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Abstract
We present evidence from laboratory experiments of behavioral spillovers and cognitive load

that spread across strategic contexts. In the experiments, subjects play two distinct games si-
multaneously with different opponents. We find that the strategies chosen and the efficiency of
outcomes in one game depends on the other game that the subject plays in predictable directions.
Using entropy as an empirical measure of behavioral variation in a normal form game, we find that
games with low entropy have a stronger influence on behavior in the games with high entropy, and
are less subject to influence by other games. Taken together, these findings suggest that people
may not treat strategic situations in isolation but instead develop heuristics that they apply across
games. Our findings suggest that behavior within a particular institution may depend upon other
the incentive structures in play, and, as a result, institutional outcomes may be context dependent.
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1 Introduction

In this paper, we describe laboratory experiments in which individuals simultaneously and repeat-

edly play two games with different opponents. We test whether an individual’s play in one game

is influenced by the other strategic interaction she faces. Multiple games can increase cognitive

load preventing individuals from choosing efficient or even equilibrium behaviors. They can also

induce behavioral spillovers in which individuals choose similar strategies in the two games. We

find evidence of both psychological processes.

First, we find that although individuals are free to apply distinct strategies in each game, they

instead develop and apply common behaviors across the two games. For example, when the pris-

oner’s dilemma is paired with a game of chicken, players are more likely to alternate on the off-

diagonals rather than cooperate, compared to when the prisoner’s dilemma is played alone or paired

with other games. However, to our knowledge, there has not been a measure of game complexity

which predicts when behavioral spillovers are present nor does any theory explain which games

will influence others.

We introduce entropy of outcomes as a measure of behavioral variation in a normal form game,

and posit that it is an empirical measure of the cognitive load induced by game complexity. For

example, one of our games has a dominant strategy, efficient equilibrium. The play of this game

produces the same outcome in almost every period, and therefore has low entropy. By our measure,

this game is less cognitively taxing than the others. Using entropy of outcomes of play to organize

our results, we find that games with low entropy have a stronger influence on behavior in the games

with high entropy, and are less subject to influence by other games.1

To test for spillovers we posit specific hypotheses that are distinct from those that would be

created by cognitive load alone. Cognitive load would imply that behavior varies significantly

from control sessions when multiple games are played simultaneously but that the form of that

variation is independent of the other game in the ensemble (provided that game demands equal

cognitive attention). Yet, we find that behavior in one game depends significantly and predictably

upon what other game is included in the two-game ensemble. This trend suggests that variance

in actions cannot be attributed exclusively to cognitive load but instead indicates the presence of

1Our results are distinct from but complement earlier research on sequential behavioral spillovers, which have been
interpreted as a form of priming or framing (Tversky and Kahneman 1986).
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behavioral spillovers.

Our findings have an important implication for the study of games and for social science re-

search more generally. If behavior in one game depends on other games an individual plays, then

social scientists, whether doing experimental, theoretical, or empirical research, may need to con-

sider the full ensemble of games that an individual faces (Samuelson 2001, Bednar and Page 2007).

To date, almost all game theory research focuses on individual games, as do most experiments.

That norm is changing. A recent flurry of multiple game experiments demonstrates the exis-

tence and magnitude of ensemble effects. Our theory of behavioral spillovers can explain some of

the findings in these experiments. Falk, Fischbacher and Gaechter (2010) investigate social inter-

action effects when two identical coordination or public goods games are played simultaneously

with different opponents, and find no behavioral spillovers between the two games, which is con-

sistent with our prediction that two identical games with the same entropy should not influence

each other. Savikhin and Sheremeta (2010) study simultaneous play of a public goods game (low

entropy) and a competitive lottery contest (high entropy). They find that cooperation in the public

goods game reduces overbidding in contests, while contributions to the public good are not af-

fected by the simultaneous participation in the contest. This result is consistent with our prediction

that game influence flows from low entropy games to high entropy games. In a third study, using

both a sequential and a simultaneous treatment, Cason, Savikhin and Sheremeta (2010) report co-

operation spillovers from the median-effort game (low entropy) to the subsequent minimum-effort

game (high entropy) when the games are played sequentially, but not simultaneously. Again, this

result is consistent with our predictions based on entropy. Finally, Cason and Gangadharan (2010)

investigate behavioral spillovers between a threshold public goods game and a competitive double

auction market. They find that cooperation in public goods provision is less common when players

simultaneously compete in the market.2

There do exist some sequential game experiments that find significant framing (Tversky and

2Huck, Jehiel and Rutter (2010) study feedback spillovers in sequential multiple games and find empirical support
for an analogy-based expectation equilibrium (Jehiel 2005). They use a different protocol from the multiple game
experiments discussed above. In their experiment, a player plays one of two games in each round, and sometimes
receives the aggregate distribution of the play of the opponents over the two games, a design feature aimed to compare
the long-run behavior in the presence and absence of feedback spillovers. Grimm and Mengel (2010) use a similar
protocol where a player plays one of several games each round, and find that their data can be rationalized by either
action- or belief-bundling.
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Kahneman 1986) and learning transfer effects and are therefore supportive of our claim of behav-

ioral spillovers (Cooper and Kagel 2008, Haruvy and Stahl 2010). For example, experiments that

first auction off the right to play in the game produce different outcomes in subsequent games.

In those experiments, the auction can be seen as an initial game. These pre-play auctions often

lead to better outcomes. Van Huyck, Battalio and Beil (1993) demonstrate that without a pre-play

auction, the median-effort coordination game played in isolation leads to inefficient equilibrium

but that auctioning off the right to play before the coordination game leads to the payoff-dominant

equilibrium. Crawford and Broseta (1998) explore the efficiency-enhancing effect of auctions the-

oretically using a model of stochastic, history-dependent learning dynamics, giving an analytic

explanation for these results.3

The interest in multiple game experiments can be attributed to the ability to generate deeper

insights into both individual and collective behavior. For learning about individual behavior, these

experiments provide a laboratory in which subjects find themselves in a more cognitively taxing

environment, one that resembles real world situations in which multiple stimuli simultaneously

demand a person’s attention.

At the collective level, the findings from multiple game experiments may contribute to an insti-

tutional explanation for behavioral variations in the play of common games. Distinct sets of expe-

riences or cases lead distinct communities to draw different analogies when constructing strategies

(Gilboa and Schmeidler 1995). Institutional interventions that take into account the behavioral

repertoire of the relevant individuals may be more likely to succeed. Understanding behavior may

be crucial to predicting institutional performance and designing institutions in different settings.

We have organized the paper as follows. In Section 2, we summarize the relevant theoretical

literature and describe the specific games included in this study. Section 3 describes our exper-

imental design. Somewhat unusually, in Section 4 we first present the results from the control

sessions, where agents play a single game, and then develop our multiple-game hypotheses in Sec-

tion 5, which are based on theory as well as results from the control sessions. Section 6 reports

our findings on the ensemble effects. In Section 7, we discuss what these findings might mean and

3A additional strand of research that complements our findings looks at the emergence of cooperation. Weber
(2006) reports the results of a minimum-effort game experiment where successful coordination is achieved in large
groups by starting with small groups and adding entrants who are aware of the group’s history. Successful coordination
in large groups can be interpreted as learning transfer from small groups that find it easier to coordinate.
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comment on potential future directions.

2 Theoretical Literature and the Games

In this section, we review the theoretical literature on multiple games and describe the specific

games included in our study. Samuelson (2001) formally models behavioral spillovers and cogni-

tive load when people play multiple games. He assumes that people pay a cognitive cost to analyze

a strategic interaction. More sophisticated analyses require more cognitive load. In his model,

individuals maintain a stock of analogies to organize their reasoning. In the analysis of three dif-

ferent bargaining games, the ultimatum game, the Rubinstein (1982) alternating offer bargaining

game, and a tournament, he characterizes two equilibria, one in which the two bargaining games

are played separately, and one in which they are played jointly. In the latter, players apply common

analogies to disparate bargaining situations.

Samuelson’s analysis is restricted to bargaining games. Bednar and Page (2007) examine be-

havioral spillovers and cognitive load effects in a broader class of six 2×2 games. They prove con-

ditions for the existence and efficiency of behavioral externalities, using computational agent based

models (Miller and Page 2007). Their agent based models show that simple learning rules could

locate the proposed equilibria when played in isolation. When agents needed to solve multiple

games simultaneously, the agents often created routines that they applied across strategic domains.

The agent based model generates behavioral spillovers; agents employed identical strategies in dis-

tinct games.4 The model also shows evidence of cognitive load: some ensembles of games outstrip

the capacity of the agents to play each game optimally. In those cases, they find especially strong

ensemble effects.

Given their focus on ensemble effects, Bednar and Page (2007) provide the main theoretical

foundation for the current paper. Here we test whether the phenomena derived within models and

generated by artificial agents can be produced in a laboratory with real people. We focus on four

2× 2 games: the Prisoner’s Dilemma (PD), Strong Alternation (SA), Weak Alternation (WA), and

4In comparison to the action-bundling results of Samuelson (2001) and Bednar and Page (2007), Jehiel (2005)
uses a belief-bundling approach, where a player forms expectations about the behavior of the other players by pooling
together several contingencies (analogy class) in which these other players must move, and forms an expectation about
the average behavior in each analogy class. In his analogy-based expectation equilibrium, a player with coarser beliefs
could still adopt different actions in different normal form games.
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a Self Interest game (SI). The individual games belong to a class of two-person two-action games

that contain a self-regarding action S and an alternative, C; in three of the games (PD, SA and WA),

this alternative is cooperative. In these three games, cooperation lowers a player’s own payoff and

raises the payoff of the other and being selfish does the opposite, so in the one shot game, the

unique dominant strategy equilibrium involves both players choosing selfish. In the fourth game,

Self-Interest (SI), S is both the stage game dominant strategy and Pareto dominant.

The first game is a standard Prisoner’s Dilemma, where the stage game has a dominant strategy

equilibrium, (S, S), which is Pareto dominated by (C, C). Note that (C, C) also maximizes the joint

payoff of the two players.

C S
Prisoner’s Dilemma: C 7, 7 2,10

(PD) S 10,2 4,4

In the second and third games, Strong Alternation (SA) and Weak Alternation (WA), while (S,

S) remains the dominant strategy equilibrium for the stage game, agents do best (i.e., maximize

joint payoff) in repeated play by alternating between the off-diagonals, (C, S) and (S, C). In Strong

Alternation, the incentives to alternate are much stronger than in Weak Alternation. The alternation

games are a distant cousin to the conventional Battle of Sexes and Game of Chicken, where agents

are rewarded for coordinating their behavior. In our alternation games, four outcomes are rewarded

with positive payoffs: CC, SS, and the alternating strategies of CS then SC and SC then CS.

Coordinating on CC or SS is much less taxing than working out an alternating behavior, and the

positive payoffs for each reduce the focality of an alternating equilibrium.

C S
Strong Alternation: C 7, 7 4,14

(SA) S 14,4 5,5

C S
Weak Alternation: C 7, 7 4,11

(WA) S 11,4 5,5

In the final game, Self Interest (SI), the dominant strategy equilibrium, (S, S), also Pareto

dominates all other outcomes. Furthermore, in the stage game, S uniformly dominates C.

C S
Self Interest: C 7, 7 2,9

(SI) S 9,2 10,10
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These four games are variants of the six studied by Bednar and Page (2007). Our experiments

with human subjects parallel the results of their computational experiments.

3 Experimental Design

Our experiments consist of four control sessions, each of which consists of a single game, and

14 treatment sessions, each of which consists of a pair of games. This experimental design en-

ables us to determine the effects of ensemble on behavior by comparing the ensemble with the

corresponding control sessions and to compare behavior across ensembles.

The control sessions follow the protocol of infinitely repeated games in the laboratory. We

have one 12-player session for each of the single games. Participants are randomly matched into

pairs at the beginning of each session, and play the same match for the entire experiment. In each

session, participants first play the game for 200 rounds. After round 200, whether the game will

continue to the next round depends on the “throw of the die” that is determined by the computer’s

random number generator. At the end of each round after round 200, with 90% chance, the game

will continue to the next round. With 10% chance, the game stops. In other words, we implement

an infinitely repeated game, with a discount factor of 1 for the first 200 rounds, and 0.9 thereafter.

With the chosen discount factors, (C, C) can be sustained as a repeated game equilibrium in PD,

SA and WA. With 12 players in each control session, we have 6 independent observations for each

single game.

In the ensemble treatment, we again use twelve players in each session. Within each session, at

the beginning, each player is randomly matched with two other participants, both of whom will be

her matches for the entire experiment. She plays two distinct games with each of these people. This

design allows us to analyze whether or not behavior in one game is influenced by the nature of the

other game. As in the control sessions, we implement an infinitely repeated game, with a discount

factor of 1 for the first 200 rounds, and 0.9 thereafter. Within each session, the 12 players are

partitioned into independent groups of 4 each,5 yielding 3 independent observations. As the two

games are displayed side by side, we conduct two independent sessions for each game ensemble,

changing the order of the display to avoid the order effect within each round. For example, for the

5The matching protocol is the following: 4− 2− 1− 3︸ ︷︷ ︸, 6− 5− 7− 8︸ ︷︷ ︸, 10− 9− 11− 12︸ ︷︷ ︸ form three independent

groups, each with four participants positioned on a circle, and each participant plays her left and right match.
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game ensemble of SA and WA, we display SA as the left game in one session, and WA as the left

game in another session. This way, if a player always makes decisions from left to right, we have

a balanced number of observations for each order.

We used z-Tree (Fischbacher 2007) to program our experiments. As z-Tree does not record the

mouse movements within each stage, we ran two additional sessions with ensembles, (SI, WA) and

(WA, SI), where we use the software Morae to record the mouse movement. These two sessions

enable us to determine the order of decisions within each round. The (SI, WA) session has 12

subjects, while the (WA, SI) has only eight subjects.6

Table 1: Features of Experimental Sessions
Control Ensemble Treatment

Game n Pairs (Left, Right) n Groups
(PD, WA) 12 3
(WA, PD) 12 3
(PD, SI) 12 3

PD 12 6 (SI, PD) 12 3
(SA, WA) 12 3
(WA, SA) 12 3
(SA, PD) 12 3

SA 12 6 (PD, SA) 12 3
(SI, WA) 12 + 12 6
(WA, SI) 12 + 8 5
(SI, PD) 12 3

SI 12 6 (PD, SI) 12 3
WA 12 6

Total 48 24 164 41

Table 1 reports features of experimental sessions, including the name of the game, the number

of players in each session, the number of independent pairs for each control session, the ensemble

of games, the number of players in each session, as well as the number of independent groups in

each ensemble session.

Overall, 18 independent computerized sessions were conducted in the RCGD lab at the Uni-

versity of Michigan from March to October 2007, yielding a total of 212 subjects. Our subjects

were students from the University of Michigan, recruited by email from a subject pool for eco-

6We recruited for twelve subjects, however, only eight showed up.
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nomic experiments.7 Participants were allowed to participate in only one session. Each ensemble

treatment session lasted approximately 90 minutes, whereas each control session lasted about 45

minutes. The exchange rate was set to 100 tokens for $1. In addition, each participant was paid a

$5 show-up fee. Average earnings per participant were $37.49 for those in the treatment sessions

and $22.77 for those in the control sessions. Data are available from the authors upon request.

4 Results: Control Sessions

In this section, we report the results from the control sessions at the outcome level. This analysis

provides a benchmark from which we can identify the presence of cognitive load and behavioral

spillovers results in Section 6. In Subsection 6.2, we infer the repeated game strategies emerged in

each game in the control and compare them with those in the ensembles. In this section, we treat

each pair as an independent observation.

We first introduce an empirical measure of cognitive load. To measure the behavioral variation

in a game, we apply the standard entropy concept to the outcome distributions.8 The entropy of a

random variable X with a probability density function, p(x) = Pr{X = x}, is defined by

H(X) = −
∑

x

p(x) log2 p(x),

which is used to measure the amount of stochastic variation in a random variable that can assume a

finite set of values. Therefore it is also a measure of the amount of information required to describe

that distribution. When using logarithms to base 2, that measure is expressed in binary variables

(bits).

For the analysis of two-person games, we model individual stage game strategies as a discrete

random variable, X , with realizations in one of the four cells. Throughout the analysis, we use the

convention that 0 log 0 = 0.9 The entropy in a generic 2× 2 game is in the interval [0, 2], with the

lower bound indicating certainty, i.e., all outcomes are in one cell, and the upper bound indicating

a uniform distribution among the four cells. The cause of behavioral variation could be strategic

uncertainty over what the other player will do.
7Graduate students from the Economics Department are excluded from the list.
8Shannon (1948) is credited with the development of the concept of entropy and the birth of information theory.

Many basic concepts and findings in this field are summarized in Cover and Thomas (2006).
9This convention is easily justified by continuity, since x log x→ 0 as x→ 0.
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In Figures 1-4, we present time series data for each pair in each of the control sessions, with

the entropy for each pair presented at the bottom of each graph.

[Figure 1 about here.]

Figure 1 presents outcomes in the Self Interest game. In this game, all six pairs converge to the

Pareto dominant stage game equilibrium quickly and stay there. The entropy for each pair ranges

from 0 to 0.04, indicating very little behavioral variation. This behavioral consistency is likely

attributable to the uniform dominance property of the dominant strategy equilibrium in the stage

game. Additionally, participants take an average of 0.62 seconds per round to make a decision in

SI, significantly shorter than in any other game (p ≤ 0.01, one-sided permutation tests). Based

upon the uniform dominance property of the unique Pareto efficient stage game equilibrium, its

low entropy, and the length of time it took for participants to complete the game, we posit that SI

would be the easiest to play efficiently.

[Figure 2 about here.]

Figure 2 presents behavior in the Prisoner’s Dilemma game. In this game, over half of the

pairs play CC, the efficient outcome, which is consistent with findings from previous experiments

(Andreoni and Miller 2002). Curiously, one pair also alternate for a fair number of rounds. The

entropy for each pair ranges from 0.08 to 1.90, indicating changing behavioral variation. In addi-

tion, participants take an average of 1.00 second per round to make a decision in PD, significantly

longer than SI, but shorter than SA (p ≤ 0.01, one-sided permutation tests). As a “context” this

game does not establish as strong a behavioral norm as the Self Interest game. Based upon this

finding, we anticipate that PD will have a weaker behavioral pull than SI. The difficulty of learning

to cooperate in the PD game may limit its spillover effects on play in other games.

[Figure 3 about here.]

Figure 3 presents behavior in the Strong Alternation game, where 5/6 of the pairs success-

fully establish the alternation outcomes. Pair 2 also attempts alternation on and off during the

experiment. The entropy for each pair ranges from 1.29 to 1.84, indicating substantial behavioral
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variation.10 In addition, participants take an average of 2.72 seconds per round to make a decision

in SA, significantly longer than in any other game (p ≤ 0.01, one-sided permutation tests). We

interpret the longer decision time in SA as evidence that coordinated alternation requires more

mental activities to establish. Since successful alternation is established in five out of six pairs, this

game also provides a strong context.

[Figure 4 about here.]

Last, Figure 4 presents the dynamics from the Weak Alternation game. In this game, only two

out of six pairs develop an alternating behavior, two pairs cooperate, one (pair 4) converges to SS,

and the last pair (pair 6) does not seem to have converged to a stable outcome. The entropy for each

pair ranges from 0.44 to 1.91, with the highest aggregate entropy among all four games. In addition,

participants take an average of 1.24 seconds per round to make a decision in WA, significantly

longer than SI, shorter than SA (p ≤ 0.01, one-sided permutation tests), not significantly different

from PD (p = 0.138, one-sided permutation test). As WA results in higher behavioral variation,

we speculate that, while subject behavior in WA is more likely to be influenced by the other game

in an ensemble, when paired with other games, it might increase the subjects’ cognitive load.

Table 2: Distribution of Outcomes and Entropy in Control Sessions

SI PD SA WA
C S C S C S C S

C 0.00 0.14 55.68 11.67 5.02 39.81 33.18 21.57
S 0.00 99.86 14.82 17.82 40.37 14.81 22.74 22.51

Entropy 0.02 1.68 1.68 1.98

To summarize our findings, Table 2 reports the aggregate distribution of outcomes in each of

the four games in the control sessions, and the respective entropy for each game in the last line. The

behavioral variation measured by entropy is the lowest in the Self Interest game (0.02), followed

by Prisoner’s Dilemma and Strong Alternation (1.68), and the highest in Weak Alternation (1.98).

We postulate that games with lower behavioral variation (entropy) might have stronger behavioral

spillovers than those with higher behavioral variation.

10Perfect coordinated alternation results in an entropy of 1.
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In our outcome level analysis, we focus on the Pareto efficient outcomes: (1) for both players

to always play selfish each round (SS) in the Self Interest game; (2) for both players to always

cooperate (CC) in Prisoner’s Dilemma; and (3) coordinated alternation between S and C (ALT)

in the Strong and Weak Alternation games, respectively. These outcomes also coincide with the

simplest equilibria among the set of Pareto efficient ones in our set of games.11 Table 3 reports the

proportion of Pareto efficient outcomes in each game over the entire series, and the corresponding

p-values for the one-sided permutation tests for each pairwise comparison. Boldfaced numbers are

the mode of the distribution.

Table 3: Average Proportion of Pareto Efficient Outcomes in Control Sessions

% Pareto Efficient Outcomes P-value of Permutation Tests
Games SS CC ALT CC v. SS CC v. ALT SS v. ALT

SI 99.86 0.00 0.00 0.000 0.500 0.000
PD 17.82 55.68 15.44 0.039 0.031 0.389
SA 14.81 5.02 71.12 0.040 0.000 0.001
WA 22.51 33.18 36.14 0.308 0.430 0.317

In the control sessions, the proportion of Pareto efficient outcomes (SS in SI, CC in PD, ALT

in SA and WA) is significantly higher than any other outcomes in SI, PD and SA (p < 0.05).

However, in WA, there is no significant difference in the proportions of any of the three outcomes

(p > 0.10).

In sum, three distinct outcomes emerge in the control sessions: in the SI game, selfishness; in

the PD game, cooperation; and in SA and WA an alternating form of cooperation, where subjects

alternate between the cooperative and selfish actions. Weak Alternation has weaker incentives, so

the coordinated alternation is not as prominent as with Strong Alternation.

5 Hypotheses of Ensemble Effects

In this section, we present a set of hypotheses testing the null of game independence against our

two posited ensemble effects, behavioral spillovers and cognitive load. Our alternative hypotheses

11When we represent a repeated game strategy as an automaton, the simplest strategy is defined as one with the least
number of states (Kalai and Stanford 1988, Baron and Kalai 1993). We present our repeated game strategy analysis
in Subsection 6.2.
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are based on the theoretical results from Bednar and Page (2007), as well as our empirical results

from the control sessions presented in Section 4. These hypotheses are also broadly consistent with

the analogy based model of Jehiel (2005) and the case based reasoning of Gilboa and Schmeidler

(1995).

The general null hypothesis in our investigations is of game independence: play in one game

is not be affected by the existence of another game to play. If the independence hypothesis is

correct then we should see no difference between behaviors in the control sessions (games played

in isolation) and when games are presented to subjects as part of ensembles.

Our experimental design tests the existence of two types of ensemble effects: behavioral

spillovers and cognitive load. If games presented within ensembles create behavioral spillovers,

subjects will respond as if they are developing heuristics that they apply across games. In partic-

ular, dominant behavior in one game will influence choice in another. With cognitive load effects,

subjects might resort to the dominant strategy in the stage game more often when a game is paired

with another game with higher behavioral variation, such as the Weak Alternation game.

These effects may be manifested when we compare behavior in a game when it is matched

with different games. Our investigations center on whether the ensemble play depend upon which

other game is in the ensemble. A positive answer to this question would fail to support the null

hypothesis of independent play, and support instead the hypothesized contextual dependence of

game play.

The following alternative hypotheses look at behavioral spillovers. The general alternative

hypothesis is that subject’s choice of action in a particular game will be influenced by the other

game in the ensemble, particularly biasing choice toward the other game’s simple Pareto optimal

strategy. Specifically, we expect:

Hypothesis 1 (Effect of SI). Compared to other ensembles, games paired with Self-Interest will

exhibit more selfishness.

Hypothesis 2 (Effect of PD). Compared to other ensembles, games paired with the Prisoner’s

Dilemma will exhibit more cooperation.

Hypothesis 3 (Effect of SA). Compared to other ensembles, games paired with Strong Alternation

will exhibit more alternation.
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As the Weak Alternation game only generates 36% of alternation in the control sessions, we

do not expect that games paired with Weak Alternation will exhibit more alternation. Instead, we

expect that it might have an effect in terms of cognitive load.

Our hypotheses relating to cognitive load begin with an obvious one for which we find over-

whelming support: we expect efficiency to fall in the multiple game settings unless the game is

easy to play.

Hypothesis 4 (Multiple Games and Cognitive Load). Compared to the corresponding control ses-

sions, subjects will produce less efficient behavior in any game that requires a non-trivial cognitive

load.

In Section 4, we develop a partial ordering of the four games based upon the entropy of each

game in the control sessions, i.e., the behavioral variation follows the order of SI < PD ∼ SA <

WA. Based on the entropy, decision time and the payoff structure of each game, we posit that Self

Interest is the only easy game to play so it will be the only game for which we do not expect to see

a significant falloff in efficiency.

According to our measure, Weak Alternation is the most difficult, and this relative difficulty

will be reflected in subjects’ choice of action. In particular, we conjecture that cognitive load

effects will be most prevalent in games played with more difficult games.

Hypothesis 5 (Effect of WA: Cognitive Load). Compared to other ensembles, subjects will exhibit

more selfish behavior (stage game dominant strategy) in a game when it is paired with WA.

Hypothesis 5 conveys our interest in the experiment’s ability to reveal limitations in the cog-

nitive processing of subjects playing multiple games simultaneously. While there are no design

features to the experiments that would preclude the subjects from optimizing in each game, we

believe that when subjects are asked to solve two games simultaneously they will not be as effi-

cient as they are when playing an isolated game. In particular, when an ensemble contains WA, we

predict more selfish behavior in PD or SA, a stage-game dominant strategy but inefficient in PD or

SA.
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6 Results: Ensemble Effects

In this section, we present ensemble effects at the outcome level (subsection 6.1) as well as those

at the strategy level (subsection 6.2). In all our analysis in this section, a pair in a control session

or a group of four in an ensemble session is treated as an independent observation.

6.1 Ensemble Effects at the Outcome Level

Our anticipation was that subjects would play particular games differently between the control

sessions, where they played a single game, and when that game appeared as part of an ensemble.

This prediction emerges from the two core hypotheses: both behavioral spillovers and cognitive

load will affect play in ensembles. Consequently, we expect different outcomes between the control

sessions and the corresponding ensembles. In the control sessions, the Pareto-efficient outcomes

(SS in SI, CC in PD, ALT in SA and WA) emerge as the mode among all the three outcomes in SI,

PD and SA played in isolation. We first examine the likelihood of Pareto-efficient outcomes when

a game is played in an ensemble.

Table 4: Pareto Efficient Outcomes in Ensemble vs. Control

Pooled
SS in SI CC in PD ALT in SA ALT in WA PD, SA, WA

% in Control 0.999 0.557 0.711 0.361 0.541
% in Ensemble 0.991 0.410 0.449 0.244 0.360
H1: control > ensemble
one-sided p-values 0.002 0.171 0.031 0.213 0.034
# of observations
(control, ensemble) (6, 23) (6, 18) (6, 18) (6, 23) (18, 59)
Note: In the permutation tests, we treat each pair (group of four) in the control (ensemble)
sessions as one observation.

Table 4 reports the proportion of Pareto efficient outcomes in the control and ensembles, as well

as p-values from one-sided permutation tests. The general null hypothesis is game independence,

i.e., the proportion of Pareto efficient outcomes of a particular game is the same between the

control and ensemble treatments, while the alternative hypothesis is that the the proportion of

Pareto efficient outcomes is higher when a game is played alone. We summarize the results below.
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Result 1 (Pareto Efficient Outcomes in Ensembles). Averaging across all games except SI, the

proportion of Pareto efficient outcomes decreases by 18% when the games are part of ensembles.

An individual game analysis shows a decrease in Pareto efficient outcomes for all games and a

significant decrease for ALT in SA.

Support. In Table 4, we reject the null of game independence in favor of H1 for SS in SI (p =

0.002), ALT in SA (p = 0.031), and the pooled PD, SA and WA games (p = 0.034).

Result 1 indicates that, in three out of four games, behavior in a game played in an ensemble

is different from the same game played in isolation. In particular, in Strong Alternation, subjects

alternate significantly less (p = 0.031) when it is in an ensemble than when it is played in iso-

lation. The Self Interest game, however, is not affected by the presence of other games. It is the

easiest game to play. Whether in control or ensemble treatments, subjects quickly converge to SS,

with over 99% of selfishness across the rounds. Thus, by Result 1, we reject the null of game

independence in favor of Hypothesis 4 in SI, SA and the pooled PD, SA and WA games.

To establish the existence of behavioral spillovers in the presences of cognitive load, we com-

pare outcomes between ensembles. We first examine how outcomes in the Weak Alternation game

are influenced by other games in the ensemble. Recall that Weak Alternation has the greatest be-

havioral variation (entropy) in the control sessions. This feature should render it susceptible to

influence from other games in the ensemble.

We focus first on play in Weak Alternation in which the other games in the ensemble are Strong

Alternation and the Prisoners’ Dilemma. These two games create similar behavioral variation in

our control sessions (entropy = 1.68 in each game), so we posit that their effects on cognitive load

will be similar. If behavioral spillovers are present in the Weak Alternation, then we should see

more alternation in that game when it is paired with Strong Alternation, and we should see more

cooperation when it is paired with the Prisoners’ dilemma. Both effects are present.

Result 2 (Behavioral Spillover to WA). Comparing (WA, PD) and (WA, SA), subjects alternate

more in WA when also playing SA (37% versus 18%) and cooperate significantly more when WA

is paired with PD (31% versus 11%).

Support. One-sided permutation tests comparing the proportion of ALT in (WA, PD) and (WA,
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SA) yield p = 0.12. Similarly, one-sided permutation tests comparing the proportion of CC in WA

between the two ensembles yield p = 0.022.

Result 2 indicates that behavior in Weak Alternation is indeed susceptible to the influence

of the other games in the ensemble: participants alternated more in WA when also playing SA

and cooperated more when WA was paired with PD. By Result 2, we reject the null of game

independence in favor of Hypotheses 2 and 3.

We next look for behavioral spillovers in the PD game. Here, we find more ALT when PD is

paired with SA, which supports spillovers. But even more compellingly, we find that when PD is

paired with SI, we get twice as much SS in the PD game, which is consistent with a hypothesis of

behavioral spillovers. Given that SI is the least cognitively tasking of the games (entropy = 0.02),

this finding cannot be explained by cognitive constraints alone.

Result 3 (Behavioral Spillover to PD). Comparing (PD, SA) and (PD, SI), we observe more ALT

in PD when it is paired with SA (21% versus 5%), and more SS in PD when it is paired with SI

(46% versus 23%). Comparing (PD, SA) and (PD, WA), we observe more ALT in PD when it is

paired with SA (21% versus 9%) and significantly more SS in PD when it is paired with WA (39%

versus 23%).

Support. One-sided permutation test comparing the proportion of ALT in PD in ensembles (PD,

SA) and (PD, SI) yields p = 0.10, while one-sided permutation test comparing the proportion of SS

in PD between the two ensembles yield p = 0.10. Similarly, one-sided permutation test comparing

the proportion of ALT in PD in ensembles (PD, SA) and (PD, WA) yields p = 0.18, while one-sided

permutation test comparing the proportion of SS in PD between the two ensembles yields p = 0.04.

Result 3 indicates that the Prisoner’s Dilemma is susceptible to the institutional context it is

situated in. While participants alternate more in PD when they also play Strong Alternation, they

play PD selfishly more when they also play Self Interest or Weak Alternation. Thus, we reject the

null in favor of Hypotheses 1, 3 and 5.

Finally, we consider the effect on the SA game. Here, we compare play in SA when it is

paired with SI and with PD. Clearly, SI is the least cognitively tasking of the games. Therefore, if

cognitive load were the only force operating, we would expect higher efficiency in the SA game

17



when it is paired with SI. However, we find that pairing SA with SI results in the same efficiency

as when SA is paired with PD. This can be explained by the fact that pairing SA with PD produces

more cooperation. This provides further evidence of behavioral spillovers.

Result 4 (Behavioral Spillover to SA). Comparing (SA, PD) and (SA, SI), we observe CC more

often in SA when paired with PD (15% versus 7%). The difference is more pronounced and signif-

icant in the second 100 rounds (13% versus 1%).

Support. One-sided permutation tests comparing the proportion of CC in in SA in ensembles (SA,

PD) and (SA, SI) yield p = 0.11 for the entire series, and p = 0.013 for the second 100 rounds.

In later rounds, the effect grows even more pronounced: while they continue to cooperate in

SA when it is paired with PD, where SA is paired with SI subjects shift from CC to SS, so that

the CC percentages are 13% in (SA, PD) versus 1% in (SA, SI). By Result 4, we reject the null in

favor of Hypothesis 2.

We next compare the efficiency generated in each game. Following convention, we capture

efficiency by the percentage of potential payoff above the minimum payoff that the players receive.

Our normalized efficiency measure is defined as follows.

Efficiency =
Actual joint payoffs−Minimum joint payoffs

Maximum joint payoffs−Minimum joint payoffs
(1)

Table 5: Efficiency in the Control and Ensemble

Efficiency Ensemble Average Efficiency in Ensemble
Control in Control (Game1, Game2) Game1 Game2 Ensemble

(SI,PD) 99.32 51.50 80.19
(SI,SA) 99.23 64.24 82.76

SI 99.86 (SI,WA) 98.99 63.06 86.16
PD 73.35 (PD,SA) 63.59 68.10 66.17
SA 82.69 (PD,WA) 53.97 53.97 53.97
WA 70.86 (SA,WA) 55.66 57.89 56.52

Table 5 presents the average efficiency in the control and the ensemble sessions. For each

ensemble, we present the efficiency of each game in the ensemble, as well as the overall ensemble

efficiency. Consistent with Result 1, the efficiency in SI, PD and SA control sessions is higher than
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that of the corresponding games in ensemble sessions. In particular, the following comparisons are

significant at the 5% level: SI > (SI, SA), SI > (SI, WA), and SA > (SA, WA).

Table 6: P-values of Pairwise Efficiency Comparisons between Ensembles

Ensemble (SI,SA) (SI,WA) (PD,SA) (PD,WA) (SA,WA)
(SI,PD) 0.366 0.114 0.079 0.004
(SI,SA) 0.770 0.039 0.022
(SI,WA) 0.000 0.003
(PD,SA) 0.079 0.227
(PD,WA) 0.416

Table 6 reports the p-values of one-sided permutation tests of pairwise comparison between en-

sembles which have one game in common. We find that a game played together with SI generates

significantly higher efficiency than the corresponding game paired with any other game. Specifi-

cally, the following comparisons are significant at the 5% level, except for (SI, PD) ≥ (SA, PD),

which is significant at the 10% level:

• (SI, PD) > (WA, PD) and (SI, PD) ≥ (SA, PD);

• (SI, SA) > (PD, SA) and (SI, SA) > (WA, SA);

• (SI, WA) > (PD, WA) and (SI, WA) > (SA, WA).

The efficiency comparison across ensembles follows from several behavioral regularities. First,

unlike any other game, the Self Interest game generates consistently high efficiency regardless of

whether it is play alone or with other games. Second, SI takes significantly less time to play than

any other game, indicating lower cognitive load, which implies that participants can devote more

time to optimize in the other game which causes overall high efficiency in the ensemble.

In general, the experimental results agree with our alternative hypotheses: game independence

is not supported, but instead subjects are influenced by contextual effects of behavioral spillovers

and cognitive load. While analyses reported in this subsection are based on non-parametric tests,

we recognize that income effects might influence behavior. Thus, we use probit regressions with

standard errors clustered at the pair (respectively group) level for Results 1 to 4, controlling for

income and learning effects in each specification. Following Ham, Kagel and Lehrer (2005), we
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use a participant’s cash balance prior to period t to control for income effects. We find that, while

cash balance is statistically significant in most specifications, its marginal effect on behavior is

never greater than 1%.12 Further, Results 1 to 4 continue to hold in our regression analysis.

6.2 Ensemble Effects at the Strategy Level

In this subsection, we analyze repeated game strategies in each game, and the ensemble effects

at the strategy level. Following Rubinstein (1986) and Abreu and Rubinstein (1988), we use au-

tomaton (or the Moore machine) to represent repeated game strategies. In Figure 5, we present 29

repeated game strategies, including the exhaustive set of 26 1- and 2-state automata, and three 3-, 4-

and 5-state automata which have been widely discussed in previous literature (Engle-Warnick and

Slonim 2006). For each subject i, we calculate the fitting proportion for each automaton, Mj , for

the entire sequence of observed actions {at
i}Tt=1, defined as Fi(Mj) =

∑T
t=1 I(at

i, M
t
j )/T , where

the indicator function I(at
i, M

t
j ) = 1 if at

i = M t
j . At the treatment level, we define the average

fitting proportion as F̄ (Mj) =
∑n

i=1 Fi(Mj)/n, where n is the number of players.

To highlight the main results, in subsequent discussions, we only compare the performance of a

subset of 1- and 2-state automata.13 Table 7 presents 9 out of 26 1- and 2-state automata, including

all six strategies with at least 50% fitting proportion across all games and ensembles, and three

which do not survive the 50% fitting threshold but have been extensively discussed in the literature

(Engle-Warnick and Slonim 2001; Bednar and Page 2007; Hanaki et al. 2005). These 9 strategies

can be divided into three categories: (1) cooperative strategies, including Always Cooperate (AC),

Forgive Once (F1), Suspicious Forgive Once (sF1); (2) reciprocal strategies, including Tit-for-Tat

(TFT), and Suspicious Tit-for-Tat (sTFT); and (3) selfish strategies, including Always Selfish (AS),

Grim Trigger (GT), Switch after Cooperate (SAC), suspicious Switch after Cooperate (sSAC). Of

these nine strategies, AC, AS and GT do not survive the 50% fitting threshold.

The strategy level analysis in the control sessions reveals few surprises. In the PD game,

reciprocal strategies, TFT and sTFT, have significantly higher fitting proportion, F̄ (TFT ) =

F̄ (sTFT ) = 0.84, than every other strategy.14 This result is consistent with the literature where

12Regression tables are available from the authors upon requests.
13The complete analysis of all 29 automata are available from the authors upon request.
14F̄ (TFT ) > F̄ (Mj): p < 0.05 for any Mj 6= {AC, sTFT}, and p < 0.10 for Mj = AC. Similarly,

F̄ (sTFT ) > F̄ (Mj): p < 0.05 for any Mj 6= {sF1, AC, TFT}, and p < 0.10 for Mj ∈ {sF1, AC}, one-sided
Wilcoxon signed rank tests.
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TFT is widely and successfully used in the repeated PD simulations (Axelrod and Hamilton 1981,

Bednar and Page 2007, Hanaki et al 2005). These two strategies have even better fitting proportion,

F̄ (TFT ) = F̄ (sTFT ) = 0.90, in the Weak Alternation game.15 In the Strong Alternation game,

TFT, sTFT as well as SAC and sSAC are all best fitting strategies, each with a fitting proportion

of F̄ = 0.85, and each significantly outperforming every other strategy outside this set.16 This

result is consistent with Hanaki et al (2005) where in a simulation of coordination games similar

to Strong Alternation, SAC is the best performing strategy. Finally, in the Self Interest game, due

to the lack of variation in actions, player behavior can be explained by any different strategy that

produces all selfish behavior. Among these strategies are TFT, sTFT, SAC, sSAC, AS, and GT,

each has a fitting proportion of F = 1.00.

The strategy level analysis for the ensemble sessions also aligns with expectations. Comparing

strategies used in PD when it is paired with SI and those used in the PD control sessions, we find

that the fitting proportion of selfish strategies increases from control to ensembles. For example,

the fitting proportion of strategies that choose to be selfish after cooperating (SAC and sSAC)

increases from 0.59 in the control to 0.71 in the ensemble (p = 0.08, one-sided permutation test).

It is still the case though that TFT and sTFT retain the greatest fitting proportion in PD (F̄ = 0.91)

even when it is paired with SI. Likewise, when PD is paired with WA, the fitting proportion of

selfish strategies again increases, with F̄ (AD) = 0.31 in the control sessions and 0.49 in the (PD,

WA) ensemble (p = 0.09), F̄ (SAC) = 0.59 in the control and 0.66 in the ensemble (p = 0.06),

and F̄ (sSAC) = 0.59 in the control and 0.66 in the ensemble (p = 0.07).

Comparing strategies used in SA when it is paired with SI and those used in the SA con-

trol sessions, we find that the fitting proportion of selfish strategies significantly increases from

the control to the ensemble, while that of cooperative strategies weakly decreases. Specifically,

F̄ (GT ) = 0.55 in the control and 0.65 in the ensemble (p = 0.02), while F̄ (AC) = 0.45 in the

control and 0.37 in the ensemble (p = 0.10). We obtain similar results comparing the (SA, WA)

ensemble and SA control sessions.
15F̄ (TFT ) > F̄ (Mj): p < 0.05 for any Mj 6= {SAC, sSAC, sTFT}, and p < 0.10 for Mj ∈ {SAC, sSAC}.

Similarly, F̄ (sTFT ) > F̄ (Mj): p < 0.05 for any Mj 6= {F1, SAC, sSAC, TFT}, and p < 0.10 for Mj ∈
{F1, SAC, sSAC}, one-sided Wilcoxon signed rank tests.

16SAC or sSAC has significantly greater fitting proportion than any other strategy outside the set (p < 0.05), while
TFT or sTFT has significantly greater fitting proportion than any other strategy outside the set (p < 0.05) except for
F1 (p < 0.10), one-sided signed rank tests.
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Last, when we compare repeated game strategies between ensembles, several of the results

from the outcome level analysis survive, albeit in a slightly different form. For example, comparing

behavior in WA in the (WA, PD) vs.(WA, SA) ensembles, we find that, when WA is paired with PD,

the fitting proportion of cooperative strategies, such as always cooperate (AC), is weakly higher

than when it is paired with SA (0.45 vs. 0.36, p = 0.10), while that of selfish strategies, such as

AD (55 vs. 64%), GT (55 vs. 64%), SAC (72 vs. 81%) and sSAC (72 vs. 81%) increases (p < 0.1

for each comparison, one-sided permutation tests).

In sum, analysis of behavioral spillovers at both the outcome and strategy levels yields largely

consistent results, i.e., when games are paired in ensembles, play differs from isolated controls,

and in predictable ways. In some cases, the two levels of analysis provide different lenses on the

same phenomenon. For example, both analyses demonstrate that the SI game leads to more selfish

behavior and less cooperative behavior. In other cases, the strategy level analysis highlights a

different feature of the results. For example, the strategy analysis allowed us to see how often pairs

were able to coordinate on alternating strategies. A thorough reading of the data at both levels

– outcomes and strategies – reveals unequivocal evidence of behavioral spillovers and cognitive

load.

7 Discussion

In this paper, we present an experimental study to test for ensemble effects in game playing be-

havior. We test for these effects looking both at outcomes and strategies. Our study reveals strong

evidence of behavioral spillovers that depend in predictable ways on features of the games in the

ensemble. In particular, if subjects play one game in an ensemble that encourages selfishness or

cooperation, then they are more likely to exhibit that behavior in the other game in their ensemble,

even though they play the other game with a different player. We also see evidence of cognitive

load.

To derive our hypotheses about cognitive load and behavioral spillovers, we introduce a mea-

sure of behavioral variance, entropy. We posit that in ensembles that include games that pro-

duce high entropy outcomes, cognitive load will be most pronounced. Consistent with our ex-

pectations, cognitive load has the greatest effect when ensembles include Weak Alternation, our
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highest-entropy game. In contrast, we hypothesize that low entropy games would produce stronger

behavioral spillovers and are less influenced by other games. Both predictions are supported by

our laboratory findings.

Our findings provide an initial demonstration of how a person’s behavior in a given game

depends on the ensemble of strategic situations that the person faces. In doing so, they call into

question the focus on isolated games in most theoretical and empirical analyses. This critique

extends to mechanism design, which assumes that incentives can be considered independent of the

broader behavioral context.

Evidence of behavioral spillovers may shed light on policy choices. Decades of social science

research show that policies geared toward the political and economic improvement of develop-

ing nations often fail. Interventions that appear efficient on paper play out quite differently on the

ground (Easterly 2006). Near identical institutions implemented in multiple contexts often produce

divergent outcomes. Putnam (1993) chronicles the disparate performance of an identical institu-

tional innovation in northern and southern Italy. To explain this unpredictability of institutional

interventions, many scholars have focused on belief systems and trust relationships and how they

support or fail to support incentive structures (e.g. North (2005), Grief (2006), Putnam (1993)).

The core argument of these papers is that institutions support multiple equilibria, some good and

some bad, and that the good equilibria require particular beliefs.

Our findings suggest an alternative explanation, namely that people possess behavioral reper-

toires that they carry from one strategic situation to the next. Behavior in one context affects

behavior in others (Gigerenzer and Selten (2002), Page (2007), Bednar and Page (2007)). It fol-

lows that how an institution fares in any particular setting should depend on those repertoires. The

behavioral repertoire approach complements the belief based approach when thinking about policy.

An institutional intervention may require high levels of trust to be successful. It may also require

particular behavioral skills: the ability to bargain, or the ability to enact second order punishment.

Behaviors in the community, in addition to beliefs about trustworthiness, may be relevant data in-

forming evaluations of institutional performance. Behaviors take on even greater importance when

designing institutions. If individuals apply existing behaviors to new contexts, then institutions

can benefit by leveraging existing behaviors, thereby reducing behavioral uncertainty (Gilboa and

Schmeidler 1995).
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As with any laboratory experiment, our results may not translate to the larger world. Outside

the laboratory, people rely on contextual clues to behave differently in distinct situations. Thus,

people can act altruistically toward their children but competitively at work. We do not deny the

human capacity to bracket contexts and act accordingly. However, we believe that such contextual

bracketing requires cognitive effort and that, in general, people will seek out consistent behaviors

that apply across multiple settings. Thus, bracketing may pull in the opposite direction, but the

force would have to be substantial to overwhelm the drive toward consistency we see here. A

second potential criticism pertains to the simplicity of the games we consider. Would these effects

continue to hold for more complex games embedded in a richer institutional context? We cannot

answer that question with this set of experiments. But the fact that the game ensembles can in-

fluence behaviors in individual games in a relatively sterile laboratory would seem to suggest that

such effects might also exist in the real world. Furthermore, recent multiple game experiments

using more complex games demonstrate cognitive load and behavioral spillover effects largely

consistent with our findings (e.g., Savikhin and Sheremeta 2010, Cason, Savikhin and Sheremeta

2010).

To summarize, these experiments demonstrate that significant ensemble effects emerge in the

laboratory setting. And, more importantly, these ensemble effects can be predicted based upon the

the attributes of the games. Outcome level and strategy level analysis show consistent ensemble

effects. Subjects with incentives to behave cooperatively (resp. selfishly) in one game, tend to

behave similarly in another game even if that behavior is neither efficient nor an equilibrium. For

example, the creation of a cooperative culture may be advanced by creating multiple institutions

that create strong incentives for cooperation, so that cooperative behavior can then spill over into

other contexts. This insight—that the ensemble matters—suggests that when we consider the

performance of an institution, we should broaden our interpretive lens to include behaviors as well

as outcomes, that we should not see behaviors as mere handmaidens of equilibria. Institutions

induce behaviors that accumulate within individuals forming what we call behavioral repertoires.

These repertoires become a part of what is more broadly defined as institutional context, be it

organizational, ethnic, or national, and they, in turn, may well influence outcomes in other contexts.
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Appendix. Experimental Instructions

We present the instructions for the (PD, WA) ensemble. Instructions for other ensemble treat-

ments are identical except for the specific game forms. Instructions for the control sessions are

standard. They are identical to the ensemble instructions except that two games and two other

participants are replaced with one game and one other participant everywhere. Hence we omit

them here.

Name: PCLAB: Total Payoff:

Introduction

• You are about to participate in a decision process in which you will play two games with two

other participants. Each game will be played with a different participant and will be played

for many rounds. This is part of a study intended to provide insight into certain features

of decision processes. If you follow the instructions carefully and make good decisions,

you may earn a considerable amount of money. You will be paid in cash at the end of the

experiment.

• During the experiment, we ask that you please do not talk to each other. If you have a

question, please raise your hand and an experimenter will assist you.

Procedure

• Matching: At the beginning of the experiment, you will be matched randomly with two

other participants, both of whom will be your matches for the entire experiment. You will be

matched with these same two people in all rounds. You will play a different game with each

of these people.

• Roles: Throughout the game, you will be designated as the “row” player and your matches

will be the “column” players. You will be a “row” player in all rounds, and your matches

will be “column” players in all rounds

• Actions: In each round, you and your two matches will simultaneously and independently

make decisions in two different games. One is the left game and the other is the right game.
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You will play the left game with one of your matches (Left Game Match) and play the right

game with the other match (Right Game Match). In each game, the row player (you) will

click either the Top (A) or the Bottom (B) button. The column player (your Left or Right

Game Match) will choose either the Left (A) or Right (B) button. These choices determine

which part of the matrix is relevant (Top Left, Top Right, Bottom Left, Bottom Right).

• Interdependence: A player’s earnings depend on the decision made by the player and on the

decision made by his or her two matches as shown in the matrix below. In each cell, the row

player’s payoff is shown in red and the column player’s payoff is shown in blue.

Column Player Column Player
Left (A) Right (B) Left (A) Right (B)

Row Top (A) 7, 7 2,10 Top (A) 7, 7 4,11
Player Bottom (B) 10,2 4,4 Bottom (B) 11,4 5, 5

For example, if the row player (you) chooses Top (A) and the column player (your left game

match) chooses Right (B) in the left game, then the row player (you) will get 2 points, while

the column player (your left game match) will get 10 points in this game. Meanwhile, if

the row player (you) chooses Bottom (B) and the column player (your right game match)

chooses right (B) in the right game, then the row player (you) will get 5 points, and the

column player (your right game match) will also get 5 points in this game. So as the row

player in both games, you will get 7 points in this round totally.

• Rounds: You will first play the two games for 200 rounds. After round 200, whether the

games will continue to the next round depends on the “throw of a die” that is determined by

the computer’s random number generator. At the end of each round after round 200, with

90% chance, the games will continue to the next round. With 10% chance, the games stop.

• Earnings: Your earnings are determined by the choices that you and your two matches make

in every round. Your total earning is the sum of your earnings in all rounds.

The exchange rate is $1 for 100 points.

You can round up your total earning to the next dollar. For example, if you earn $15.23, you

can round it up to $16.
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• History: In each round, your and your two matches’ decisions in all previous rounds will be

displayed in a history window.

We encourage you to earn as much money as you can. Do you have any questions?
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Figure 5: Automata Representation of Repeated Game Strategies
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