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ABSTRACT
In many disciplines success depends on access to scarce re-
sources, such as unique instruments. Research on computer-
supported cooperative work (CSCW) has contributed to the
development of technologies, such as collaboratories, that
broaden access to scarce scientific and engineering resources.
While broader access is often applauded, little attention has
been focused on the problem of equitable and efficient re-
source allocation in the face of increased demand created
through collaboratory use. This paper, then, applies con-
cepts from the economic discipline of mechanism design to
compare different resource allocation schemes (RAD, Vick-
ery, and knapsack) within a hypothetical collaboratory. Ex-
perimental results show that knapsack achieves a more eq-
uitable distribution of resources than RAD or Vickery, but
that RAD and Vickery are both more efficient than knap-
sack. The findings highlight the need for systematic ex-
ploration of allocation mechanisms within collaboratories,
where simple optimization (e.g., knapsack) is likely to pro-
duce a sub-optimal match of resources to needs. More gener-
ally, the findings illustrate the utility of economic approaches
in understanding issues that emerge in large-scale collabora-
tions, such as entire scientific and engineering communities,
that have not typically been the subject of CSCW research.

Categories and Subject Descriptors
J.4 [Computer Applications, Social and Behavioral
Sciences]: economics; H.5.3 [Information Systems In-
formation Interfaces and Presentation]: Group and or-
ganization interfaces—computer-supported cooperative work,
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collaborative computing ; K.6.2 [Computing Milieux, Man-
agement of Computing and Information Systems]:
[pricing and resource allocation]
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1. INTRODUCTION
The National Science Foundation (NSF) and other federal

agencies are making significant investments in expanding the
ability of geographically distributed groups of scientists to
conduct research via the Internet (e.g., [1]). One means
to enhance the work of dispersed teams is the “collabora-
tory.” First proposed in the late eighties, a collaboratory
is a center without walls, in which researchers can perform
their research without regard to physical location interact-
ing with colleagues, accessing instrumentation, sharing data
and computational resources, and accessing information in
digital libraries [19]. The collaboratory idea is a descendent
of earlier notions, such as Vannevar Bush’s 1945 proposal for
the “memex;” Douglas Engelbart’s 1968 demonstration of
graphical user-interfaces for computer-supported meetings;
and the creation in 1969 of the ARPAnet. There are cur-
rently several hundred collaboratories in use within multiple
scientific communities, including space physics, medicine,
software engineering, and neuroscience [6].

The George E. Brown, Jr. Network for Earthquake Engi-
neering Simulation (NEES) is a ten-year NSF program fo-
cused on accelerating and improving earthquake engineer-
ing research through the use of a collaboratory (it.nees.org).
The NEES collaboratory connects earthquake engineering
researchers to sixteen state-of-the-art laboratory facilities
distributed around the United States. These facilities were
built with the explicit intent of combining their capabilities
through the Internet. For example, users of the NEES col-
laboratory are able to collect data across instrument modali-
ties spanning key earthquake engineering sub-disciplines. In
this approach a test of a bridge pier system might include
performance data on: a) the soil the pier sits on (e.g., from



physical geotechnical simulations run using specimens in a
centrifuge); b) the pier structure (e.g., from physical struc-
tural simulations run using specimens on a shake table);
and c) the bridge deck (e.g., from numerical simulations).
Through NEESit the results of collaboratory studies will be
accessible through shared data repositories, remote partici-
pants will be able to observe experiments, and under highly
controlled circumstances remote participants will be able to
control experiments in real-time.

A critical element of the NEES vision, and of collab-
oratories generally, is that Internet-mediated methods for
conducting and observing research should diminish the ad-
vantages of physical collocation. Specifically, proximity to
unique instruments has frequently created differential ac-
cess, both to the instruments and to the community of scien-
tists who use the instruments ([8]; [16]). In NEES, a critical
goal of making the sixteen new sites accessible over the In-
ternet is to broaden use of the facilities, particularly among
researchers at institutions that lack earthquake engineering
research equipment. To ensure that broader use occurs, NSF
stipulated the creation of a non-profit corporation, NEES
Inc. (nees.org), as an additional element of the NEES pro-
gram intended to operate the NEES collaboratory over the
period 2004 through 2014.

NEES Inc. has responsibility for governing the use of
NEES facilities, as well as for allocating maintenance and
operation funds. A central concern of NEES operations is
to ensure shared use of the sixteen new laboratories. Specif-
ically, a special committee of the NEES Inc. board of di-
rectors has oversight of shared use policies and mediates
disputes arising from conflicts in shared use. Unfortunately,
beyond the requirement that NEES accomodates shared use,
NSF has not offered specific guidelines about how to achieve
this goal. At an abstract level, the problem confronting
NEES Inc. is similar to a class of problems in economics de-
scribed as mechanism design. That is, NEES Inc. controls
instrument time designated for shared use at the sixteen
NEES laboratories (i.e., use by researchers in the broader
earthquake engineering community, not just those collocated
with the NEES equipment). This instrument time, presum-
ably, has value for researchers, such that demand for instru-
ment time will exceed supply. For example, in astronomy
there is intense competition for telescope time ([5]; [14]).

Understanding how to achieve efficient and equitable allo-
cation of scarce resources is a key focus of research on mech-
anism design. For instance, allocation solutions in other
domains (e.g., the sale of frequency spectrum by the Fed-
eral Communications Commission) involve various forms of
auctions. There are two reasons why it is important to ex-
plore similar approaches for resource allocation in collabo-
ratories. First, in the absence of mechanisms it seems likely
that collaboratory users will default to allocation through
a scheduling czar or by insiders (e.g., instrument owners).
This approach runs the risk that facilities will be under-
utilized and that allocation decisions may be subject to bias
(e.g., political influences). Second, absent any specific allo-
cation mechanisms, collaboratory users may arrive at naive
pricing schemes for resources, such as flat unit costs versus
costs that reflect actual demand (and hence value). For ex-
ample, the unit cost assumption breaks down when a user
places a premium on allocation of contiguous operating in-
tervals (i.e., ten hours together versus ten one hour segments
dispersed over several days).

Collaboratory operators, such as NEES Inc., will be the
immediate beneficiaries of an effort to design and demon-
strate mechanisms for allocation of instrument time within
collaboratories. However, more generally, research into the
problem of efficient and equitable resource allocation within
large-scale collaborations is important. For instance, if the
NEES collaboratory is a precursor to the organization of in-
frastructure across a wide variety of scientific and engineer-
ing communities then the problems confronted by NEES are
likely to emerge in these other settings. That is, if sharing
of instruments is to become the norm, then there must be a
corresponding set of mechanisms to support this sharing. It
seems unlikely that simple altruism, particularly in highly
competitive scientific and engineering fields, will yield satis-
factory solutions. Instead, the time is right to conduct re-
search that will produce a toolbox of candidate mechanisms,
with proven characteristics, so that when communities con-
front breakdowns or bottlenecks in the use of instruments,
or any shared resource, these difficulties can be overcome
quickly or avoided completely.

The rest of the paper is divided into four sections. In
the first of these sections we identify three allocation mech-
anisms and describe their features. In the next section
we describe our experimental design including our assump-
tions about the hypothetical collaboratory. The next section
presents our results and in the final section we discuss the
results.

2. ALLOCATION MECHANISMS
In this section we outline the technical details of three

allocation mechanisms. We assume that a critical feature
of the instrument time allocation problem is that contigu-
ous time slots are more valuable than the sum of separate
slots. For example, in the case of the NEES collaboratory
the difficulty of experiment set-up and teardown dictates a
preference for consecutive time intervals to minimize instal-
lation effort. Therefore, package auctions might be an im-
portant mechanism in achieving efficient allocation of equip-
ment time. We consider two package auction mechanisms,
Vickrey and RAD, compared with an ordinal ranking mech-
anism, knapsack, selected as a best-case representation of
how allocation is currently accomplished.

2.1 The Vickery Auction
The Vickrey auction ([17], [4] and [7]) is an important

standard for nearly all mechanism design work, and for auc-
tions in particular. It is dominant strategy incentive com-
patible, i.e., bidding one’s true valuation is always optimal
regardless of others’ strategies. Furthermore, it implements
the efficient outcome.

A Vickrey auction with package bidding is an extension
of the more familiar second-price auction. At the beginning
of each auction, bidders select the packages they would like
to bid on, and the amount they would like to bid for each
package.

Next, once all bidders have submitted their bids, the auc-
tioneer will choose the combination of submitted bids that
yields the highest sum of bids. The set of bidders winning
a package are the winning bidders.

After determining the winning bidders, the auctioneer
then, one at a time, chooses each winning bidder as a pivotal
bidder. The auctioneer examines the bids again, but ignores
the bids of the pivotal bidder. The auctioneer determines



the allocation of goods that maximizes the sum of bids, us-
ing the same rules as before, but not considering any bids
placed by the pivotal bidder. Once this new allocation has
been determined, the auctioneer compares the sum of bids
generated by this allocation with those generated when no
bids are excluded.

At the end of the auction, the amount that the winning
bidders are required to pay depends on the additional rev-
enue that each bidder generated, which is calculated by com-
paring the original revenue obtained by the auctioneer ver-
sus the revenue obtained by the auctioneer when the given
bidder is pivotal.

Previous laboratory experiments indicate that, in environ-
ments with a small number of packages, the Vickrey auction
can achieve high allocation efficiency in multi-object auc-
tions with package bidding [9], and that it outperforms a
complex ascending bid auction in terms of efficiency and
revenue [3]. It is an open question whether it can retain its
excellent performance in more complex environments. This
study addresses this issue by expanding the number of pack-
ages to a more realistic level.

2.2 Resource Allocation Design (RAD)
The RAD mechanism is an iterative ascending bid pack-

age auction proposed by Kwasnica et al. [12]. The RAD
mechanism borrowed features from the AUSM mechanism
[2] and the Milgrom FCC Design [13]. The features that
RAD borrowed from the Milgrom FCC Design are: the auc-
tion is iterative instead of one shot; the use of an eligibility
rule; and a price improvement rule. The feature that RAD
borrowed from AUSM is the use of a package bidding lan-
guage. RAD, in addition, calculates the prices on the indi-
vidual months that underlie the packages. RAD is shown to
outperform both parents [12].

The details of the RAD mechanism are explained in [12].
Here, we will briefly explain the different features on a global
level. An iterative auction is one where the bidding activities
are separated into different rounds. Within a round, bidders
can place bids. At the end of a round, bidders are given
feedback information that can be used before bids are placed
in the next round. In the case of RAD, bidders are told at
the end of a round if the bids they placed were provisionally
winning or losing. At the end of the last round, there is no
provisional winning bid. A winning bid at the end of the
last round is the binding winning bid.

The effect of the eligibility rule can be briefly summarized
as a “use it or lose it rule”. Roughly, the more packages a
bidder bids on, the higher is the eligibility number for that
round. In the subsequent round, the number of packages a
bidder can bid on depends on the eligibility number from
the previous round. The higher the eligibility number, the
more packages a bidder can bid on.

The price improvement rule specifies a minimum price for
each package based on the bids that were submitted in the
previous round and a price improvement factor. The price
improvement rule, in conjunction with the eligibility rule,
helped to drive an auction to a close.

The difference between RAD and the FCC Design is RAD
allows the placement of package bids. In the hypothetical
collaboratory context, this means the ability to say a bidder
wants a three month package starting in the first month, or
a two month package starting in the second month, but not
both. Note that the bidder who placed the above two bids

can only win at most one of the two placed packages, not
both. Furthermore, if a bidder wins a package, the bidder
is guaranteed to win the complete package, not part of a
package. With the FCC design, bidders can only place bids
on single months. So even though bidders can place bids
that are equivalent to a two month package starting in the
second month, it is possible for the bidder to win only part of
the package, namely, the second or the third month, instead
of the package containing both months. Thus bidders can
be exposed to the risk that they may overpay. This is known
as the “exposure problem” in the economic literature.

Lastly, the novel aspect of RAD is its ability to calcu-
late prices for the underlying months that the packages are
constructed out of.

Single unit iterative ascending auctions, such as the En-
glish auction, tend to outperform their sealed bid counter-
part in terms of efficiency. Therefore, in the package bidding
context, we expect that RAD will generate higher efficiency
than Vickrey.

2.3 Knapsack with Ordinal Ranking
In many scientific communities, allocation of instrument

time can be determined by a scheduling czar, a commit-
tee [14] or some formal or informal optimization procedure
which uses the ordinal ranking information from potential
instrument users. The knapsack mechanism is an idealized
representation of the latter. In this mechanism, everyone
submits ordinal rankings of packages, from the top choice
(# 1) to the last choice (# n for n packages). The top
choice is awarded n points, second choice n − 1 points, ...,
and the last choice 1 point. and the computer will allocate
goods in such a way that maximizes the total number of
points.

This class of knapsack mechanisms with ordinal ranking
has two problems. First, truth-telling might not be a dom-
inant strategy. One can easily construct examples to show
that truthful ranking based on one’s valuations for the pack-
ages might not be optimal. Second, bidders cannot express
the intensity of their preferences. Therefore, we expect that
the knapsack mechanism will generate lower efficiency than
Vickrey and RAD. Because of the prevalence of knapsack-
like mechanisms in scheduling, we use it as a useful bench-
mark of typical allocation approaches in order to evaluate
the two auction mechanisms.

3. METHOD: EXPERIMENTAL DESIGN
Our experimental design reflects both theoretical and tech-

nical considerations. Specifically, we are interested in three
important questions. First, how do the Vickrey, RAD and
Knapsack mechanisms compare in performance? Second,
how do subjects respond to the incentives in each mecha-
nism? In this section we describe our hypothetical collabo-
ratory and experimental procedures.

3.1 The hypothetical collaboratory
The hypothetical collaboratory was designed to capture

the essential aspects of a scientific or engineering collabora-
tory, using the NEES collaboratory as a model. In some ar-
eas, simplifications were made to keep the problem tractable
in the experimental setting, where subjects were only avail-
able for a limited amount of time in each session. Partici-
pants were told that they represented research groups seek-
ing instrument time via a collaboratory within a 24-month



window. We defined participants in terms of their resource
level (i.e., small vs. big projects) and in terms of their time
preference (i.e., early, indifferent, or late in the 24-month
window). Each participant was asked to consider sixty-three
(for a big project) or sixty-six (for a small project) packages
of instrument time. The packages were defined by the start-
ing month and the duration of the use. For example, a
package that started on the first month and lasted for three
months contained month 1, month 2, and month 3. For sim-
plicity, packages were denoted in the form of an ordered pair
(starting month, length of package) or (1,3) for the example
above.

A small project bidder had values for packages that lasted
for 2 to 4 months. A big project bidder had values for pack-
ages that lasted for 3 to 5 months. As a result, a small
project bidder was able to bid on packages that started on
month 1 to month 23 (i.e., the first number in the ordered
pair is a number between 1 to 23), with lengths of 2, 3, or
4 (i.e., the second number in the ordered pair is a number
between 2 to 4). Big project bidders were also able to bid
on packages starting from month 1 to month 22 (i.e., the
first number in the ordered pair is a number between 1 to
22), but with lengths of 3, 4, or 5 (i.e., the second number
in the ordered pair is a number between 3 to 5). Note a big
project bidder was bidding on sixty-three packages, while a
small project bidder was bidding on sixty-six packages.

The value of a package was determined by the type and
the time preference factor of a bidder, as well as a v param-
eter that specified the value of an additional month for the
participant. As a first step, we determined the value of a
base package, (1, 2) for a small project bidder and (1, 3) for
a big project bidder. For a small project bidder the value of
the base package was drawn from the uniform distribution
[20, 100]. For a big project bidder the value of the base
package was drawn from the uniform distribution [20, 150].

Once we determined base package values, we determined
the value of packages that start in the first month. A v pa-
rameter was drawn from the uniform distribution of [10, 20]
for all the participants. For example, for a small project bid-
der, where the value of the base package (1, 2) was 50 and
the v drawn for that particular player was 15, the values for
the packages (1, 3) and (1, 4) were 65 and 80, respectively.
We determined the values for the other packages from the
packages that start in the first month. As an illustration, the
value of the (2, 2) package was the value of the (1, 2) package
times the time preference factor. So if a bidder had the time
preference factor of 1.2, the (2, 2) package was more valuable
than the (1, 2) package (in general, this means the partic-
ipant prefers packages that start later rather than earlier).
If the participant had the time preference factor of 1, the
(2, 2) package was worth the same as the (1, 2) package (in
general, this means the participant was indifferent between
the starting time of the package). If the participant had
the time preference factor of 0.9, the (2, 2) package was less
valuable than the (1, 2) package (in general, this means the
participant prefers packages that start earlier rather than
later).

In summary, the values of the packages were determined
by the value of the base package, the time preference factor
of the bidder, and the value of an additional month, beta.
The value of the base package in turn was determined by
the bidder’s type.

We settled on nine bidders in each experimental session

Bidder ID Project Type Time Preference Package Size
1 Big Prefer later 2 to 4 months
2 Big Indifferent 2 to 4 months
3 Big Prefer earlier 2 to 4 months
4 Small Prefer later 3 to 5 months
5 Small Indifferent 3 to 5 months
6 Small Indifferent 3 to 5 months
7 Small Prefer earlier 3 to 5 months
8 Small Prefer earlier 3 to 5 months
9 Small Prefer earlier 3 to 5 months

Table 1: Design Parameters: Bidder Preferences

to mimic the number of projects funded to use the NEES
collaboratory in the first year of operation (2004-05). Of
these nine there was a distribution of big and small projects,
which we operationalized as three big projects and six small
projects. Of the three big project bidders all three time
preference factors were represented among the bidders. Of
the six small project bidders, one had the time preference
of 1.2, two had the time preference of 1, and three had the
time preference of 0.9. Earlier months are more compet-
itive than later ones, to capture the stylized fact in most
scientific communities that earlier experiment, and hence,
potential discoveries, are more valuable to scientists. Table
1 summarizes the main feature of bidder preferences.

3.2 Experimental Procedures
Each experimental session required exactly nine partici-

pants. The participants were recruited from the University
of Michigan, including both the graduate and undergradu-
ate population. The participants had declared majors in the
fields of science, math, or engineering. Once the participants
arrived they reviewed and signed an informed consent form.
At the beginning of each session, each participant was given
printed instructions. Before the instructions were read aloud
by one of the experimenters, the participants drew from a
deck of index cards for a player ID that determined their
project type (big or small) and their time preference factor
(1.2, 1, or 0.9). The instructions were then read aloud. Par-
ticipants were encouraged to ask questions during and after
the experiment. The instruction period averaged around
30 minutes. Then participants took a quiz designed to test
their understanding of the mechanism. At the end of the
quiz, the experimenters collected, graded, and returned the
quiz to each of the participants. The experimenters then re-
viewed the answers with the participants. The participants
were given 10 minutes to do the quiz for the RAD treatment,
and 7 minutes to do the quiz for the Vickrey treatment and
the knapsack treatment.

There were no practice auctions in any of the experimental
conditions. In the Vickrey and knapsack condition, partic-
ipants had seven minutes per auction to input their bids,
while in the RAD condition, the participants had four min-
utes for the first round and two minutes for all subsequent
rounds in each auction. There were a total of eight auctions
in each of the Vickrey and knapsack sessions, and three to
five auctions in each of the RAD sessions.1

At the conclusion of auctions in each condition partici-

1Recall that RAD is an iterative auction, therefore, the num-
ber of rounds in each auction is endogenous and varies from
auction to auction.



Mechanism # sessions # participants Exchange Rate
Vickrey 5 45 12
RAD 4 36 4

Knapsack 4 36 20

Table 2: Features of Experimental Sessions

pants tallied their cumulative earnings, filled out a short de-
mographic survey, and wrote down the strategies that they
used. We use the induced value method [15]. Participants
were paid based on their experimental profits.

Table 2 presents the relevant features of the experimen-
tal sessions, including mechanisms, number of experimental
sessions, the number of participants in each condition and
the exchange rates. Overall, 13 independent computerized
sessions were conducted in the RCGD lab at the University
of Michigan from July 2005 to February 2006. No partici-
pant was used in more than one session, yielding a total of
117 participants across all treatments. Each session lasted
approximately two and a half hours. In addition to their
auction earnings, participants could win or lose money based
on their quiz answers. A participant with fully correct an-
swers gets up to $5. The average earning (including quiz
award and a $10 showup fee) was $33.64, and the standard
deviation was $16.39. Data are available from the authors
upon request.

4. RESULTS
In this section, we first examine individual bidder behavior

in each allocation mechanism. We then compare the aggre-
gate performance of the two auctions in terms of efficiency
and equity.

Vickrey Knapsack
Active Bids% Bid/Value Active Bids%

Auction 1 0.290 0.593 0.503
Auction 2 0.419 0.626 0.588
Auction 3 0.415 0.651 0.575
Auction 4 0.433 0.724 0.596
Auction 5 0.446 0.729 0.594
Auction 6 0.479 0.737 0.577
Auction 7 0.526 0.740 0.574
Auction 8 0.548 1.126 0.588

Table 3: Bidding Under Vickrey and Knapsack

We first examine two aspects of the bidding behavior in
Vickrey, the proportion of active bids and the bid/value ratio
for those active bids. Recall it is a weakly dominant strategy
for each bidder to bid on all packages, and to bid their true
value on each package.

The first two columns of Table 3 present the proportion of
active bids and the bid/value ratio under the Vickrey auc-
tion. Bidders in a Vickrey auction, on average, bid 73.00%
of their true value. Overall, both measures are smaller than
the theory predicts. However, both the proportion of active
bids and the Bid/Value ratio are increasing, indicating that
bidders were learning the weak dominant strategy as they
repeated the auctions.

The third column of Table 3 presents the proportion of ac-
tive bids under the knapsack mechanism. Unlike the Vickrey

mechanism, the proportion of active bids remained in the
(0.5, 0.6) range during the eight auctions. Not bidding on
every package can sometimes be an optimal strategy under
knapsack.

We also classified Vickrey bidders into three categories:
Under bidder, Truthful bidder and Over bidder. Specifically,
we ran the following simple OLS regression on active bids
for each bidder with robust clustering at the auction level.

Bid(xi) = βValue(xi) + εi. (1)

Then, we tested the null hypothesis: β̂ = 1. Based on the
result, we classified each bidder into one of the following.

1. Underbidder: If we can reject the hypothesis of truth-
ful bidding at the 5% level and the coefficient is below
1.

2. Truthful Bidder: If we cannot reject the hypothesis of
truthful bidding at the 5% level.

3. Overbidder: If we can reject the hypothesis at the 5%
level and the coefficient is above 1.

Analysis shows that bidders in a Vickrey auction, on av-
erage, bid 73.0% of their true value. Of the 45 participants,
68.9% were classified as underbidders, 22.2% as truthful bid-
ders and 8.9% as overbidders. This is surprising, as most
previous laboratory studies of single-unit Vickrey auctions
find that bidders tend to overbid in such environments [10].
In multi-unit uniform price auctions, bidders tend to over-
bid on the first unit and underbid on the second unit, which
is consistent with the theoretical prediction of demand re-
duction [11]. Our finding that most bidders either underbid
or bid their true value in Vickrey auctions is consistent with
[3].

Figure 1 presents the scatter plot of raw bids under Vick-
rey for small project bidders. Big project bidder bids fol-
lowed similar patterns. We notice earlier months are much
more competitive, and therefore, most of the bids which were
over value (above the 45 degree line) were from researchers
who preferred earlier months.

Individual behavior under RAD was straightforward. Bids
were mostly between the minimal price and value for a pack-
age.

These individual behavioral patterns had direct implica-
tions on the aggregate performance of the mechanisms.

We used two indices to compare the aggregate perfor-
mance of the three mechanisms: efficiency and the Gini co-
efficient. These indices were calculated for each auction out-
come, which was characterized by the allocation of months
and the value of those months as a package.

To derive the efficiency for an auction outcome, we needed
to find the optimal allocation of packages. At the optimal al-
location, the sum of the value of allocated package that each
participant receives is maximized. Then the efficiency is the
ratio of realized total bidder value and maximum potential
total bidder value. It is formally defined as follows,

Efficiency =

P
i vi(xi)P
i vi(x∗i )

(2)

where xi is the package that is actually allocated to par-
ticipant i in the outcome and x∗i is the package that would
be allocated in the optimal allocation. That is, efficiency is
100% if the auction results in the optimal allocation.
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Figure 1: Raw Bids in the Vickrey Auction

For example, suppose we have two packages, A and B,
and two bidders, John and Tom. Package A is worth $30 to
John and $10 to Tom, while package B is worth $20 to John
and $30 to Tom. The efficient allocation is to give A to John
and B to Tom, which yields a total value of $60 and 100%
efficiency. If, for some reason, John gets B and Tom gets A,
the total value is only $30, and the efficiency is 30/60=50%.
Efficiency requires that the package goes to the bidder who
values it the most.
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Effciency is the ratio of realized total bidder value and
maximum potential total bidder value.

Figure 2: Efficiency comparison across mechanisms

Figure 2 presents the average time series efficiency and
standard deviation (error bars) of the three mechanisms.
Consistent with individual learning under the Vickrey auc-
tion, the average efficiency under Vickrey increased over
time and was higher than knapsack. RAD also generated
higher efficiency than knapsack. Note that RAD only had 3-
5 auctions in each session, while both Vickrey and knapsack
had eight auctions.2 While RAD generates higher efficiency
in the earlier auctions, Vickrey catches up by auction #4.

Statistical tests confirmed our impressions from Figure 2.
We computed the session average, average of the last two
auctions in each session, as well as auction by auction effi-
ciency comparisons across mechanisms. We used the permu-
tation tests3 to compare the performance of the mechanism,
where the number of independent observations was the num-
ber of the sessions. For session average efficiency compar-
isons, we had the following results, where the p-value for
each one-sided test is written under the inequality sign.

Knapsack <
0.21

Vickrey <
0.11

RAD,

Knapsack <
0.05

RAD.

Taking into account the effects of learning, we looked at
the average efficiency of the last two auctions in each session,

2To avoid laying the error bars on top of each other, there
is a slight shift for each mechanism, which has no numerical
significance.
3The permutation test, also known as the Fisher random-
ization test, is a nonparametric version of a difference of two
means t-test.



and found the following result:

Knapsack <
0.01

Vickrey <
0.33

RAD,

Knapsack <
0.03

RAD.

We concluded that efficiency was significantly higher un-
der RAD than under knapsack. In the last two auctions,
Vickrey and RAD each generated significantly higher effi-
ciency than knapsack. The efficiency comparison between
RAD and Vickrey was insignificant, except in earlier auc-
tions, e.g., RAD > Vickrey at a significance level of 2.39%
in the third auction.

While the efficiency index measures whether time slots are
allocated to the bidders who value them the most, we used
the Gini coefficient to measure the distributional equality
among bidders. The Gini coefficient is widely used to mea-
sure income inequality in a country and has been used by
CSCW researchers to measure equality of participation in
group discussions (e.g., [18]). We derived the Gini coeffi-
cient for each auction outcome based on the value of the
allocated package to each participant. Note that a higher
Gini Coefficient corresponds to greater inequality. In the ex-
treme cases, it is 0 if every participant gets the same value
from the assigned package (perfect equality), while it is ap-
proximately 1 if one participant receives some months while
other participants receive nothing (perfect inequality).
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Higher Gini Coefficient corresponds to
greater inequality.

Figure 3: Equity comparison across mechanisms

Figure 3 presents the average time series Gini coefficients
and the standard deviation (error bars) for each of the three
mechanisms. One striking feature is that knapsack was
roughly the lower envelope of the observations, indicating
more equitable distribution of time slots than the other two
mechanisms. Permutation tests of session average and last
two auction average across mechanisms confirmed this im-
pression.

Knapsack <
0.04

Vickrey <
0.06

RAD,

Knapsack <
0.03

RAD.

Taking into account the effects of learning, we looked at
the average Gini coefficient of the last two auctions in each
session, and found the following result:

Knapsack <
0.34

Vickrey <
0.04

RAD,

Knapsack <
0.06

RAD.

Therefore, we concluded that the Knapsack mechanism
was significantly more equitable than the Vickrey or RAD
mechanism. Vickrey, in turn, was weakly more equitable
(i.e., at the 10% significance level) than RAD.

5. DISCUSSION
This paper represents an exploration of aspects of collabo-

ration at a larger scale than is typically studied in CSCW re-
search. Specifically, the emergence of community-level tech-
nologies such as collaboratories (i.e., serving tens to thou-
sands of users), introduces new kinds of phenomena that
are not easily captured using the techniques commonly em-
ployed in CSCW studies (e.g., ethnomethodology or social
psychology). As an alternative we proposed a hypothetical
collaboratory where we experimentally compared competing
economic approaches for allocation of scarce resources, such
as instrument time.

Our hypothetical collaboratory was designed to mimic key
aspects of actual collaboratories, such as the NEES collab-
oratory. That is, we captured variation in the resources
of collaboratory users (i.e., big vs. small projects) and in
the time preferences of users (i.e., early, middle, or late in
a 24-month period). Experimental participants were then
assigned randomly to project types and asked to bit for in-
strument time using one of three mechanisms – two that
were auction-based (Vickery and RAD) and one based on
ordinal ranking (knapsack).

Results showed that knapsack was more equitable than ei-
ther Vickery or RAD. However, both Vickery and RAD were
more efficient than knapsack. Intuitively, by using ordinal
ranking, the knapsack mechanism does not allow bidders to
express the intensity of their preferences. In the hypothetical
collaboratory, this favored small project bidders and made it
easier for them to obtain slots. Therefore, the knapsack al-
location was more equitable, to the extent that everyone got
something. Knapsack was not good at giving slots to those
who valued them the most, however, where both of the auc-
tion mechanisms were better at giving the right people the
right slots, at the expense of equity. Therefore, a choice
among these mechanisms roughly boils down to a tradeoff
between efficiency and equity, and which has more weight in
the designer’s objectives.

There are a number of limitations to this study, such as
the usual caveats about the external validity of laboratory
experiments used to simulate real world phenomena. How-
ever, there is extensive evidence that experimental partici-
pants do accurately represent economic behavior within the
domain of auctions – and this is the basis for a growing sub-
discipline within economics, called experimental economics
(recently recognized through the award of a Nobel prize to
Vernon Smith, a pioneer of experimental economic meth-
ods). Similarly, while the hypothetical collaboratory can’t
model all the nuance of an actual collaboratory, it is pos-
sible to stylize key aspects of collaboratory use relevant to
specific problems (e.g., allocation of scarce instrument time)



and to operationize these aspects as parameters within an
experimental design. Perhaps most important, it was not
our purpose to use experimental methods to capture the
full fidelity of collaboratory use. Rather, the experimental
approach gave us a sufficiently realistic arena to examine
particular aspects of collaboratory use with an eye toward
future work that might focus on allocation in actual collab-
oratories.

We see four critical next steps in terms of advancing be-
yond this paper. First, we believe the results will have
greater validity when participants are members of authen-
tic scientific and engineering communities. That is, instead
of using undergraduates, we would like to use practicing
scientists and engineers – in the expectation that these par-
ticipants will identify more strongly with the instrument al-
location task and therefore have greater investment in bid-
ding outcomes (i.e., valuations will be more truthful and
accurate). Second, we would like to conduct surveys of sci-
entific and engineering communities that depend on scarce
resources (e.g., astronomy) to better identify current mech-
anisms used to allocate instrument time. In this paper, for
instance, we adopted knapsack as a proxy for typical al-
location mechanisms based on evidence that some variant
of knapsack is used to allocate time on the Chandra X-ray
observatory. Assuming we find other mechanisms in use,
we would like to include these as comparisons in future ex-
periments. Finally, our larger ambition is to use the body
of experimental results to inform adoption of specific allo-
cation mechanisms within scientific and engineering com-
munities, like NEES, and then study the consequences of
the use of the allocation mechanism. Ideally we would like
to find multiple communities to conduct quasi-experiments
contrasting varying mechanisms. Finally, from a design per-
spective, an important goal of future work will be the cre-
ation of effective and usable interfaces to the various auction
mechanisms. For instance, a limitation on RAD is that bid-
ders can’t quickly scan bids to maintain an intuitive sense
of where overall bidding may stand.
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