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Abstract

This paper reports the first experimental study of the serial and the average cost pricing
mechanisms under five different treatments: a complete information treatment and four
treatments designed to simulate distributed systems with extremely limited information,
synchronous and asynchronous moves. Although the proportion of Nash equilibrium play
under both mechanisms is statistically indistinguishable under complete information, the
serial mechanism performs robustly better than the average cost pricing mechanism in
distributed systems, both in terms of the proportion of equilibrium play and system
efficiency.
   2003 Elsevier B.V. All rights reserved.
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1 . Introduction

In a wide variety of real world situations a group of agents share a common
production process transforming input into output. Examples of shared resources
include computing facilities, secretarial support and lab facilities within an
organization. A cost-sharing mechanism distributes the service and allocates the
corresponding costs to each agent. Two prominent cost-sharing mechanisms are
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the serial mechanism (Shenker, 1990; Moulin and Shenker, 1992) and the average
cost pricing mechanism (see Tauman (1988) for a survey). We will use two

1examples to illustrate how the mechanisms work.
We first look at a group of ranchers who might share the cost of constructing

and maintaining an irrigation network. Aadland and Kolpin (1998) provide an
empirical and axiomatic analysis of cost-sharing arrangements of irrigation ditches
located in south-central Montana. In their sample, a typical ditch begins at the
headgate and then continues on a sequential path through the lands of each rancher
using the main ditch. Ranchers’ private ditches branch off from the main ditch and
transport water to their land. The costs associated with the main ditch are shared
among the ranchers. Kolpin and Aadland (2001) find that the cost sharing rules
employed on these ditches are variations of the average and serial cost sharing
mechanisms. A rule is in the average class if all agents pay according to an
identical fixed ‘rate’, which may be defined on a per capita basis, per irrigated acre
basis, etc. A serial rule partitions the ditch into ‘a sequence of segments such that
all agents require the first segment to be operational in order to receive water, all
but the first agent on the ditch additionally require the second segment to be
operational,. . . . Each segment is then treated like a separate ditch whose costs are
covered by having all agents requiring its use pay an identical fixed rate’ (Kolpin
and Aadland, 2001). An agent’s total cost share is the sum of his obligations on
each of these individual segments. This example provides a more traditional
setting where the ranchers know the rules of the game as well as each other’s
demand fairly well.

A more recent example is provided by the Internet, which has becoming
increasingly important in global telecommunications. In the context of several
agents sharing a network link, the cost to be shared is congestion experienced.
Each agent controls the rate at which she is transmitting data. If the sum of the
transmission rates is greater than the total link capacity, then the link becomes
congested and the agents’ packets experience delays. Most current Internet routers
use a FIFO packet scheduling algorithm, which results in each agent’s average
queue proportional to her transmission rate. This corresponds to the average cost
pricing mechanism (Shenker, 1990). In contrast, the Fair Queueing packet
scheduling algorithm, which corresponds to the serial mechanism, leads to
congestion allocations such that an agent’s average queue is independent of
transmission rates higher than her own. The latter has been proposed as an
alternative to the former, based on theoretical and simulation results (Stoica et al.,
1998). The new generation of Cisco 7200, 3600 and 2600 routers have both the

2FIFO and Fair Queueing options. This paper presents the first experimental study

1A formal definition of each mechanism is provided in Section 2.
2http: / /www.cisco.com/warp/public /121/7200 per-vc-CBWFQ.htm
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of the performance of the two mechanisms in both the traditional complete
information setting and the Internet setting.

Most of the theoretical literature has focused on the axiomatic characterization
of these mechanisms (e.g. Moulin and Shenker, 1994; Friedman and Moulin,
1999) and their static properties in a complete information setting with syn-
chronous actions. However, as Friedman and Shenker (1998) pointed out, in a

3distributed system such as the Internet where agents have very limited a priori
information about other agents and the payoff structure and where there is no
synchronization of actions, traditional solution concepts that we use to characterize

4these mechanisms, such as Nash equilibrium or even the serially undominated set,
might not be achieved as a result of learning. They propose new solution concepts
for distributed systems describing convergence for learning algorithms satisfying
certain theoretical properties.

Although Friedman and Shenker (1998) used the Internet as the context for their
new theory, limited information and asynchrony are more realistic assumptions
than complete information and synchronous play in many real economic situations.
To my best knowledge there have not been experimental studies that incorporate
both limited information and asynchrony to study implementation. The average
cost pricing mechanism has not been studied in the laboratory either. The only
other experimental study of the serial mechanism is by Dorsey and Razzolini
(1999). They investigate the performance of the serial mechanism with each
human subject against three computerized players, where each human player
knows his own cost share and payoff structure but has no information about the
opponents’ payoff structures. Their information condition is in between the
complete information and limited information setting in this study. They do not
consider the performance of the mechanism under limited information or
asynchrony.

In this paper I design an experiment to evaluate the serial and the average cost
pricing mechanism in an easy environment with complete information, and more
challenging environments with extremely limited information and asynchronous
moves. The goal of this paper is to compare the performance of the two
mechanisms in various settings and to assess the plausibility of the new solution
concepts.

The paper is organized as follows. Section 2 introduces the theoretical
properties of the serial (sometimes shortened as SER) and average cost pricing
(hereafter shortened as ACP) mechanisms. Section 3 presents the experimental

3Following Friedman and Shenker (1998), a system is called adistributed system ‘because the users
are geographically dispersed and are accessing the resource through the network’. The Internet is a
prominent example.

4The serially undominated set is the set of outcomes of a strategic game that survives iterated
elimination of strictly dominated actions.
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design. Section 4 compares the performance of the mechanisms under complete
information. Section 5 presents results in distributed systems with limited
information and asychrony. Section 6 discusses the robustness of the experimental
results with respect to changes in the environment. Section 7 concludes the paper.

2 . The serial and ACP mechanisms—theoretical properties

Suppose a group ofn agents share a one-input, one-output technology with
decreasing returns. Each of then agents announces his demandq of output. Eachi

agent gets her demandq and pays a cost share,x . Notex is the total cost agentii i i

pays. In the irrigation example,q corresponds to the total amount of maintenancei

of the main ditch demanded by agenti, while x is what agenti pays to get thei

maintenance done. In the example of Internet routers,q is agent i’s datai

transmission rate, whilex is the congestion, i.e. the average queue experienced byi

agenti. Therefore,x is the reduction in agenti’s utility due to congestion. Leti

q # q # ? ? ? # q . The cost function is denoted byC, which is strictly convex.1 2 n

A cost-sharing mechanism must allocate the total costC(o q ) among theni i

agents.
The serial mechanism, originally introduced by Shenker (1990), was analyzed

by Moulin and Shenker (1992) in the context of cost and surplus sharing with
complete information. The mechanism can be characterized by four properties:

5unique Nash equilibrium at all profiles, anonymity (the name of the agents does
not matter), monotonicity (an agent’s cost share increases when she demands more
output) and smoothness (an agent’s cost share is a continuously differentiable
function of the vector of demands). Among agents endowed with convex,
continuous and monotonic preferences, the serial mechanism is the only cost
sharing rule which is dominance-solvable and its unique Nash equilibrium is also
robust to coalitional deviations when agents cannot transfer outputs.

Under the serial mechanism, agent 1 (with the lowest demand) pays (1/n)th of
the cost of producingnq . Agent 2 pays agent 1’s cost share plus 1/(n 2 1)th of1

the incremental cost fromnq to (n 2 1)q 1 q , i.e.1 2 1

Sx (c, q )5C(nq ) /n; and1 1 1

C(nq ) C(q 1 (n 2 1) q )2C(nq )1 1 2 1S ]] ]]]]]]]]x (c, q , q )5 1 .2 1 2 n n 2 1

And so on. Therefore, an agent’s cost share under the serial mechanism is only
affected by her own demand and those whose demands are lower than hers. That
is, an agent’s cost share is independent of demands higher than her own.

5Assume agents have convex, continuous and monotonic preferences.
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Like the serial mechanism, the average cost pricing mechanism satisfies
anonymity, monotonicity and smoothness. It is the only method that is robust to
arbitrage, i.e. agents cannot benefit from merging or splitting their demands. In
contrast to the serial mechanism, the normal form game induced by the average
cost pricing mechanism is in general not dominance-solvable, nor does it have a
unique equilibrium at all profiles when agents have convex, continuous and
monotonic preferences.

When agenti demandsq amount of output, the general formula for agenti’si

cost share under the average cost pricing mechanism is given by

Ax (c, q)5 q /O q ?C O q , for all i 5 1, . . . ,n.i i k kS D S D
k k

Therefore, under ACP an agent’s cost share is proportional to her demand. It is
affected by her own demand, and the sum of all other agents’ demands.

There is no systematic efficiency comparison between the two mechanisms. In
general there exists no differentiable and monotonic cost sharing mechanism
where all Nash equilibrium outcomes are first best Pareto optimal at all preference

6profiles. Moulin and Shenker (1992) provide a definition of second best efficiency
and show that the serial mechanism yields a second best efficient equilibrium
while ACP does not.

A particularly interesting question is the performance of the two mechanisms in
distributed systems where users are geographically dispersed and are accessing the
resource through the network. Friedman and Shenker (1998) address the issue of
learning and implementation in distributed systems. They argue that when agents
have very limited a priori information about the other players and the payoff
structure, standard solution concepts like Nash equilibrium or even the serially
undominated set are not necessarily achieved as a result of learning in the network
setting. Therefore, new solution concepts, such as the serially unoverwhelmed set
and the Stackelberg undominated set are proposed. Loosely speaking, one action
overwhelms another if all payoffs, over all sets of other players’ actions, for the
one are greater than all payoffs, over all sets of other players’ actions, for the

7other. Therefore, if actionU overwhelms actionD, thenU dominatesD, but the
converse is not true

6‘For an arbitrary cost sharing mechanismj, say that (q , . . . , q ) is a Nash equilibrium outcome at1 n

9 9some utility profile. We ask if there is another vector of demands (q , . . . , q ) such that at the1 n

corresponding allocation dictated by the mechanismj, no one is worse off and someone is better off
than at the equilibrium allocation corresponding to (q , . . . , q ). If no such vector of demands exists,1 n

we call our equilibrium second best efficient’ Moulin and Shenker (1992, p.1025).
7See Friedman and Shenker (1998) for a precise definition.
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Player 2
L R

Player 1 U p (UL), p (UL) p (UR), p (UR)1 2 1 2

D p (DL), p (DL) p (DR), p (DR)1 2 1 2

For example, in the above 232 game, actionU dominatesD if p (UL)$1

p (DL) and p (UR)$p (DR); action U overwhelms D if minhp (UL),1 1 1 1

p (UR)j$maxhp (DL), p (DR)j. The serially unoverwhelmed set is the set1 1 1

remaining after iterated elimination of overwhelmed actions. One main result of
8Friedman and Shenker (1998) is that reasonable learners converge to the serially

unoverwhelmed set. In comparison, Milgrom and Roberts (1990) showed that
adaptive learners converge to the serially undominated set. A game isD-solvable
if iterated elimination of dominated strategies leads to a single eventual outcome.
A game isO-solvable if iterated elimination of overwhelmed strategies leads to a
single eventual outcome. Among the cost sharing mechanisms, the serial mecha-

9nism is O-solvable while ACP is not.

3 . Experimental design

The experimental design reflects both theoretical and technical considerations.
The goal of the design is to compare the performance of the serial and ACP
mechanisms in two different settings: a complete information setting that tests the
prediction of dominance-solvability, and a more challenging network setting to
compare the performance of the two mechanisms and to assess the plausibility of
the new solution concepts. The economic environment and experimental pro-
cedures are discussed in the sections below.

3 .1. The economic environment

In a simple environment to test the serial and ACP mechanism under various
treatments, agents are endowed with linear preferencesp (x , q)5a q 2 x , wherei i i i i

a is agenti’s marginal utility for the output, andx is her cost share. The costi i
2function is chosen to be quadratic,C(q)5 q . In the network context with several

agents sharing a network link,a is agent i’s value for the amount of datai

transmitted per unit of time, and the cost to be allocated corresponds to the
congestion experienced. Therefore, the cost should be interpreted as the reduction

8The key components of a reasonable learner are optimization, monotonicity and responsiveness. See
Friedman and Shenker (1998).

9This is proved in Theorem 8 in Friedman and Shenker (1998).
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in agent i’s utility due to congestion. I chose linear utility and quadratic cost
functions in order to get a unique interior Nash equilibrium. In Section 6 I present
simulation results for more general utility and cost functions.

Consider a two-player game witha #a . Then under the serial mechanism, the1 2
S 2cost share for agent 1 isx 5C(2q ) /25 2q . Agent 2 picks up the remaining1 1 1

S 2 2cost, x 5C(q 1 q )2C(2q ) /25 (q 1 q ) 22q . The unique, dominance-2 1 2 1 1 2 1

solvable Nash equilibrium is thus characterized by

a 11S S] ]q 5 , andq 5 (2a 2a ).1 2 2 14 4

The Stackelberg equilibrium for the serial game coincides with the above Nash
10equilibrium.

AFor the ACP mechanism, the cost shares of the two agents arex 5 q /(q 11 1 1
Aq ) ?C(q 1 q )5 q (q 1 q ), and x 5 q /(q 1 q ) ?C(q 1 q )5 q (q 1 q ),2 1 2 1 1 2 2 2 1 2 1 2 2 1 2

respectively. Therefore, the unique dominance-solvable Nash equilibrium is
characterized by

2a 2a 2a 2a1 2 2 1A An n]]] ]]]q 5 , andq 5 .1 23 3

Note that the Stackelberg equilibria under ACP usually differ from the Nash
equilibrium. The Stackelberg equilibrium with player 2 as the leader is

3a a a1 2 1A As2 s2] ] ]q 5 2 , andq 5a 2 .1 2 24 2 2

In the asynchronous treatment discussed in Section 3.2 player 2 will be the
Stackelberg leader.

The mechanisms are implemented as normal form games with a discrete
strategy space,S 5 h1, 2, . . . , 11, 12j for eachi. Parameters are chosen to ensure:i

(1) the serial game is both D-solvable and O-solvable, while the ACP game is
D-solvable but not O-solvable; (2) the Stackelberg equilibrium and Nash equilib-
rium under ACP are sufficiently far away from each other; (3) the normal form

11games with a discrete strategy space have a unique Nash equilibrium under ACP;
(4) most of the payoffs are positive in both normal form games. Note that since
the stage game under SER and ACP are both dominance-solvable, the equilibrium

10This is a general property of the SER mechanism (Corollary 1 to Theorem 1 in Moulin and
Shenker (1992)).

11I thank Scott Shenker for suggesting using non-integerha j to avoid the multiple equilibriai i

problem in ACP. In environments with linear preferences and quadratic cost functions even though
there exists a unique Nash equilibrium in a continuous strategy space under the ACP mechanism, there
are multiple equilibria when the strategy space is discrete and the preference parameters,ha j , arei i

integers. The proof is available from the author upon request.
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Table 1
Parameters and equilibrium quantities

ID Parameters Equilibrium quantities

SER ACP

a Nash Stackelberg Nash Stackelbergi

(Leader: 1 or 2) (Leader: 2)

1 (Blue) 16.1 4 4 4 2
2 (Red) 20.1 6 6 8 12

of the complete information repeated game is simply repeated play of the static
equilibrium.

Table 1 reports the parameters and equilibrium quantities for each type of
equilibrium for the two mechanisms. In the second column we leta 516.1 and1

a 520.1. Under the serial mechanism the Nash as well as the Stackelberg2

equilibrium quantities are (4, 6). Under ACP, the Nash equilibrium quantities are
(4, 8), while the Stackelberg equilibrium quantities with player 2 as the leader are
(2, 12). Note that we use Blue for player 1 and Red for player 2 in the instructions
(see Appendix A).

3 .2. Experimental procedures

I implement five different treatments. For a baseline treatment I conducted 12
sessions of the serial and ACP mechanisms under complete information with the
round robin design (hereafter shortened as Round Robin). Each session has eight
pairs of players. Each of the player 1s is matched with each of the player 2s only
once. The entire session lasts for eight rounds. Under the Round Robin treatment,
each player is given complete information about the payoff matrix and the
structure of the game. They are also given information about quantities chosen and
the corresponding payoffs of all players. This treatment is designed to compare the
performance of the two mechanisms as one-shot games under complete in-
formation. The natural solution concept for this treatment is dominance-solvability.

To evaluate the possibility of applying these mechanisms to distributed systems
such as the Internet, I designed four treatments with limited information and
various degrees of asynchrony. Learning in distributed systems is characterized by
two features. Firstly, players have extremely limited information—they often do
not know the payoff functions, nor do they know how their payoffs depend on the
actions of others, probably due to the lack of information about the detailed nature
of the resources itself. Therefore, in the experimental set-up the only information
players have is their own action and the resulting own payoffs. Secondly, there is
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no synchronization. The rate at which updating occurs can vary by many orders of
magnitude. This feature is reflected by the following design: two treatments with
synchronous play and updating, two with asynchronous play and updating. In the
synchronous treatments (hereafter shortened as SYN) every player receives his
own payoff feedback after each round. In the asynchronous treatments (hereafter
shortened as ASYN) player 1 submits a demand and gets a payoff feedback after
each round, but player 2 submits a demand which is matched with his opponents’
demands for the next five rounds and gets a cumulative payoff feedback every five
rounds. Therefore, in the asynchronous treatment player 2 acts five times slower

12than player 1 and becomes the de facto Stackelberg leader.
With both synchronous and asynchronous play, I designed one treatment where

players are randomly re-matched into pairs in each of the 150 rounds, and another
treatment where players are matched into fixed pairs at the beginning of each
session, and play the same partner for 150 rounds. The former captures the
inherent randomness in many network settings, while the latter reflects situations
with fixed sets of players, such as cost sharing in irrigation ditches (Aadland and
Kolpin, 1998). In all four treatments the game lasts for 150 rounds (30 rounds for
player 2 in ASYN) and the players always keep their own type. To summarize, I
implement the following five different treatments.

1. Round Robin: complete information, round robin.
2. SYN : limited information, synchronous play, with random re-matching forr

each of the 150 rounds.
3. SYN : limited information, synchronous play, with repeated fixed pairs for 150f

rounds.
4. ASYN : limited information, asynchronous play, with random re-matching forr

each of the 150 rounds.
5. ASYN : limited information, asynchronous play, with repeated pairs for 150f

rounds.

Computerized experiments were conducted by the author at the EEPS Labora-
tory at the California Institute of Technology (hereafter shortened as CIT) in June
and July, 1997, and the RCGD Laboratory at the University of Michigan in
November, 1999 and January, 2000. Subjects were students and staff from CIT,
Pasadena City College (hereafter shortened as PCC) and the University of

12Asynchrony as defined by Friedman and Shenker (1998) requires the ratio of expected reaction
time of different players to be fixed. Therefore, there can be two different implementations of
asynchrony in the experimental setting: a fixed ratio as described above, or more random speed
differentials with fixed expected ratio. Both implementations of asynchrony are faithful to the
theoretical model. I chose the former because of its simplicity.
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13Michigan (hereafter shortened as UM). A total of 484 subjects participated in the
experiment. No subject was used in more than one session.

Table 2 lists the features of each session, including session number and subject
pool, number of subjects in each session, mechanisms implemented, and game
length under each treatment. At the beginning of each session subjects randomly
drew an identification number. Then each of them was seated in front of the
corresponding terminal, with a folder containing the instructions and record sheets.
After the instructions were read aloud, subjects were required to finish the Review
Questions, which were designed to test their understanding of the instructions.
Afterwards the experimenter checked answers and answered questions. In all
sessions the instruction period was within 20 min. There was no practice round in
any session. The Round Robin sessions consisted of eight rounds and typically
lasted for 40 min. The SYN and ASYN sessions consisted of 150 rounds and
typically lasted for 1.5 h. The average earnings of experimental subjects was

14$20.16, not including the $8 participation fee for PCC subjects.
Instructions for the experiments are in Appendix A. Note that in both the SYN

Table 2
Features of experimental sessions

Treatments Session no. (subject pool) No. of subjects Mechanisms Game
per session length

Round Robin 1, 2, 3 (CIT) 16, 16, 16 SER
4, 5, 6 (PCC) 16, 16, 16 SER
7, 8, 9 (CIT) 16, 16, 16 ACP 8
10, 11, 12 (PCC) 16, 16, 16 ACP

Synchronous 13 (CIT), 14 (PCC), 15 (UM) 16, 12, 12 SER
(fixed pair) 16 (CIT), 17 (PCC), 18 (UM) 14, 12, 12 ACP
Synchronous 19, 20, 21 (UM) 12, 12, 12 SER
(random match) 22, 23, 24 (UM) 12, 12, 12 ACP
Asynchronous 25 (CIT), 26 (PCC), 27 (UM) 10, 12, 12 SER 150
(fixed pair) 28 (CIT), 29 (PCC), 30 (UM) 12, 12, 12 ACP
Asynchronous 31, 32, 33 (UM) 12, 12, 12 SER
(random match) 34, 35, 36 (UM) 12, 12, 12 ACP

13I checked the subject pool effects by using the data from the fixed-pairs and Round Robin
treatments. In the fixed pairs treatments, one-tailedt-tests show that the difference in the proportion of
equilibrium play are not significant at the 10% level (z 52.32 for CIT vs. PCC,z 51.22 for CIT vs.
UM, and z 51.02 for UM vs. PCC), and that the differences in efficiency are not significant between
CIT and UM (z 51.88), PCC and UM (z 50.12). The only significant difference in efficiency is
CIT.PCC, with z 5 2.63 (P , 0.05). Under Round Robin, CIT subjects played Nash equilibrium
strategy significantly more than those from PCC (P , 0.01, one-tailed permutation test) while efficiency
difference is weakly significant (P 5 0.768, one-tailed permutation test).

14The participation fee was used to compensate the PCC subjects for transportation costs. Since the
experiment was conducted on the CIT and UM campuses, subjects from CIT and UM did not receive a
participation fee.
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and ASYN treatments players had extremely limited information—they were told
that they were in a game, the game length and their strategy space. At the end of
each round each player was informed of his own choice in the previous round and
his own payoff corresponding to his previous round’s choice of quantity. They had
no information about the payoff matrix, nor whom they were playing with.

4 . Performance of the mechanisms under complete information

In this section I compare the performance of the two mechanisms under the
Round Robin treatment, using two criteria—the proportion of Nash equilibrium

15play and the system efficiency. Under the Round Robin treatment, the theoretical
prediction for both mechanisms is the dominance-solvable Nash equilibrium.

Table 3 tabulates the proportion of Nash equilibrium play in each round under
the Round Robin treatment, as well as the proportion of equilibrium play in all
rounds. The last row presents theP-values for one-tailed permutation tests under
the null hypothesis that the proportion of Nash equilibrium play is the same under
both mechanisms.

Result 1. (Equilibrium play under Round Robin) In the Round Robin treatment,
at the 8th round an average of 88.6% of the subjects played the unique Nash
equilibrium strategy under SER; while an average of 80.9% of the subjects played

Table 3
Proportion of subjects choosing Nash equilibrium strategies under the Round Robin treatment and
results of permutation tests (H : SER5ACP; H : SER.ACP)0 1

Session Mechanism Round no. All
no. (subj. pool) rounds

1 2 3 4 5 6 7 8

1 SER (CIT) 0.625 0.688 0.938 1.000 0.938 1.000 1.000 1.000 0.899
2 SER (CIT) 0.688 0.750 0.938 0.938 0.938 0.938 1.000 1.000 0.899
3 SER (CIT) 0.750 0.938 0.825 0.938 1.000 1.000 1.000 1.000 0.931
4 SER (PCC) 0.188 0.313 0.438 0.625 0.750 0.625 0.825 0.813 0.572
5 SER (PCC) 0.313 0.375 0.438 0.313 0.375 0.625 0.625 0.688 0.469
6 SER (PCC) 0.125 0.313 0.313 0.438 0.500 0.750 0.688 0.813 0.493

7 ACP (CIT) 0.438 0.438 0.688 0.688 0.813 0.813 0.825 0.825 0.691
8 ACP (CIT) 0.375 0.500 0.688 0.625 0.750 0.813 0.813 0.750 0.664
9 ACP (CIT) 0.688 1.000 1.000 0.938 0.938 1.000 0.825 0.813 0.900

10 ACP (PCC) 0.250 0.375 0.688 0.625 0.813 0.813 0.813 0.825 0.650
11 ACP (PCC) 0.313 0.438 0.375 0.563 0.625 0.813 0.688 0.825 0.580
12 ACP (PCC) 0.500 0.563 0.563 0.750 0.813 0.813 0.938 0.813 0.719
Perm. tests P-value 0.461 0.484 0.549 0.481 0.667 0.656 0.323 0.083 0.456

15A complete set of the data is available from the author upon request.
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the unique Nash equilibrium strategy under ACP. The proportion of the Nash
equilibrium play under the two mechanisms is not significantly different.

Support. Table 3 presents the proportion of Nash equilibrium play for each round.
Permutation tests under the null hypothesis that the proportion of Nash equilibrium
play under SER is the same as that under ACP for roundt, wheret 51, 2, . . . , 8,
show that none of theP-values is significant at the 5% level. The overall
proportion of Nash equilibrium play under the two mechanisms is not significantly
different either (P 5 0.456, one-tailed).

Result 1 is not surprising since both games are dominance-solvable, and the
presentation in the form of bimatrix games is fairly transparent. Under complete
information we expect that adaptive learning converges to the unique Nash
equilibrium.

Although there is no theoretical systematic efficiency comparison between the
two mechanisms in general, it is informative to check the actual efficiency of the
system in this particular experiment. Group efficiency is calculated by taking the
ratio of the sum of the actual earnings of all subjects in a session and the
Pareto-optimal earnings of the group. Note that in this experimental setting the
Pareto optimal payoff is 970 at strategy two-tuple (1, 9) in both SER and ACP. As
a benchmark, the efficiency of Nash (and Stackelberg) equilibrium under the serial
mechanism is 87.63%. Under ACP the efficiency of Nash equilibrium is 83.71%,
while the efficiency of the Stackelberg equilibrium with player 2 as leader is
79.71%.

Result 2. (Efficiency under Round Robin) The efficiency of the serial
mechanism is significantly higher than that of the ACP mechanism under the
Round Robin treatment.

Support. The last column of Table 4 shows the efficiency of each session under
the Round Robin treatment. Permutation tests show that the efficiency of SER.

ACP at a significance level of 0.023 (one-tailed).
Therefore, under Round Robin although the amount of Nash equilibrium play is

not significantly different between the two mechanisms, the serial mechanism
generated significantly higher system efficiency than ACP.

5 . Performance of the mechanisms in distributed systems

Although the proportion of Nash equilibrium play was not significantly different
under the two mechanisms under complete information, the performance of the
two mechanisms differed dramatically in distributed systems. In this section I will
evaluate the two mechanisms under SYN and ASYN in terms of the proportion of
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Table 4
Efficiency of each session under the Round Robin treatment

Session no. Mechanism Subj. pool Efficiency

1 SER CIT 0.8669
2 SER CIT 0.8655
3 SER CIT 0.8696
4 SER PCC 0.8241
5 SER PCC 0.8069
6 SER PCC 0.8206

7 ACP CIT 0.8066
8 ACP CIT 0.7809
9 ACP CIT 0.8326

10 ACP PCC 0.7788
11 ACP PCC 0.8070
12 ACP PCC 0.8310

equilibrium play and efficiency, and the plausibility of new solution concepts
proposed for distributed systems.

Table 5 presents the proportion of Nash and Stackelberg equilibrium play for
16each independent observation under each of the four different treatments in

distributed systems.

Result 3. (Equilibrium play under SER and ACP) Under all four treatments the
ranking of the proportion of equilibrium play is highly significant: SER.ACP.

Support. Table 5 presents the proportion of Nash and Stackelberg equilibrium
play for each independent observation. One-tailed permutation tests show that the
proportion of equilibrium play under SER is greater than the proportion of
equilibrium play under ACP, withP 5 0.05 under SYN ,P 50.05 under ASYN ,r r

P , 0.01 under SYN , andP , 0.01 under ASYN .f f

Therefore, in contrast to Result 1 where the proportion of Nash equilibrium play
is not significantly different under the Round Robin treatment, the proportion of
Nash and Stackelberg equilibrium play do differ significantly in distributed
systems. The SER mechanism induces significantly more equilibrium play than the
ACP mechanism.

Result 4. (Efficiency under SER and ACP) Under all four treatments the ranking
of group efficiency is highly significant: SER.ACP.

16Note under the random matching treatment each session is an independent observation, while under
the fixed pair treatment each pair is an independent observation.
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Table 5
Proportion of Nash/Stackelberg equilibrium play in distributed systems

No. of SER ACP
sessions

SYN ASYN SYN ASYNr r r r

1 0.529 0.544 0.166 0.051
2 0.669 0.447 0.149 0.045
3 0.468 0.596 0.174 0.066

No. of SYN ASYN SYN ASYNf f f f

pairs
1 0.873 0.683 0.197 0.077
2 0.343 0.383 0.207 0.003
3 0.893 0.480 0.383 0.393
4 0.710 0.687 0.400 0.040
5 0.937 0.737 0.743 0.053
6 0.760 0.553 0.610 0.123
7 0.883 0.363 0.180 0.030
8 0.657 0.477 0.117 0.007
9 0.937 0.367 0.200 0.120

10 0.773 0.630 0.110 0.117
11 0.133 0.327 0.067 0.043
12 0.683 0.677 0.167 0.050
13 0.380 0.637 0.107 0.077
14 0.283 0.317 0.160 0.020
15 0.690 0.557 0.143 0.087
16 0.767 0.647 0.047 0.363
17 0.503 0.703 0.147 0.040
18 0.590 0.170 0.027
19 0.847 0.060
20 0.737

Support. Table 6 presents the efficiency of each independent observation under
SER and ACP. One-tailed permutation tests show that the efficiency under SER is
greater than the efficiency under ACP, withP 50.05 under SYN ,P 5 0.05 underr

ASYN , P , 0.01 under SYN , andP , 0.01 under ASYN .r f f

Although both games are dominance-solvable and the amount of equilibrium
play is not statistically different under complete information, their performance
does differ dramatically in distributed settings with limited information and
asynchrony: the serial mechanism performs robustly better than the ACP mecha-
nism both in terms of Nash and Stackelberg equilibrium play and system
efficiency.

One of the characteristics of distributed systems is the asynchrony of actions. In
the following result I examine the effects of asynchrony on the proportion of
equilibrium play and efficiency.
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Table 6
Efficiency in distributed systems

No. of SER ACP
sessions

SYN ASYN SYN ASYNr r r r

1 0.800 0.797 0.607 0.690
2 0.821 0.779 0.612 0.690
3 0.793 0.799 0.658 0.625

No. of SYN ASYN SYN ASYNf f f f

pairs
1 0.853 0.829 0.709 0.688
2 0.524 0.797 0.670 0.761
3 0.851 0.789 0.844 0.772
4 0.788 0.841 0.778 0.653
5 0.858 0.817 0.787 0.708
6 0.859 0.776 0.765 0.729
7 0.845 0.710 0.640 0.682
8 0.812 0.769 0.600 0.729
9 0.847 0.733 0.587 0.700

10 0.831 0.789 0.562 0.572
11 0.779 0.767 0.520 0.709
12 0.821 0.785 0.600 0.760
13 0.742 0.790 0.567 0.697
14 0.683 0.768 0.648 0.693
15 0.827 0.795 0.474 0.777
16 0.832 0.848 0.489 0.552
17 0.784 0.797 0.515 0.689
18 0.803 0.711 0.712
19 0.817 0.301
20 0.832

Result 5. (Effects of asynchrony) The proportion of Nash equilibrium play
under SYN is significantly higher than the proportion of Stackelberg equilibrium
play under ASYN. Efficiency under SYN and ASYN is not significantly different.

Support. Table 5 presents the proportion of Nash and Stackelberg equilibrium
play for each independent observation. One-tailedt-test (H : SYN5ASYN; H :0 1

SYN.ASYN) yields z 5 2.18 (P , 0.05). Table 6 presents the efficiency of each
independent observation under SYN and ASYN. One-tailedt-test yieldsz 5 1.26
(P . 0.10).

Intuitively, under the asynchronous treatments the Stackelberg leaders moved
five times slower than the followers. Therefore they did not have the same
opportunity to learn the equilibrium strategies. It is interesting to note that even
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though we observe significantly more equilibrium play in the synchronous case,
the presence of asynchrony does not reduce the system efficiency significantly.

Results in this section lend support for the following result:

Result 6. (O-solvable vs. D-solvable mechanisms) The SER mechanism, which
is O-solvable, performs significantly and robustly better than the ACP mechanism,
which is D-solvable but not O-solvable, in terms of efficiency and the proportion
of equilibrium play.

Results in Sections 4 and 5 provide empirical support for Friedman and
Shenker’s (1998) argument that traditional solution concepts such as Nash
equilibrium or dominance-solvability are not adequate for predicting what can
happen in distributed systems. Analysis of experimental data shows that O-
solvable games exhibited rapid and robust convergence to the unique Nash
equilibrium regardless of the degree of asynchrony, while D-solvable games did
not converge as well. In Chen and Khoroshilov (2000) we examine the learning
dynamics induced by the two mechanisms by comparing the explanatory power of
three learning models. In Section 6 I examine whether the experimental results in
the last two sections are robust in more general environments.

6 . Robustness of experimental results in more general environments

In this section I assess the extent to which the experimental results in Sections 4
and 5 depend on the linearity of the utility function and the quadratic cost function
employed. I consider nine different environments. For simplicity I use polynomial

butility and cost functions. The utility function isp (x , q)5a q 2 x , wherei i i i i

a 516.1,a 520.1 are agents’ marginal utility for the output,b 5 0.5, 1, and 2,1 2
cand x is her cost share. The cost function is chosen to beC(q)5 q , wherei

c 5 0.5, 1 and 2. Varying parametersb and c will give us nine combinations of
concave, linear and convex utility and cost functions. Note thatb 51 andc 5 2 is
the original experimental design.

Table 7 presents the Nash equilibrium quantities and payoffs for the two types
of players under each of the nine environments. Note that all 14 boundary Nash
equilibrium, (12, 12), and one interior Nash equilibrium under SER, (2, 2), are
dominant strategy Nash equilibria, whereas the other three interior Nash equilibria
are dominance solvable.

For the complete information, Round Robin treatment, I expect Result 1 to hold
in each of the nine environments, i.e. the proportion of Nash equilibrium play will
be indistinguishable between SER and ACP, since both games have either a
dominance-solvable or a dominant strategy equilibrium in each of the nine
environments, and the presentation in the form of bimatrix games is fairly
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Table 7
bNash equilibrium quantities (q) and payoffs (p) for utility function a q 2 x and cost functioni i i

cC(q)5 q

Parameters SER ACP

c 50.5 c 5 1 c 5 2 c 50.5 c 5 1 c 5 2

q (12, 12) (12, 12) (2, 2) (12, 12) (12, 12) (1, 3)

b 5 0.5 p (533, 672) (438, 576) (148, 204) (533, 672) (438, 576) (148, 204)

q (12, 12) (12, 12) (4, 6) (12, 12) (12, 12) (4, 8)

b 5 1 p (1908, 2388) (1812, 2292) (324, 526) (1908, 2388) (1812, 2292) (164, 648)

q (12, 12) (12, 12) (12, 12) (12, 12) (12, 12) (12, 12)

b 5 2 p (23160, 28920) (23064, 28824) (20304, 26064) (23160, 28920) (23064, 28824) (20304, 26064)

transparent. Under complete information I expect that adaptive learning leads to
convergence to the unique Nash equilibrium.

Note that in Table 7 the Nash equilibrium payoffs for the players are the same
under the two mechanisms in eight out of nine environments, where the Nash
equilibria are symmetric. This is because SER and ACP allocate the same cost
share to each player when they demand the same quantity. Indeed, the only
environment where the payoffs differ is the experimental environment (b 51 and
c 5 2). Therefore, I expect that the efficiency will be indistinguishable between
SER and ACP in each of these eight environments under complete information and
Round Robin treatment. That is, Result 2 might not hold in these eight
environments. This is not surprising, since in general there is no systematic
efficiency comparison between the two mechanisms, as I discussed in Section 2.
Therefore, any efficiency comparison between the two mechanisms will necessari-
ly depend on the environment.

To assess how robust the experimental results are in distributed systems in
different environments, I conduct Monte Carlo simulations for each of the nine
environments. Since Chen and Khoroshilov (2000) study the learning dynamics
induced by the SER and ACP mechanisms, I use the learning algorithm that
performs the best on these data sets and the calibrated parameters in Chen and
Khoroshilov (2000) to conduct simulations.

Chen and Khoroshilov (2000) study how human subjects learn under extremely
limited information. They use experimental data on cost sharing games reported in
this paper, and Van Huyck et al. (1996) data on coordination games to compare
three payoff-based learning models: the payoff-assessment learning model (Sarin
and Vahid, 1999), a modified experience-weighted attraction learning model
(Camerer and Ho, 1999) and a simple reinforcement learning model. They show
that the payoff-assessment learning model tracks the data the best in both the cost
sharing games as well as the coordination games. Therefore, I use the payoff-
assessment learning model and the parameters calibrated on the cost sharing games
to conduct simulation in other environments. Admittedly, even though the payoff-
assessment learning model performs the best in capturing how human subjects
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learn under limited information in one environment (b 5 1 and c 52), it is
possible that it might not be the best learning model when the environment
changes. However, this is the best approximation we have. At least, the simulation
results can show us the relative performance of the two mechanisms in other
environmentsif agents are myopic maximizers described by the payoff-assessment
algorithm.

The payoff-assessment learning model assumes that a player is a myopic
subjective maximizer. She chooses among alternate strategies only on the basis of
the payoff she assesses she would obtain from them. These assessments do not
explicitly take into account her subjective judgements regarding the likelihood of
alternate states of the world. At each stage, the player chooses the strategy that she
myopically assesses to give her the highest payoff and updates her assessment
adaptively. Letu (t) denote the subjective assessment of strategys at time t. Thej j

initial assessments are denoted byu (0). Payoff assessments are updated by takingj

a weighted average of her previous assessments and the objective payoff she
actually obtains at timet. If strategyk is chosen at timet, then

u (t 1 1)5 (12 r)u (t)1 rp (t), ; j. (1)j j k

Suppose that at timet the decision-maker experiences zero-mean, symmetrically
distributed shocks,Z (t) to her assessment of the payoff she would receive fromj

choosing strategys , for all s . Denote the vector of shocks byZ 5 (Z , . . . , Z ),j j 1 12

and their realizations at timet by z(t)5 (z (t), . . . , z (t)). The decision maker1 12

makes choices on the basis of her shock-distorted subjective assessments, denoted
˜by u(t)5 u(t)1Z(t). At time t she chooses strategys ifj

˜ ˜u (t). u (t), ;s ± s . (2)j l l j

Note that mood shocks only affect her choices and not the manner in which
assessments are updated. Sarin and Vahid (1999) prove that such a player
converges to stochastically choose the strategy that first order stochastically
dominates another among the strategies she converges to play with positive
probability.

For parameter estimation, Chen and Khoroshilov (2000) conducted Monte Carlo
simulations designed to replicate the characteristics of each of the experimental
settings. They then compare the simulated paths with the actual paths of a subset
of the experimental data to estimate the parameters which minimize the mean-
squared deviation scores. I use these estimated parameters to conduct Monte Carlo
simulations for each of the nine environments.

17In each simulation, 10,000 pairs of players were created. In each simulation
the following steps were taken.

17This yields a statistical accuracy of 1%.
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1. Initial values: since Kolmogorov–Smirnov tests of the initial choice distribution
by experimental subjects cannot reject the null hypothesis of uniform dis-
tribution. I set u (0)5 200 for all players whenb 5 0.5 and 1, since in thej

experimental data the average first-round payoffs were around 200 which also
result in a probability prediction around the centroid, (1 /12,. . . , 1 /12), for the
first round. With concave (b 5 0.5) and linear (b 5 1) utility functions, the
magnitude of payoffs are similar to the experimental setting. With convex
utility function (b 52), the payoffs are about two orders of magnitude larger
than the payoff matrices in the experiment, therefore I setu (0)5 3000 for allj

players whenb 5 2.
2. Simulated players were matched into fixed pairs, or randomly rematched pairs

for each period, depending on the treatment.
183. Shocks are drawn from a uniform distribution, [2a, a], wherea is estimated

in Chen and Khoroshilov (2000).
4. The simulated players’ strategies were determined via Eq. (2).
5. Payoffs were determined using the SER or ACP payoff rule for each (b, c)

parameter combination.
6. Assessments were updated according to Eq. (1), using discount factor,r,

19estimated in Chen and Khoroshilov (2000). Updating occurs every period
under SYN for both players, every period for player 1 in ASYN and every five
periods for player 2 in ASYN.

Fig. 1 shows the simulated time series paths for player 1 in an environment with
concave utility function (b 50.5) under SERSYN (left column) and ACPSYNf f

(right column), respectively. Simulated paths for player 2 exhibit similar patterns,
therefore are not displayed. The first row presents the simulated paths under
concave utility (b 5 0.5) and concave cost function (c 5 0.5). The second row
presents the same information under a linear cost function (c 5 1). The last row
presents the same information under a convex cost function (c 5 2). Each graph
presents the mean (the black dots), standard deviation (the grey error bars) and
stage game equilibria (the dashed lines) for each mechanism. Larger error bars
indicate more variance in the choice of strategies and thus worse convergence to
the mean. Figs. 2 and 3 present the simulated time series paths for player 1 under
SERSYN (left column) and ACPSYN (right column) in environments with linearf f

(b 5 1) and convex (b 52) utility functions, respectively. Simulation results for
the random matching treatments display similar patterns. Therefore they are not
displayed.

18The best fit parameters area 5 3 for SER SYN,a 5 2 for SER ASYN,a 550 for ACP SYN, and
a 5 45 for ACP ASYN. The largera in ACP reflects the relatively volatile paths of the ACP data.

19The best fit parameters arer 5 0.2 for SERSYN,r 50.0 for SERASYN,r 5 0.6 for ACPSYN, and
r 50.2 for ACPASYN.
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Fig. 1. Simulation results with concave utility function, concave, linear, and convex cost functions.
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Fig. 2. Simulation results with linear utility functions, concave, linear, and convex cost functions.
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Fig. 3. Simulation results with convex utility functions, concave, linear, and convex cost functions.
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Based on the Monte Carlo simulation I have the following results.

1. With concave (b 5 0.5, e.g. Fig. 1) and linear (b 5 1, e.g. Fig. 2) utility
functions, regardless of the forms of the cost function, simulated players
converge much more quickly to the stage game equilibrium under SER than
under ACP. As a result the proportion of equilibrium play is significantly larger
under SER than under ACP.

2. With convex (b 52, e.g. Fig. 3) utility function, regardless of the forms of the
cost function, simulated players under both mechanisms converge quickly to
the stage game equilibrium. Convergence under SER is slightly more quickly
than that under ACP. As a result the proportion of equilibrium play is weakly
larger under SER than under ACP.

3. As a result of the different speed of convergence to equilibrium, with concave
and linear utility functions, efficiency under SER is significantly higher than
that under ACP. With convex utility functions, efficiency under SER is weakly
higher than that under ACP.

Simulation results for nine different environments suggest that the experimental
results on the proportion of equilibrium play are robust to variations in the
environment, while experimental results on efficiency might depend on variations
in the environment. In other words, even though efficiency comparison might be
sensitive to the environment, the SER mechanism is more predictable than ACP
because it induces robustly quicker convergence to the stage game equilibrium.

7 . Conclusion

Cost sharing mechanisms have many practical applications in the real world. An
increasingly important area is distributed systems like the Internet, where agents
have very limited information about the payoff structure as well as the characteris-
tics of other agents and where there is no synchronization of actions. Most current
Internet routers use the average cost pricing mechanism, while this study suggests
that the serial mechanism might be a better choice.

This paper reports experimental results on the serial and the average cost pricing
mechanisms under five different treatments. The first is a complete information
treatment designed to test the basic properties of the mechanisms. The other four
treatments simulate distributed systems by giving the subjects very limited
information about the game and by imposing two levels of asynchrony. The latter
present a more challenging and realistic setting for the cost sharing mechanisms.

The experimental data show that under the complete information treatment both
mechanisms converge well to the Nash equilibrium prediction and their perform-
ances are statistically indistinguishable. Under the limited information treatments,
however, the serial mechanism performs significantly and robustly better than the
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average cost pricing mechanism, in terms of efficiency and convergence to
equilibrium predictions regardless of the level of asynchrony. To test the
robustness of the results, I conduct Monte Carlo simulation using calibrated
learning algorithms in nine different environments. Simulation results indicate that
the experimental results on the proportion of equilibrium play are robust to
variations in the environment, while experimental results on efficiency might
depend on variations in the environment.

Since both the serial and average cost pricing games are dominance-solvable in
our design, these results indicate that traditional solution concepts such as Nash
equilibrium or dominance-solvability might not be so useful in distributed systems.
Experimental data provide empirical support for Friedman and Shenker’s (1998)
serially unoverwhelmed set.
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A  ppendix A. Experiment instructions

Instruction for Mechanism S corresponds to the serial mechanism under Round
Robin. Instruction for Mechanism A corresponds to the average cost pricing
mechanism under Round Robin. Instruction for Mechanism XY is for SYN for
both mechanisms, as well as for player 1 in ASYN. Instruction for Mechanism
XYZ is used for player 2 in ASYN for both mechanisms.
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 Experiment instructions—Mechanism S ID5
]]]

Procedure

• Each participant has to make a decision in each of rounds.
]]

• There are two different types: participants are Blue players and are Red
]] ]]

players.
• The small envelope has your type and ID number. Your type remains the same

for the entire experiment.
• A Blue player always meets a Red player and a Red player always meets a Blue

player.
• In each round, a Blue is matched with a Red. You will be matched with each

participant of the other type only once.
• In each round, a Blue and a Red simultaneously choose a number out of the

following numbers:h1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12j, which denotesyour
demand of output.

• Your payoff5(your valuation2your share of the cost)310.
• One unit of output is worth 16.1 points (unit value) to a Blue player, and 20.1

points (unit value) to a Red player. Therefore,

your valuation5 (your unit value)3 (your demand).

2• Cost of producingx units isx . The smaller demander will pay half of the cost
of producing twice the amount of the smaller demand, i.e. you pay the per
capita cost of production as if everyone demanded the same amount as you did.
Therefore, if your demand is smaller than your opponent’s demand, your share
of the cost is the following

2smaller demander’s cost 5 1/23 (23 smaller demand)
2

5 23 (smaller demand)

If you demand a larger amount than your opponent, you are the larger
demander. You will pay the rest of the cost of production. Therefore,

2larger demander’s cost5(smaller1 larger demand)
#%%%%%%"!%%%%%%$

total cost of production

2
223 (smaller demand)
#%%%%%"!%%%%%$

smaller demander’s cost

• For example, if a Blue demands 2 units and a Red demands 1 unit, then the
total demand is 3 units. The calculation of payoffs for the two types are
tabulated as follows:
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Blue Red

Your demand 2 (larger) 1 (smaller)
Your valuation 16.132532.2 20.131520.1

2 2 2Your share of the cost (112) 2231 57 231 52
Your payoff (32.227)3105252 (20.122)3105181

• The above information is summarized by the payoff tables in your folder.

Payoff table

• The payoff table summarizes both your payoff and your opponent’s payoff. A
Blue player chooses which row to play. A Red player chooses which column to
play. Your payoff is determined by both your choice and your opponent’s
choice. The first number in each cell (in blue) denotes the payoff to a Blue
player. The second number in each cell (in red) denotes the payoff to a Red
player.

• For example, if a Blue demands 2 units, and a Red demands 1 unit, you can
find the payoff to each participant on the second row and the first column of the
payoff matrix. The cell contains two numbers: the first number is 252, which is
Blue’s payoff; the second number is 181, which is Red’s payoff.

Information

• At the end of each round, each participant is informed of the following results
of the round:

–your own demand
–your opponent’s demand
–your own payoff
–the distribution of demands of the other type in the last round.

• You will not know who your opponent was.

Total payoff

• Your total payoff is the sum of your payoffs in all rounds.
• The exchange rate is $1 for points.

]]

Record sheet: you are required to record your demand, your opponent’s demand
and your payoff each round.

Review questions (write down your answers on top of your record sheet)
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1. You are a (Blue or Red) player.
]]

2. If you demand 2 units and your opponent demands 10 units, your payoff is ;
]]

your opponent’s payoff is . Find it from your payoff table.
]]

 Experiment instructions—Mechanism A ID5
]]

Procedure

• Each participant has to make a decision in each of rounds.
]]

• There are two different types: participants are Blue players and are Red
]] ]]

players.
• The small envelope has your type and ID number. Your type remains the same

for the entire experiment.
• A Blue player always meets a Red player and a Red Player always meets a

Blue player.
• In each round, a Blue is matched with a Red. You will be matched with each

participant of the other type only once.
• In each round, a Blue and a Red simultaneously choose a number out of the

following numbers:h1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12j, which denotesyour
demand of output.

• Your payoff5(your valuation2your share of the cost)310.
• One unit of output is worth 16.1 points (unit value) to a Blue player, and 20.1

points (unit value) to a Red player. Therefore,

your valuation5 (your unit value)3 (your demand).
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2• Cost of producingx units is x . Your share of the cost is proportional to your
demand. Therefore,

your demand 2]]]]your share of the cost 5 3 (total demand)total demand
5 (your demand)3 (total demand),

where total demand5your demand1your opponent’s demand.
• For example, if a type A demands 2 units and a type B demands 1 unit, then the

total demand is 3 units and the total cost of producing 3 units is 9. The
calculation of payoffs for the two types are tabulated as follows:

Blue Red

Your demand 2 1
Your valuation 16.132532.2 20.131520.1
Your share of the cost 2/33956 1/33953
Your payoff (32.226)3105262 (20.123)3105171

• The above information is summarized by the payoff table in your folder.

Payoff table

• The payoff table summarizes both your payoff and your opponent’s payoff. A
Blue player chooses which row to play. A Red player chooses which column to
play. Your payoff is determined by both your choice and your opponent’s
choice. The first number in each cell (in blue) denotes the payoff to a Blue
player. The second number in each cell (in red) denotes the payoff to a Red
player.

• For example, if a Blue demands 2 units, and a Red demands 1 unit, you can
find the payoff to each participant on the second row and the first column of the
payoff matrix. The cell contains two numbers: the first number is 262, which is
Blue’s payoff; the second number is 171, which is Red’s payoff.

Information

• At the end of each round, each participant is informed of the following results
of the round:

–your own demand
–your opponent’s demand
–your own payoff
–the distribution of demands of the other type in the last round.
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• You will not know who your opponent was.

Total payoff

• Your total payoff is the sum of your payoffs in all rounds.
• The exchange rate is $1 for points.

]]

Record sheet

• You are required to record your demand, your opponent’s demand and your
payoff each round.

Review questions (write down your answers on top of your record sheet).

1. You are a (Blue or Red) player.
]]

2. If you demand 2 units and your opponent demands 10 units, your payoff is ;
]]

your opponent’s payoff is . Find it from your payoff table.
]]

 Experiment instructions—Mechanism XY ID5
]]]

Procedure

• You are part of a game, in which you have to make a decision in each of 150
rounds.
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• In each round, you will choose a number out of the following numbers:

h1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12j.

Information

• At the end ofeach round, you are informed of your result of the round:
–your own choice
–your own payoff.

Total payoffs

• Your total payoff is the sum of your payoffs in all rounds.
• The exchange rate is $1 for points.

]]

Record sheet: you are required to record your choice and your payoff each
round.

 Experiment instructions—Mechanism XYZ ID5
]]

Procedure

• You are part of a game, in which you have to make a decision in each of 30
rounds.

• In each round, you will choose a number out of the following numbers:

h1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12j.

Information

• At the end ofeach round, you are informed of your result of the round:
–your own choice
–your own payoff.

Total payoffs

• Your total payoff is the sum of your payoffs in all rounds.
• The exchange rate is $1 for points.

]]

Record sheet: you are required to record your choice and your payoff each
round.
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