match’s
price in the next round, p�i(t � 1) according to
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(6) p�i �t 	 1	 �

p�i �t	 	 ¥
� � 1

t � 1

r�p�i �t � �	

1 	 ¥
� � 1

t � 1

r�

for some discount factor, r � [0, 1]. Note r � 0
corresponds to the Cournot best reply assess-
ment, p�i(t � 1) � p�i(t). When r � 1, it yields
the standard fictitious play assessment. The
usual adaptive learning model assumes 0 � r � 1.
All observations influence the expected state but
more recent observations have greater weight.

As opposed to standard fictitious play, stochas-
tic fictitious play allows decision randomization
and thus better captures the human learning pro-
cess. Omitting time subscripts, the probability that
a player announces price pi is given by:

(7) Pr� pi�p�i 	 �
exp��� pi , p�i 		

¥
j � 0

40

exp��� pj , p�j 		

.

Given a predicted price, a player is thus more
likely to play strategies that yield higher pay-
offs. How much more likely is determined by ,
the sensitivity parameter. As  increases, the
probability of a best response to p�i increases.

The second model we consider, fEWA, is a
one-parameter variant of the experience-
weighted attraction (EWA) model (Camerer
and Ho, 1999). In this model, strategy probabil-
ities are determined by logit probabilities simi-
lar to equation (7) with actual payoffs (�(pi,
p�i)) replaced by strategy attraction. In both
variants, strategy attraction, Ai

j(t), and an expe-
rience weight, N(t), are updated after every
period. The experience weight is updated ac-
cording to N(t) � �(1 � �) � N(t � 1) � 1,
where � is the change-detection parameter and
� controls exploration (low �) versus exploita-
tion. Attractions are updated according to the
following rule:

(8) Ai
j�t	

�
�N�t � 1	Ai

j�t � 1	 	 �� 	 �1 � �	I� pi
j, pi �t		��i �pj , p�i �t		

N�t	

where the indicator function I(pi
j, pi(t)) equals

one if pi
j � pi(t) and zero otherwise, and � � [0,

1] is the imagination weight. In EWA, all pa-
rameters are estimated, whereas in fEWA these
parameters (except for ) are endogenously de-
termined by the following functions. The
change-detector function, �i(t), is given by

(9) �i �t	 � 1 � .5� �
j � 1

m�i � I�p�i
j , p�i �t		

1

�

¥
� � 1

t

I� p�i
j , p�i �t		

t 	
2


 .

This function will be close to 1 when recent
history resembles previous history. The imagi-
nation weight �i(t) equals �i(t), while � equals
the Gini coefficient of previous choice frequen-
cies. EWA models encompass a variety of
familiar learning models: cumulative reinforce-
ment learning (� � 0, � � 1, N(0) � 1),
weighted reinforcement learning (� � 0, � � 0,
N(0) � 1), weighted fictitious play (� � 1, � �
0), standard fictitious play (� � � � 1, � � 0),
and Cournot best reply (� � � � 1, � � 1).

Finally, we introduce the main components
of the PA model. For simplicity, we omit all
subscripts that represent player i, and let �j(t)
represent the actual payoff of strategy j in round
t. Since the game has a large strategy space, we
incorporate similarity functions into the model
to represent agent use of strategy similarity. As
strategies in this game are naturally ordered by
their labels, we use the Bartlett similarity func-
tion, fjk(h, t), to denote the similarity between
the played strategy, k, and an unplayed strategy,
j, at period t:

fjk �h, t	 � �1 � �j � k�/h if �j � k� � h,
0 otherwise.

In this function, the parameter h determines the
h � 1 unplayed strategies on either side of the
played strategy to be updated. When h � 1,
fjk(1, t) degenerates into an indicator function
equal to one if strategy j is chosen in round t and
zero otherwise.

The PA model assumes that a player is a
myopic subjective maximizer. That is, he
chooses strategies based on assessed payoffs,
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and does not explicitly take into account the
likelihood of alternate states. Let uj(t) denote
the subjective assessment of strategy pj at time
t, and r the discount factor. Payoff assessments
are updated through a weighted average of his
previous assessments and the payoff he actually
obtains at time t. If strategy k is chosen at time
t, then:

(10) uj �t 	 1	 � �1 � rfjk �h, t		uj �t	

	 rfjk �h, t	�k �t	, � j.

Each period, the assessed strategy payoffs are
subject to zero-mean, symmetrically distributed
shocks, zj(t). The decision maker chooses on the
basis of his shock-distorted subjective assess-
ments, ũj(t) � uj(t) � zj(t). At time t he chooses
strategy pk if:

(11) ũk �t	 � ũj �t	 � 0, � pj � pk .

Note that mood shocks affect only his choices
and not the manner in which assessments are
updated.

B. Calibration

Literature assessing the performance of
learning models contains two approaches to cal-
ibration and validation. The first approach cal-
ibrates the model on the first t rounds and
validates on the remaining rounds. The second
approach uses half of the sessions in each treat-
ment to calibrate and the other half to validate.
We choose the latter approach for two reasons.
First, this approach is feasible as we have mul-
tiple independent sessions for each treatment.
Second, we need not assume that the parameters
of later rounds are the same as those in earlier
rounds. We thus calibrate the parameters of
each model in blocks of 15 rounds using the
experimental data from the first two sessions of
each treatment. We then evaluate each model by
measuring how well the parameterized model
predicts play in the remaining two or three
sessions.

For parameter estimation, we conduct Monte
Carlo simulations designed to replicate the
characteristics of the experimental settings. In

all calibrations, we exclude the last two rounds
(59 and 60) to avoid any end-of-game effects.
We then compare the simulated paths with the
experimental data to find those parameters that
minimize the mean-squared deviation (MSD)
scores. Since the final distributions of our price
data are unimodal, the simulated mean is an
informative statistic and is well captured by
MSD (Ernan Haruvy and Dale Stahl, 2000). In
all simulations, we use the k-period-ahead
rather than the one-period-ahead approach14 be-
cause we are interested in forecasting the long-
run mechanism performance. In doing so, we
choose k � 10, 15, 20, 30, and 58. We look at
blocks of 10, 15, 20, and 30 rounds because as
players gain information and experience, infor-
mation use may change over time. We use k �
15 rather than the other values because it best
captures the actual dynamics in the experimen-
tal data.

Each simulation consists of 1,500 games
(18,000 players) and the following steps:

(i) Simulated players are randomly matched
into pairs at the beginning of each round;

(ii) Simulated players select price announce-
ments:
(a) Initial round: Almost half of all play-

ers selected a first-round price of 20
(44 percent of player 1s and 43 percent
of player 2s). There are also consider-
able spikes in the frequency of select-
ing other prices divisible by 5.15 Based
on Kolmogorov-Smirnov tests on the
actual round-one price distribution, we
reject the null hypotheses of uniform
distribution (d � 0.250, p-value �
0.000) and normal distribution (d �
0.381, p-value � 0.000). We thus fol-
low the convention (e.g., Ho et al.,
2001) and use the actual first-round
empirical distribution of choices to
generate the first-round choices;

(b) Subsequent rounds: Simulated player
strategies are determined via equation
(7) for sFP and fEWA, and equation
(11) for PA;

14 Ido Erev and Haruvy (2000) discuss the tradeoffs of
the two approaches.

15 For example, the seven most frequently selected prices
are divisible by 5.
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(iii) Simulated player 1’s quantity choice is
based on the following steps:
(a) Determine each player 1’s best re-

sponse to p2;
(b) Determine whether player 1 will devi-

ate from the best response via the ac-
tual probability of errors for each
block;

(c) If yes, deviate via the actual mean and
standard deviation for the block. Oth-
erwise, play the best response;

(iv) Payoffs are determined by the payoff func-
tion of the compensation mechanism,
equation (1), for each treatment;

(v) Assessments are updated according to
equation (8) for fEWA and equation (10)
for PA;

(vi) Proceed to the next round.

The discount factor, r � [0, 1], is searched at
a grid size of 0.1. The parameter  is searched
at a grid size of 0.1 in the interval [1.5, 10.5] for
fEWA, and [1.5, 25.0] for sFP. The size of the
similarity window, h � [1, 10], is searched at a
grid size of 1. Mood shocks, z, are drawn from

a uniform distribution16 on an interval [�a, a],
where a is searched on [0, 500] with a step size
of 50. For all parameters, intervals and grid
sizes are determined by payoff magnitude.

Table 6 reports the calibrated parameters
(discount factor, sensitivity parameter, mood
shock interval, and similarity window size) for
the first two sessions of each treatment in 15-
round blocks.17 Estimated parameters for the
supermodular and near-supermodular treatments
are consistent with the increased level of con-
vergence over time, while the �00 treatments
are not. The second column (sFP) reports the
best-fit parameters for the stochastic fictitious
play model. With the exception of treatment
�20�00, the discount factor is close to 1.0,

16 Chen and Yuri Khoroshilov (2003) compare three
versions of PA models where shocks were drawn from
uniform, logistic, and double exponential distributions on
two sets of experimental data and find that the performance
of the three versions of PA were statistically indistinguish-
able.

17 We also calibrate all parameters for the entire 60
rounds, but do not report results due to space limitations.

TABLE 6—CALIBRATION OF THREE LEARNING MODELS IN FIFTEEN-ROUND BLOCKS

Model: sFP fEWA PA

Block: 1 2 3 4 1 2 3 4 1 2 3 4

Discount rate (r) Discount rate (r)
�10�00 1.0 0.7 0.9 1.0 0.1 0.0 0.9 1.0
�20�00 0.7 0.6 0.1 0.1 0.5 1.0 0.2 0.1
�20�18 1.0 1.0 0.9 0.9 0.2 1.0 0.3 0.2
�10�20 1.0 1.0 1.0 0.9 0.1 0.3 0.6 0.3
�20�20 1.0 1.0 1.0 0.9 0.2 0.1 0.5 0.2
�20�40 1.0 1.0 1.0 0.7 0.1 1.0 0.4 0.3

Sensitivity () Sensitivity () Shock interval (a)
�10�00 1.5 4.4 4.5 2.8 1.6 4.5 4.4 3.7 500 500 250 50
�20�00 1.5 4.3 14.0 18.0 1.7 4.0 5.1 7.4 50 100 150 50
�20�18 1.6 8.0 11.5 18.3 1.5 5.3 6.2 9.5 50 300 500 150
�10�20 1.9 5.9 8.6 13.8 1.8 4.7 6.2 8.2 100 500 450 300
�20�20 2.8 5.6 8.1 11.2 2.4 3.8 6.1 6.7 200 300 350 350
�20�40 3.4 6.5 14.0 20.5 3.2 4.9 6.7 9.9 150 50 150 50

Similarity window (h)
�10�00 1 1 10 9
�20�00 10 10 9 6
�20�18 5 4 6 1
�10�20 1 1 8 3
�20�20 2 2 7 1
�20�40 1 3 2 2
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indicating that players keep track of all past play
when forming beliefs about opponents’ next
move.18 Given these beliefs, the increasing sen-
sitivity parameter, , for all treatments except
�10�00 indicates that the likelihood of best
response increases over time. The third column
reports calibration results for the fEWA model.
Again, with the exception of treatment �10�00,
the parameter  increases over time. The final
column reports calibration of parameters in the
PA model. For each treatment except �10�00, a
middle block has the highest discount factor,
indicating more weight on new information
about a strategy’s performance. The second pa-
rameter in the PA model represents the upper
bound of the interval from which shocks are
drawn, a. Experimentation should decrease in
the final rounds. Indeed, for all treatments, the
estimated mood-shock ranges (weakly) de-
crease from the third to the last block. Finally,
the decreasing similarity windows from the
third to final block indicate decreasing strategy
spillover. Relatively large discount factors in
the third block, combined with relatively large
similarity windows, flatten the payoff assess-
ments around the most recently played strate-
gies, consistent with the local experimentation
(or relatively stabilized play) observed in the
data.

C. Validation

Using the parameters calibrated on the first
two sessions of each treatment, we next com-
pare the performance of the three learning mod-
els in predicting play in the hold-out sample.
For comparison, we also present the perfor-
mance of two static models. The random choice
model assumes that each player randomly
chooses any strategy with equal probability for
all rounds. This model incorporates only num-
ber of strategies and thus provides a minimum
standard for a dynamic learning model. The
equilibrium model assumes that each player
plays the subgame perfect Nash equilibrium
every round. Its fit conveys the same informa-
tion as the proportion of equilibrium play pre-

sented in Section IV, but with a different metric
(MSD).

Table 7 presents each model’s MSD scores
for each hold-out session. Recall that two of
each treatment’s four or five independent ses-
sions are used for calibration, and the rest for
validation. The results indicate that all three
learning models perform significantly better
than the random choice model (p-value � 0.01,
one-sided permutation tests) and, by a larger
margin, significantly better than the equilibrium
model (p-value � 0.01, one-sided permutation
tests). While the equilibrium model does a poor
job of explaining overall experimental data, its
performance improvement over time19 justifies
the use of learning models to explain the dy-
namics of play. Within each of the top three
panels (i.e., learning models), session-level
MSD scores are lower for the supermodular and
near-supermodular treatments, indicating that
each learning model does a better job explaining
behavior in those treatments. Indeed, in the em-
pirical learning literature learning models fit
better in experiments with better equilibrium
convergence (see, e.g., Chen and Khoroshilov,
2003).

RESULT 4 (Comparison of Learning Mod-
els): The performance of PA is weakly better
than that of fEWA and strictly better than that of
sFP. The performances of fEWA and sFP are
not significantly different.

SUPPORT: Table 7 reports the MSD scores for
each independent session in the hold-out sample
under each model. The Wilcoxon signed-ranks
tests show that the MSD scores under PA are
weakly lower than those under fEWA (z �
�0.085, p-value � 0.068), and strictly lower
than those under sFP (z � �0.028, p-value �
0.023). Using the same test, we cannot reject the
hypothesis that fEWA and sFP yield the same
MSD scores (z � 0.662, p-value � 0.508).

Although the performance of PA is only
weakly better than that of fEWA, the overall
MSD scores for PA are lower than those for

18 As the discount factor is zero in Cournot best reply,
we can reject this model based on our estimation of the
discount factors.

19 We omit the table to show the performance of the
equilibrium model in blocks of 15 rounds, as the informa-
tion is repetitive with Figures 1 and 2.
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fEWA for every treatment. Therefore, we use
PA for forecasting beyond 60 rounds.

Figure 3 presents the simulated path of the
calibrated PA model and compares it with the
actual data in the hold-out sample by superim-
posing the simulated mean (black line) plus and
minus one standard deviation (grey lines) on the
actual mean (black box) and standard deviation
(error bars). The simulation does a good job of
tracking both the mean and the standard devia-
tion of the actual data. In treatments �10�00
and �20�40, however, the reduction in variance
lags that seen in the middle rounds of the
experiment.

D. Forecasting

We now report the results from the PA
model. As the strategic complementarity predic-
tions concern long-run performance, we use the
calibrated parameters for the first 58 rounds to
simulate play in later rounds. This exercise al-

lows us to study convergence and efficiency in
long but finite horizons.

In all forecasting exercises we base all post-
58-round parameters on those from the last
block (calibrated from rounds 46 to 58). Since
we do not know how these parameters might
change beyond 60 rounds, we use three differ-
ent specifications. First, we retain all final-block
parameters. Second, we exponentially decay in
subsequent blocks the probability of deviation
from the best response in the production stage.20

Third, we exponentially decay the shock inter-
val in subsequent blocks. As all three specifica-
tions yield qualitatively similar results, we
report results from only the third specification
due to space limitations.21 In presenting the

20 In block k � 4, we use the probability of deviation,
Prk � min{Pr4/(k � 4)2, 10�8}. We set a lower bound of
10�8 to avoid the division-by-zero problem.

21 Different sequences of random numbers produce
slightly different parameters estimates. While the conver-

TABLE 7—VALIDATION ON HOLD-OUT SESSIONS

Session

Stochastic fictitious play

�10�00 �20�00 �20�18 �10�20 �20�20 �20�40

1 0.955 0.934 0.940 0.930 0.888 0.940
2 0.960 0.946 0.890 0.917 0.973 0.878
3 0.948 0.883 0.873
Overall 0.957 0.943 0.915 0.910 0.912 0.909

fEWA

1 0.956 0.934 0.942 0.928 0.887 0.948
2 0.960 0.946 0.890 0.922 0.978 0.886
3 0.946 0.879 0.871
Overall 0.958 0.942 0.916 0.910 0.912 0.917

Payoff assessment

1 0.952 0.933 0.914 0.941 0.888 0.916
2 0.957 0.944 0.899 0.922 0.917 0.898
3 0.947 0.894 0.903
Overall 0.955 0.941 0.907 0.919 0.902 0.907

Equilibrium play

1 1.867 1.853 1.833 1.833 1.489 1.792
2 1.889 1.919 1.606 1.839 1.953 1.669
3 1.917 1.447 1.539
Overall 1.878 1.896 1.719 1.706 1.660 1.731

Random play

Overall 0.976 0.976 0.976 0.976 0.976 0.976
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results, we use the shorthand notation x � y to
denote a measure under treatment x is signifi-
cantly higher than that under treatment y at the
5-percent level or less, and x � y to denote that
the measures are not significantly different at
the 5-percent level.

Figure 4 reports the simulated proportion of

-equilibrium play. We report only the results
for the first 500 rounds since the dynamics do
not change much thereafter. In our simulation,
all treatments reach higher convergence levels
than those achieved in the 60 rounds of the

experiment. Since the simulated variance reduc-
tion lags that of the experiment, round 60 results
are not achieved until approximately 90 rounds
of simulation. We further note that these im-
provements slow down after 200 rounds. The
proportion of 
-equilibrium play is bounded by
72 percent for player 1 and 93 percent for player
2. We now outline the simulation results.

RESULT 5 (Level of Convergence in Round
500): In the simulated data for player 1, at
round 500, we have the following level of con-
vergence ranking in:

(i) p*1: �20�18 � �20�40 � �20�20 �
�10�20 � �20�00 � �10�00;

(ii) 
-p*1: �20�18 � �20�40 � �20�20 �
�10�20 � �20�00 � �10�00;

(iii) p*2: �20�40 � �20�18 � �10�20 �
�20�20 � �20�00 � �10�00; and

gence level of a given treatment for a given set of parameter
estimates is not affected by the sequence of random num-
bers, this convergence level is somewhat sensitive to the
exact parameter calibration. We therefore conduct four dif-
ferent calibrations for each treatment and select the param-
eters that yield the highest level. The relative rankings of
treatments are quite robust with respect to ordinal selected.

FIGURE 3. SIMULATED DYNAMIC PATH VERSUS ACTUAL DATA
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(iv) 
-p*2: �20�40 � �20�18 � �10�20 �
�20�20 � �20�00 � �10�00.

SUPPORT: The fourth and seventh columns of
Table 8 report p-values for t-tests of the preced-
ing alternative hypotheses for players 1 and 2
respectively.

Comparing Results 1 and 5, we first note that
the four supermodular and near-supermodular
treatments continue to dominate the �00 treat-
ments. In fact, the simulations suggest that the
gap remains constant compared with �20�00,
and actually increases compared with �10�00.
Unlike Result 1, however, the four dominant
treatments differ. In particular, �20�18 per-
forms better in terms of player 1’s convergence,
and �20�40 in terms of player 2’s, although the
differences within the top four treatments are
smaller than the differences between these four

and the �00 treatments. In addition, an increase
in � significantly improves convergence by a
large margin (40 to 80 percent) for both players
when � � 0.

It is instructive to compare these results with
those concerning the speed of convergence in
our experimental treatments. In terms of con-
vergence to 
-p2, our regression results (Table
4) indicate that �20�18’s performance in later
rounds enables it to achieve the same conver-
gence level as the supermodular treatments.
This trend continues in our simulations, as
�20�18 performs robustly well compared to the
supermodular treatments. Likewise, in our anal-
ysis of the experimental results, the conver-
gence speed of �20�40 was not significantly
different from those of the other dominant treat-
ments. In our simulations, however, this treat-
ment dominates all treatments in player 2
equilibrium play.

FIGURE 3. CONTINUED
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In our simulations, the convergence improve-
ment due to increasing � from 0 to 20 does
depend on � (�-effect on �-effect). An increase
in � significantly decreases the improvement in

convergence level (all p-values for one-sided
t-tests are less than 0.01). Due to the relatively
poor performance of �10�00 in our simula-
tions, increasing � from 10 to 20 when � � 0
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improves convergence more dramatically in
round 500 than in rounds 40 to 60. In the long
run, an increase in � is a partial substitute for an
increase in �.

We now use definition 2 to examine the con-
vergence speed in the long run. Table 9 presents
results for the first time a treatment reaches the
level of convergence, L*. We omit the two �00
treatments since they do not converge to the
same levels as the other treatments. In terms of
player 1, �20�18 achieves the fastest conver-
gence for all levels L*. The picture for player 2
convergence, however, is more subtle. First, for
the �20 and �18 treatments, the speeds of con-
vergence to all L* are remarkably similar.
While �20�40 lags the other treatments in
terms of achieving 80-percent 
-equilibrium
play for player 2, it is the only treatment to
achieve L* � 90 percent.

Apart from convergence to equilibrium, it is
also important to look at long-run welfare prop-
erties. We evaluate mechanism performance us-
ing the efficiency measure in Section IV.

Figure 5 summarizes the simulated and actual
efficiency achieved by each of the treatments.
The top panel reports simulated results, while
the bottom panel reports efficiency in the ex-
perimental data. In the long run, supermodular
and near-supermodular treatments continue to
differ from the �00 treatments, with �20 supe-
rior to �10 in the �00 treatments.

VI. Interpretation and Discussion

The underlying force for convergence in
games with strategic complementarities is the
combination of the slope of the best-response
functions and adaptive learning by players. In

TABLE 9—SPEED OF CONVERGENCE IN SIMULATED DATA

(Threshold is the percent of players playing epsilon-equilibrium strategy. Entry indicates round in which went over
threshold for good, where “—” indicates that treatment never achieved threshold.)

Threshold

Player 1 Player 2

0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.8 0.9

�20�18 54 83 126 316 38 52 62 87 127 —
�10�20 129 221 — — 36 48 63 91 148 —
�20�20 61 91 149 — 39 51 61 84 137 —
�20�40 101 166 263 496 30 38 56 94 166 339

TABLE 8—RESULTS OF t-TESTS COMPARING LEVEL OF CONVERGENCE OF SIMULATIONS OF EXPERIMENTAL TREATMENTS

(Values are for round 500 and based on 1,500 simulated games.)

Treatment

Player 1 equilibrium price Player 2 equilibrium price

Probability H1 p-value Probability H1 p-value

�10�00 0.073 0.082
�20�00 0.188 �20�00 � �10�00 0.000*** 0.213 �20�00 � �10�00 0.000***
�20�18 0.265 �20�18 � �20�40 0.187 0.381 �20�18 � �10�20 0.264
�10�20 0.211 �10�20 � �20�00 0.000*** 0.376 �10�20 � �20�20 0.001***
�20�20 0.243 �20�20 � �10�20 0.000*** 0.353 �20�20 � �20�00 0.000***
�20�40 0.259 �20�40 � �20�20 0.007*** 0.442 �20�40 � �20�18 0.000***

Treatment

Player 1 
-equilibrium price Player 2 
-equilibrium price

Probability H1 p-value Probability H1 p-value

�10�00 0.216 0.232
�20�00 0.519 �20�00 � �10�00 0.000*** 0.573 �20�00 � �10�00 0.000***
�20�18 0.713 �20�18 � �20�40 0.045** 0.870 �20�18 � �10�20 0.008***
�10�20 0.584 �10�20 � �20�00 0.000*** 0.857 �10�20 � �20�20 0.000***
�20�20 0.662 �20�20 � �10�20 0.000*** 0.834 �20�20 � �20�00 0.000***
�20�40 0.701 �20�40 � �20�20 0.000*** 0.925 �20�40 � �20�18 0.000***
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the compensation mechanisms, the slope of
player 2’s best response function is determined
by �. As � and � determine the penalty for

mismatched prices, we seriously consider the
possibility that convergence in supermodular
and near-supermodular treatments to an equilib-
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rium where both players announce the same
price is not due to strategic complementarities,
but rather to increases in � and � making the
penalty terms more prominent and matching strat-
egies more focal.22 We thus have two hypoth-
eses to explain the observed improvement in
convergence to equilibrium play in supermodu-
lar and near-supermodular treatments: a best-
response hypothesis and a matching hypothesis.
In this section, we present evidence that the
improvement in convergence is due to payoff-
relevant changes to best responses, and not to
matching becoming more focal.

While the focal point hypothesis suggests
that players converge to a match, it does not
specify the price at which they match. In the
first round of our experiments, almost 50 per-
cent of all prices were 20, and less than 10
percent were in the 
-equilibrium range of
[15, 17]. In the final rounds of our experi-
ments, play in the four supermodular or near-
supermodular treatments converges strongly
to this range, suggesting more than simple
matching.

By equation (4), player 1’s best response is
always to match regardless of p2. By the
General Incentive Hypothesis, we expect
more matching behavior by player 1 as �
increases. By equation (5), however, match-
ing is a best response for player 2 only in
equilibrium. Therefore, data for player 2 can
help us separate the best-response and match-
ing hypotheses.

We first investigate which model better ex-
plains our experimental data. We operationalize
the best response hypothesis by the stochastic
fictitious play model of Section V and the
matching hypothesis with a stochastic matching
model.23 In both models, the predicted player 1
price is specified by equation (6). In the match-
ing model, player 2 plays this price with prob-
ability 1 � 
, and one of the other 40 prices
with probability 
/40. We estimate 
 using the
first two sessions of each treatment.24 We then

compare the performance of the matching
model with the sFP model using the hold-out
sample. Using the Wilcoxon signed-rank tests
to compare the MSD scores in the hold-out
sample, we conclude that sFP explains player
2’s behavior significantly better than the match-
ing model (p-value � 0.006). We conclude that
best response to a predicted price explains be-
havior significantly better than the matching
model.

We next investigate whether differences in
the cost of matching, defined as the difference
between matching and best-response profits,
can explain all of the differences in match-
ing behavior among treatments, or whether
there exists additional matching behavior
that cannot be explained by payoff-relevant
factors.

We examine the probability that player 2 tries
to match the anticipated player 1 price. We do
not know what price player 2 anticipates. To
estimate how players weigh history, we cali-
brate a matching model in a manner similar to
that outlined in Section V B. We assume a
player matches the price he anticipates, given
by equation (6), and we find the discount rate
for each treatment that minimizes MSD.25 This
gives us the anticipated price that best explains
the matching hypothesis. Using this discount
rate, we calculate, for each t � 1, an anticipated
player 1 price, p�1, for each player 2. We also
calculate the opportunity cost of matching p�1,
equal to the difference between best-response
and matching profits. This opportunity cost cap-
tures the payoff relevant effects of � and also
depends on the price to be matched.

We next regress the probability that player 2
matches the anticipated price, Pr(p2 � p�1), on
ln(Round), treatment dummies, and treatment
dummies interacted with ln(Round). In one
specification, we include the cost of matching as
a regressor. If parameter changes make match-
ing more focal, then changes in the cost of
matching will not explain all of the changes in
probability of matching.

22 We thank an anonymous referee and the co-editor for
pointing this out.

23 We do not report the results of the deterministic
matching model as it performs significantly worse than its
stochastic counterpart.

24 Estimated 
 in each block are as follows: �10�00 �
{1.0, .7, .6, .8}; �20�00 � {.7, .6, .5, .4}; �20�18 � {.7,

.2, .3, .3}; �10�20 � {.5, .3, .3, .2}; �20�20 � {.1, 0, 0, 0};
�20�40 � {.2, 0, 0, .1}.

25 In all treatments, the calibrated discount rate is r �
0.1.
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Table 10 presents the results of two probit
models with clustering at the individual level. In
the first specification, we do not include the cost
of matching as a regressor. In this specification,
the coefficient for D�00 is negative and signifi-
cant; thus reducing � from 20 to 0 decreases the
probability that player 2 will try to match player
1’s price. Including the cost of matching in the
regression, however, we find that neither the
dummies nor their interactions are signifi-
cant—the coefficient for the previously signifi-
cant D�00 dummy falls almost by a half, while
the precision of the estimate stays about the
same. The coefficient on the cost of matching,
however, is significant and negative. This
finding suggests that the rise in matching that

occurs when we increase � from 0 to 20 is not
because matching is more focal, but rather
because an increase of � decreases the cost of
matching.26

VII. Concluding Remarks

The appeal of games with strategic comple-
mentarities is simple: as long as players are
adaptive learners, the game will, in the limit,
converge to the set bounded by the largest and
smallest Nash equilibria. This convergence de-
pends on neither initial conditions nor the as-
sumption of a particular learning model.
Unfortunately, while many competitive envi-
ronments are supermodular, many are not. In
this study, we examine whether there are non-
supermodular games which have the same con-
vergence properties as supermodular ones. We
also study whether there exists a clear conver-
gence ranking among games with strategic
complementarities.

Our results confirm the findings of previous
experimental studies that supermodular games
perform significantly better than games far be-
low the supermodular threshold. From a little
below the threshold to the threshold, however,
the change in convergence level is statistically
insignificant. This results suggests that in the
context of mechanism design, the designer
need not be overly concerned with setting pa-
rameters that are firmly above the supermodular
threshold: close is just as good. It also enlarges
the set of robustly stable games. For example,
the Falkinger mechanism (Falkinger, 1996) is
not supermodular, but close. These results sug-
gest that near-supermodular games perform like
supermodular ones.

Our next result concerns convergence perfor-
mance within the class of games with strategic
complementarities. Variations in the degree of
complementarities have no significant effect on
performance within the 60 experimental rounds.
Our simulations suggest, however, an increased

26 We consider other specifications of anticipated price,
including the averages of the last one, two, three, and four
prices seen. In only one specification was a dummy or its
interaction with ln(Round) significant. In that specification,
the coefficient for D�18 is positive, and its interaction with
ln(Round) is negative, a finding which is not consistent with
a focal point hypothesis.

TABLE 10—PLAYER 2 MATCHING HYPOTHESIS

(Probit models with individual-level clustering comparing
models with and without the cost to Player 2 of matching

the anticipated price of Player 1.)

Model

Dependent variable:
Probability player 2 price
equals anticipated player 1

price

(1) (2)

D�10 0.014 0.017
(0.043) (0.041)

D�00 �0.077 �0.043
(0.035)** (0.036)

D�18 �0.046 �0.032
(0.053) (0.056)

D�40 0.008 �0.041
(0.061) (0.042)

ln(Round) 0.041 0.028
(0.011)*** (0.010)***

Match Cost �0.001
(0.000)***

ln(Round)D�10 �0.014 �0.012
(0.012) (0.012)

ln(Round)D�00 0.003 �0.000
(0.013) (0.012)

ln(Round)D�18 0.006 0.002
(0.021) (0.020)

ln(Round)D�40 0.001 0.015
(0.018) (0.016)

Observations 9588 9588
Log pseudo-likelihood �3243.21 �3177.16

Notes: Coefficients reported are probability derivatives. Ro-
bust standard errors in parentheses are adjusted for cluster-
ing at the individual level. Significant at: * 10-percent level;
** 5-percent level; *** 1-percent level. Dy is the dummy
variable for treatment y. Excluded dummy is D�20�20.
Match Cost is the difference, in cents, of matching and
best-responding to anticipated Player 1 price.
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degree of strategic complementarities leads to
improved convergence in the long run.

Finally, the generalized compensation mech-
anism we use to study convergence has a
parameter unrelated to the degree of comple-
mentarities. We use this parameter to study the
effects factors not related to strategic comple-
mentarities on the performance of supermodular
games. For a given level of strategic comple-
mentarity, the factors have partial effects on
convergence level and speed, but the effects of
strategic complementarities are largely robust to
variations in these other factors. In the long run,
these effects persist, and we find evidence that
strengthening the strategic complementarities in
one player’s strategy can partially substitute for
the lack of strategic complementarities in the
other’s.

A word of caution is in order. In a single
experimental setting, it is infeasible to study a
large number of games in a wide range of com-
plex environments. While this is the first sys-
tematic experimental study of the role of
strategic complementarities in equilibrium con-
vergence, the applicability of our results to
other games needs to be verified in future ex-
periments. In the only other study of this kind,
Arifovic and Ledyard (2001) examine similar
questions using the Groves-Ledyard mecha-
nism. Their results are encouraging, as their
results are consistent with ours.

APPENDIX: PROOF OF PROPOSITION 2

We omit the proofs of parts (i), (ii), and (iv),
as they follow directly from the previous anal-
ysis and Proposition 1. We now present the
proof for part (iii). If players follow Cournot
best-reply dynamics, we can rewrite equations
(4) and (5) as

p1 �t 	 1	 � p2 �t	;

p2 �t 	 1	 � mp1 �t	 	 n

where m � [� � (1/4c)]/[� � (e/4c2)] and n �
(er/4c2)/[� � (e/4c2)]. The analogous differen-
tial equation system is

(12) ṗ1 � p2 � p1 ;

ṗ2 � mp1 � p2 	 n.

We now use the Lyapunov second method to
show that system (12) is globally asymptoti-
cally stable. Define

V� p1 , p2 	 �
� p1 � p2 	2

2

� �
p0

p1

�p � mp � n	 dp

where p0 � 0 is a constant. We now show that
V(p1, p2) is the Lyapunov function of system
(12).

Define G(p1) � �p0

p1 (p � mp � n) dp. We get

G� p1 	 �
1
2

�1 � m	p1
2 � np1

� 1
2
�1 � m	p0

2 	 np0 .

As c � 0 and e � 0, for any � � 0, we always
have m � 1. Therefore, the function G(p1) has
a global minimum, which is characterized by
the following first-order condition:

dG� p1 	

dp1
� �1 � m	p1 � n � 0.

Therefore, p1 � n/(1 � m) � er/(e � c) � p*
is the global minimum. When p1 � p2 � p*,
(p1 � p2)2/2 also reaches its global minimum.
Therefore, V(p1, p2) is at its global minimum
when p1 � p2 � p*.

Next we show that V̇ � 0.

V̇ �
�V

�p1
ṗ1 	

�V

�p2
ṗ2

� �p1 � p2 	 �1 � m	p1 � n	�p2 � p1 	

� �p2 � p1	�mp1 � p2 	 n	

� �2�p1 � p2	2 � 0.

Let B be an open ball around (p*, p*) in the
plane. For all (p1, p2) � (p*, p*), V̇ � 0.
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Therefore, (p*, p*) is a globally asymptotically
stable equilibrium of (12).
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