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Abstract

When does a common group identity improve efficiency in coordination games? To answer this
question, we propose a group-contingent social preference model and derive conditions under
which social identity changes equilibrium selection by changing the potential function. We test our
predictions in the minimum effort game in the laboratory under parameter configurations which
lead to an inefficient low-effort equilibrium for subjects with no group identity. Conversely, for
those with a salient group identity, consistent with our theory, we find that learning leads to in-
group coordination to the efficient high-effort equilibrium. Additionally, our theoretical framework
reconciles empirical findings from a number of coordination game experiments.
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1 Introduction
Today’s workplace is comprised of increasingly diverse social categories, including various racial,
ethnic, religious and linguistic groups. Within this environment, many organizations face competi-
tion among employees in different departments, as well as conflicts between permanent employees
and contingent workers (temporary, part-time, seasonal and contracted employees). While a di-
verse workforce contains a variety of abilities, experiences and cultures which can lead to innova-
tion and creativity, diversity may also be costly and counterproductive if members of work teams
find it difficult to integrate their diverse backgrounds and work together (Alesina and Ferrara 2005).
This issue of integrating and motivating a diverse workforce is thus an important consideration for
organizations. One method to achieve such integration is to develop a common identity. In prac-
tice, common identities have often been used to create common goals and values. For example,
Nike founder Phil Knight and many of his employees have tattoos of the Nike “swoosh” logo
on their left calves as a sign of group membership (Camerer and Malmendier 2007). To create
a common identity and to teach individuals to work together towards a common purpose, com-
panies have attempted various creative team-building exercises, such as simulated space missions
where the crew works together to overcome malfunctions, perform research and keep life support
systems operational while navigating through space (Ball 1999), and rowing competitions where
“each person in the boat is totally reliant on other team members and therefore must learn to trust
and respect the unique skills and personalities of the whole team.” (Horswill 2007) Given the im-
portance of building a common identity, social identity research offers insight into the potential
value of creating a common ingroup identity to override potentially fragmenting identities.

The large body of empirical work on social identity throughout the social sciences has estab-
lished several robust findings regarding the development of a group identity and its effects. Most
fundamentally, the research shows that group identity affects individual behavior. For example,
Tajfel, Billig, Bundy and Flament (1971) find that group membership creates ingroup enhancement
in ways that favor the ingroup at the expense of the outgroup. Additionally, many experiments in
social psychology identify factors which enhance or mitigate ingroup favoritism. Furthermore, as
a person derives self-esteem from the group membership she identifies with (McDermott forth-
coming), salient group identity induces people to conform to stereotypes (Shih, Pittinsky and
Ambady 1999).

Since the seminal work of Akerlof and Kranton (2000), there has been increased interest in
social identity research in economics, yielding new insights into phenomena which standard eco-
nomic analysis on individual-level incentives proves unable to explain. Social identity models
have been applied to the analyses of gender discrimination, the economics of poverty and social
exclusion, the household division of labor (Akerlof and Kranton 2000), the economics of education
(Akerlof and Kranton 2002), contract theory (Akerlof and Kranton 2005), economic development
(Basu 2006), public goods provision (e.g., Croson, Marks and Snyder (2008), Eckel and Grossman
(2005)), and the political economy of income redistribution (Shayo forthcoming).

In their preference-based models, Akerlof and Kranton (2000) propose a neoclassical utility
function, where identity is associated with different social categories and exogenous behavioral
prescriptions. In these models, deviations from the prescription cause disutility.1 When this utility
function is applied to contract theory (Akerlof and Kranton 2005), an agent who identifies with the
firm is assumed to have a behavioral prescription to exert high effort, while an agent who does not

1Benabou and Tirole (2007) present an alternative theoretical framework, which emphasizes the management of
beliefs and the cognitive mechanisms leading to identity investments.
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is assumed to have a behavioral prescription to exert low effort. For wider applications of pref-
erences incorporating social identity, it is important to endogenize such behavioral prescriptions.
In his presidential address to the American Economic Association, Akerlof (2007) proposes that
“the incorporation of such endogeneity is the next step” in social identity research. One way to
endogenize such behavioral norms is to include social identity as a part of an individual’s group-
contingent social preference. We are aware of three such extensions of social preference models.
First, Basu (2006) uses an altruism model where the weight on the other person’s payoff is in-
dependent of payoff distributions to derive conditions for cooperation in the Prisoner’s Dilemma
game. In comparison, McLeish and Oxoby (2007) and Chen and Li (2009) both incorporate so-
cial identity as part of an individual’s difference-averse social preference, extending the piece-wise
linear models of Fehr and Schmidt (1999) and Charness and Rabin (2002). In this paper, we ap-
ply the group-contingent social preference model to the class of potential games with multiple
Pareto-ranked equilibria.

This class of games is a challenging domain for economic models of social identity, as “pre-
dicting which of the many equilibria will be selected is perhaps the most difficult problem in game
theory” (Camerer 2003). Using a group-contingent social preference model, we derive the con-
ditions under which social identity changes equilibrium selection in the class of potential games
with multiple Pareto-ranked equilibria, which includes the minimum effort games of Van Huyck,
Battalio and Beil (1990). We then use laboratory experiments to verify the theoretical predictions.
The results show that, under parameter configurations where learning would result in convergence
to the inefficient, low-effort equilibrium (Goeree and Holt 2005), an induced salient group identity
can lead to ingroup coordination to the efficient high-effort equilibrium. Thus, our work demon-
strates that modeling social identity as group-contingent social preference endogenizes the behav-
ioral prescriptions described in the Akerlof and Kranton model. Furthermore, we show that, at
least for the class of potential games, social identity changes equilibrium behavior by changing the
potential function.

Our findings contribute to the experimental economics literature, where the fact that social
norms, group identity or group competition can lead to a more efficient equilibrium has been
demonstrated in the context of the minimum effort game (e.g., Weber (2006), Bornstein, Gneezy
and Nagel (2002)), the provision point mechanism (Croson et al. 2008) and the Battle of Sexes
(Charness, Rigotti and Rustichini 2007). Our theoretical model provides a unifying framework for
understanding these experimental results.

The rest of the paper is organized as follows. Section 2 reviews the main experimental and
theoretical results on the minimum effort games. In Section 3, we present the theory of potential
games, incorporate social identity into the potential function, and derive theoretical predictions.
In Section 4, we present our experimental design. Section 5 presents our hypotheses. Section 6
presents the analysis and results. Section 7 uses the potential games framework to reconcile the
experimental findings of the effects of groups and group identity on equilibrium selection. Section
8 concludes.

2 The Minimum Effort Coordination Game
The minimum effort game is among the most well known of coordination games, with multiple
Pareto-ranked equilibria. Rather than exhaustively reviewing the large experimental economics
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literature on coordination games,2 we summarize the main findings for the minimum effort games,
leaving a more thorough discussion of the literature on the effects of social identity and group
competition on equilibrium selection to Section 7.

The general form of the payoff function for a player i in an n-person minimum effort game is
as follows:

πi(x1, . . . , xn) = a ·min {x1, . . . , xn} − c · xi + b, (1)

where a, c and b are real, non-negative constants, and xi ≥ 0 is the effort provided by player i. This
game has multiple Pareto-ranked pure-strategy Nash equilibria. Specifically, any situation where
every player provides the same effort level is a Nash equilibrium, and any equilibrium where the
chosen effort is higher Pareto-dominates any equilibrium where the chosen effort is lower.

The most widely-cited paper in coordination games is the experimental test of the minimum
effort game by Van Huyck et al. (1990), frequently shortened to VHBB. They conduct three treat-
ments, all of which use the parameters a = 0.2 and b = 0.6. In the first treatment, c = 0.1 and the
number of players in each game, n, ranges from 14 to 16. Subjects could choose any integer effort
level from 1 to 7. After 10 rounds of this game, the subjects mostly converge to providing the
lowest effort level of 1. In the second treatment, when n is reduced to 2, VHBB find that subjects
converge to providing the highest effort level of 7. In a third treatment, n again ranges from 14
to 16, but the cost of providing effort is reduced to zero (c = 0). In this case, where offering the
highest effort is a weakly dominant strategy for each subject, VHBB find that the subjects again
converge to providing the highest effort level. These results suggest that whether group members
exert high effort is sensitive to group size (n), the marginal benefit of the public good (a), and the
individual marginal cost of effort (c).

Two streams of theoretical work explore the observed equilibria from the order-statistic coor-
dination experiments, with the minimum effort game as a special case. In the first, Crawford and
coauthors use learning dynamics, including evolutionary dynamics (Crawford 1991) and history-
dependent adaptive learning models (Crawford 1995, Crawford and Broseta 1998) to track behav-
ior in the experimental data. In comparison, Monderer and Shapley (1996) note that the minimum
effort game is a potential game,3 and that the empirical regularities from VHBB are consistent with
the maximization of the potential function. Intuitively, the potential maximizing equilibrium has
the largest basin of attraction under adaptive learning dynamics. Thus, both streams of theoretical
work use learning dynamics to predict which equilibrium will be selected empirically.

While maximization of the standard potential yields a Nash equilibrium, experimental data are
often noisy and better explained by statistical equilibrium concepts such as the quantal response
equilibrium (McKelvey and Palfrey 1995). Motivated by this consideration, Anderson, Goeree and
Holt (2001) derive the logit equilibrium prediction for the minimum effort game and show that the
logit equilibrium maximizes the stochastic potential of the game. To test the theoretical predictions
of the logit equilibrium, Goeree and Holt (2005) design a version of the minimum effort game with
a continuous strategy space, where the subjects can choose any real effort level from 110 to 170.
They use the parameters a = 1, b = 0, n = 2, i.e.,

πi(xi, xj) = min {xi, xj} − c · xi. (2)

2We refer the reader to the excellent surveys of Ochs (1995) and chapter 7 of Camerer (2003) for an overview of
the literature.

3We introduce potential games in Section 3
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With these parameter values, the authors show that, consistent with the logit equilibrium prediction,
when c = 0.25 subjects converge to an effort level close to 170, and when c = 0.75 subjects
converge to an effort level close to 110. Our experimental design, described in Section 4, follows
Goeree and Holt’s, with the addition of induced group identities to test the effect of group identity
on equilibrium selection.

3 Potential Games
Both theoretical and experimental studies of coordination games point to the importance of learn-
ing dynamics in equilibrium selection. Thus, we consider the dynamics of subjects’ effort choices
as the game is played repeatedly with different matches. When incorporating dynamic learning
models, it is useful to examine the potential function of the game, as described by Monderer and
Shapley (1996) and defined below. As Monderer and Shapley note, the minimum effort game is a
potential game, in that it yields a potential function. One interesting property of potential games
is that several learning algorithms converge to the argmax set of the potential, including a log-
linear strategy revision process (Blume 1993), myopic learning based on a one-sided better reply
dynamic and fictitious play (Monderer and Shapley 1996). Under these learning dynamics, the
potential-maximizing equilibrium has the largest basin of attraction. It is for this reason that we
study the potential function of the minimum effort game.

Monderer and Shapley (1996) formally define potential games as games that admit a potential
function P such that:

πi(xi, x−i) ≥ πi(x
′

i, x−i) ⇔ P (xi, x−i) ≥ P (x
′

i, x−i), ∀i, xi, x
′

i, x−i. (3)

For differentiable games, P is a potential if and only if:

∂πi(xi, x−i)

∂xi
=
∂P (xi, x−i)

∂xi
, ∀i, xi, x−i.

When the payoff functions are twice continuously differentiable, Monderer and Shapley (1996)
present a convenient characterization of potential games. That is, a game is a potential game if and
only if the cross partial derivatives of the utility functions for any two players are the same, i.e.,

∂2πi(xi, x−i)

∂xi∂xj
=
∂2πj(xj, x−j)

∂xi∂xj
, ∀i, j ∈ N.

As noted by Monderer and Shapley (1996), the minimum effort game with a payoff function
defined by Equation (1) is a potential game with the potential function:

P (x1, . . . , xn) = a ·min {x1, . . . , xn} − c
n∑
i=1

xi. (4)

In most previous experiments using the minimum effort game, subjects converge or begin
to converge towards the equilibrium that maximizes the potential function.4 Let the threshold
marginal cost be c∗ = a/n. When c > c∗, subjects converge to the least efficient equilibrium.
Examples of this convergence include the VHBB treatment with parameters a = 0.2, c = 0.1, and

4We discuss the representative experiments and exceptions in Section 7.

5



14 ≤ n ≤ 16, and the c = 0.75 treatment in Goeree and Holt (2005). When c < c∗, subjects
converge to the Pareto dominant equilibrium. Examples of this convergence include the VHBB
treatment with c = 0, and the c = 0.25 treatment in Goeree and Holt (2005).

We next incorporate social identity into players’ social preferences to demonstrate how iden-
tity can change equilibrium selection by changing the potential function. Let g ∈ {I, O,N} be
an indicator variable denoting whether the other player is an ingroup, outgroup or group-neutral
match.

We use a group-contingent social preference model similar to those of Basu (2006), McLeish
and Oxoby (2007) and Chen and Li (2009), where an agent maximizes a weighted sum of her own
and others’ payoffs, with weighting dependent on the group categories of the other players. In the
n-player case, player i’s utility function is a convex combination of her own payoff and the average
payoffs of the other players,5

ui(x) = αgi · π̄−i + (1− αgi ) · πi(x) = min {x1, · · · , xn} − c · [αgi · x̄−i + (1− αgi ) · xi] , (5)

where αgi ∈ [−1, 1] is player i’s group-contingent other-regarding parameter, π̄−i =
∑

j 6=i πj(x)/(n−
1) is the average payoff of the other players, and x̄−i =

∑
j 6=i xj/(n−1) is the average effort of the

other players. Based on estimations of αgi from Chen and Li (2009), we expect that αIi > αNi > αOi .
The transformed game with a utility function defined by Equation (5) is a potential game, which
admits the following potential function,

P (x1, · · · , xn) = min {x1, · · · , xn} − c
n∑
i=1

(1− αgi )xi. (6)

Note that the Nash equilibria for the transformed game defined by (5) remain the same as those
in the original minimum effort game in Goeree and Holt (2005), as long as c < 1

1−αg
i
, for all i.

We now use this formulation to derive a set of comparative statics results, which underscore the
effects of group identity on equilibrium selection and form the basis for our experimental design.
We present the propositions in this section and relegate all proofs to Appendix A.

Proposition 1. Ingroup matching increases the threshold marginal cost, c∗, compared to outgroup
or group-neutral matching. Furthermore, a more salient group identity increases c∗.

Proof: See Appendix A.

Proposition 1 implies that, under parameter configurations where the theory predicts conver-
gence to a low-effort equilibrium when players have no defined group identity, an induced or en-
hanced group identity can raise the threshold marginal cost level and thus lead to the selection of a
high-effort equilibrium. In our experimental design, we use the parameter configurations in Goeree
and Holt (2005) where the marginal cost of effort is above the threshold, i.e., c > c∗(n, {αNi }ni=1),
and where play converges close to the low-effort equilibrium, and investigate whether induced
group identity can lead to convergence to the high-effort equilibrium.

5Key social preference models include Rabin (1993), Levine (1998), Fehr and Schmidt (1999), Bolton and Ock-
enfels (2000), Charness and Rabin (2002), Falk and Fischbacher (2006), and Cox, Friedman and Gjerstad (2007),
etc. Chen and Li (2009) extend the linear model of Charness and Rabin (2002) to incorporate social identity, while
Chen and Li (2008) estimate a CES function of social identity and social preferences. We use a linear model here for
simplicity.
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While maximization of the standard potential yields a Nash equilibrium, experimental data are
often noisy and better explained by statistical equilibrium concepts. Motivated by this considera-
tion, Anderson et al. (2001) derive the logit equilibrium prediction for the minimum effort game
and show that the predicted average efforts are remarkably close to the data averages in the final
periods.

We now derive the logit equilibrium predictions for the transformed minimum effort game
with a group-dependent other-regarding utility function as defined by Equation (5). Based on
the standard assumption of the logit model that payoffs are subject to unobserved shocks from
a double-exponential distribution, player i’s probability density is an exponential function of the
expected utility, uei (x),

fi(x) =
exp(λuei (x))∫ x̄

x
exp(λuei (s))ds

, i = 1, · · · , n,

where λ > 0 is the inverse noise parameter and higher values correspond to less noise. As λ →
+∞, the probability of choosing an action with the highest expected utility goes to 1. As λ → 0,
the density function becomes uniform over its support and behavior becomes random.

The logit equilibrium is a probability density over effort levels. As the characterization of the
logit equilibrium for the transformed minimum effort game follows from Anderson et al. (2001),
we summarize its properties in the following proposition without presenting the proof.

Proposition 2. There exists a logit equilibrium for the extended minimum effort game with social
identity. Furthermore, the logit equilibrium is unique and symmetric across players.

Using symmetry and further assuming αi = α for all i, we first derive the equilibrium distribu-
tion of efforts.

Proposition 3. The equilibrium effort distribution for the logit equilibrium is characterized by the
following first-order differential equation:

f(x) = f(x) +
λ

n
[1− (1− F (x))n]− c(1− α)λF (x). (7)

Proof: See Appendix A.

Equation (7) plays a key role in both our comparative statics results and our data analysis. We
compute the logit equilibrium effort distribution in Section 4 as a benchmark for the final-rounds
analysis in Section 6. Anderson et al. (2001) prove that increases in the marginal cost, c, or the
number of players, n, result in lower equilibrium effort in the sense of first-order stochastic dom-
inance. Similarly, using (7), we next characterize the effect of group-contingent social preference
on equilibrium selection.

Proposition 4. Increases in the group-contingent social preference parameter, α, result in higher
equilibrium effort (in the sense of first-order stochastic dominance).

Proof: See Appendix A.

If players are more altruistic towards their ingroup members than towards outgroup members,
i.e., αI > αN > αO, Proposition 4 implies that the distribution of effort under ingroup match-
ing first-order stochastically dominates that under group-neutral matching, which, in turn, first-
order stochastically dominates that under out-group matching, i.e., F I(x) ≤ FN(x) ≤ FO(x).
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Consequently, the average equilibrium effort is the highest with ingroup matching, followed by
group-neutral and then outgroup matching.

Lastly, as a limit result, we note that the equilibrium density converges to a point mass as the
noise goes to zero, which coincides with the predictions of potential maximization.

Proposition 5. When the inverse of the noise parameter, λ, goes to infinity, the equilibrium density
converges to a point mass at the maximum effort x̄ if c < c∗, at (x̄ − x)/n if c = c∗, and at the
minimum effort x if c > c∗, where c∗ = 1/[n(1− α)].

Proof: See Appendix A.

Together, Propositions 1, 3, 4 and 5 form the basis for our experimental design and hypotheses,
which we present in the next two sections.

4 Experimental Design
We design our experiments to determine the effects of group identity on equilibrium selection,
to test the comparative statics results from Section 3, and to investigate the interactions of group
identity and learning. We now present the economic environments and our experimental procedure.

4.1 Economic Environments
To study equilibrium selection, we use the same payoff parameters as those of the two-person
treatment in Goeree and Holt (2005). However, since our main interest is to investigate the effects
of group identity on equilibrium selection, we induce group identities in the lab before the subjects
play the minimum effort game. Furthermore, we run longer repetitions to study the effects of
learning dynamics.

Within our experiments, the payoff function, in tokens, for a subject i matched with another
subject j is the following:

πi(xi, xj) = min {xi, xj} − 0.75 · xi, (8)

where xi and xj denote the effort levels chosen by subjects i and j, respectively; each can be any
number from 110 to 170, with a resolution of 0.01. By Equation (4), the threshold marginal cost
of effort, c∗, is equal to 0.5. Therefore, absent of group identities, we expect subjects to converge
close to the lowest effort level, 110, which is confirmed by Goeree and Holt (2005).

With group-contingent social preferences, however, the potential function for this game be-
comes

P (xi, xj) = min {xi, xj} − 0.75 · [(1− αgi )xi + (1− αgj )xj], (9)

where αgi is the weight that a subject places on her match’s payoff. Proposition 5 implies that,
in the limit with no noise, this potential function is maximized at the most efficient equilibrium if
αg > 1

3
, and at the least efficient equilibrium if αg < 1

3
. Proposition 4 implies that, with sufficiently

strong group identities, ingroup matching leads to a higher average equilibrium effort than either
outgroup matching or control (non-group) matching.
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4.2 Experimental Procedure
A key design choice for our experiment is whether to use participants’ natural identities, such as
race and gender, or to induce their identities in the laboratory. Both approaches have been used in
lab settings. However, because of the multi-dimensionality of natural identities which might lead
to ambiguous effects in the laboratory, we induce identity, which gives the experimenter greater
control over the participant’s guiding identity.

Our experiment follows a 2×3 between-subject design. In one dimension, we vary the strength
of group identity, with near-minimal-group and enhanced treatments. Our near-minimal-group
treatment is so named because it implements groups in a way that is nearly minimal. The criteria
for minimal groups (Tajfel and Turner 1986) are as follows:

1. Subjects are randomly assigned to groups based on a trivial task.

2. Subjects do not interact.

3. Group membership is anonymous.

4. Subjects’ choices do not affect their own payoffs.

Our near-minimal treatments achieve the first three of these four criteria, as subjects are assigned
to groups based on the random choice of an envelope with a certain colored card inside, and are not
allowed to speak to one another or open their envelopes in public. The fourth criterion cannot be
realistically achieved in most economics experiments since subjects’ monetary payoffs are usually
tied to their choices. Since this criterion is not met, we refer to these treatments as near minimal.

Past experimental research finds that the extent to which induced identity affects behavior de-
pends on the strength or salience of the social identity. For example, Eckel and Grossman (2005)
use induced team identity to study the effects of identity strength on cooperative behavior in a
repeated VCM game. They find that “just being identified with a team is, alone, insufficient to
overcome self-interest.” However, actions designed to enhance team identity, such as group prob-
lem solving, contribute to higher levels of team cooperation. Similar findings on the effect of group
salience are reported in Charness et al. (2007). In our near-minimal treatments, subjects are first
randomly assigned to groups, and then play the minimum-effort game for 50 rounds. By contrast,
in our enhanced treatments, after being randomly assigned to groups, subjects are asked to solve a
problem about a pair of paintings. They can use an online chat program to discuss the problem with
other members of their group. This problem-solving stage is designed to enhance group identity.

To minimize experimenter demand effects, we use a between-subject design. For treatment
sessions, each subject is in either an ingroup session where she is always matched with a member
of her own group, or an outgroup session where she is always matched with a member of the other
group. To control for the time between group assignment and the minimum effort games, we use
two different controls, one for the near-minimal treatments, and one for the enhanced treatments.6

In the former, subjects play the minimum effort game without being assigned to groups. In the
latter, each subject is asked to solve the same painting problem on their own, without the online
chat.

Our experimental process is summarized as follows:

6Chen and Li (2009) note that group effect induced by categorization deteriorates over time in their experiment.
Therefore, it is important to control for the time between categorization and the minimum effort game in the treatment
and the corresponding control.
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1. Random assignment to groups: Every session has twelve subjects. In the treatment sessions,
each subject randomly chooses an envelope which contains either a red or a green index
card with a subject ID number on it. The subject is assigned to the Red or the Green group
based on this index card; each group has six members. In the control sessions, there is no
assignment into different groups. Instead, each subject randomly chooses an envelope which
contains a white index card with a subject ID number on it.

2. Problem-solving: In the enhanced treatments and their corresponding control sessions, the
subjects are asked to solve a problem. First, subjects are given five minutes to review five
pairs of paintings each of which contains one painting by Paul Klee and one painting by
Wassily Kandinsky. The subjects are also given a key indicating which of the two artists
painted each of the ten paintings.7 Next, subjects are shown two final paintings, each of
which was painted by either Klee or Kandinsky. The subjects are then asked to determine,
within ten minutes, which artist painted each of these final two paintings.8 In the treatment
sessions, each subject is allowed to use an online chat program to discuss the problem with
other members of her own group. A subject is not required to give answers that conform to
any decision reached by her group, and she is not required to contribute to the discussion.
In comparison, subjects in the corresponding control sessions are given the same amount of
time to solve the painting problem on their own, without the online chat option. For each
correct answer, a subject earns 350 tokens (the equivalent of $1).9 Note that the near-minimal
treatments and the corresponding control sessions do not contain this stage.

3. Minimum effort game: Each subject plays the minimum effort game 50 times. For each
round, each subject is randomly re-matched with one other subject in the same session. In
the ingroup treatment sessions, subjects are matched only with members of their own group.
In outgroup treatment sessions, subjects are matched only with members of the other group.
In the control sessions, there are no groups, so subjects can be matched with any other person
in the same session.

4. Survey: At the end of each experimental session, subjects fill out a post-experiment survey
which contains questions about demographics, past giving behavior, strategies used during
the experiment, group affiliation, and prior knowledge about the artists and paintings.

[Table 1 about here.]

Table 1 summarizes the features of the experimental sessions. In each of the four treatments
and two corresponding controls, we run three independent sessions, each with 12 subjects. Overall,

7All paintings in this experiment are the same as those used in Chen and Li (2009). The five pairs of paintings
are: 1A Gebirgsbildung, 1924, by Klee; 1B Subdued Glow, 1928, by Kandinsky; 2A Dreamy Improvisation, 1913, by
Kandinsky; 2B Warning of the Ships, 1917, by Klee; 3A Dry-Cool Garden, 1921, by Klee; 3B Landscape with Red
Splashes I, 1913, by Kandinsky; 4A Gentle Ascent, 1934, by Kandinsky; 4B A Hoffmannesque Tale, 1921, by Klee;
5A Development in Brown, 1933, by Kandinsky; 5B The Vase, 1938, by Klee.

8Painting #6 is Monument in Fertile Country, 1929, by Klee, and Painting #7 is Start, 1928, by Kandinsky.
9In the enhanced treatment sessions, 83.3% of the participants provided correct answers to both paintings, 9.7%

provided one correct answer, and 6.9% provided zero correct answers. In the enhanced control sessions, 66.7% of the
participants provided correct answers to both paintings, 19.4% provided one correct answer, and 13.9% provided zero
correct answers. The average number of correct answers is significantly higher in the enhanced treatment than in the
enhanced control sessions (p = 0.048, one-tailed t-test).
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18 independent computerized sessions were conducted in the Robert B. Zajonc Laboratory at the
University of Michigan between October 2007 and May 2008, yielding a total of 216 subjects.
All sessions were programmed in z-Tree (Fischbacher 2007). Nearly all of our subjects were
drawn from the student body of the University of Michigan.10 Subjects were allowed to participate
in only one session. Each enhanced session lasted approximately one hour, whereas each near-
minimal session lasted about forty minutes. The exchange rate was set to 350 tokens for $1.
In addition, each participant was paid a $5 show-up fee. Average earnings per participant were
$10.82 for those in the near-minimal sessions and $11.69 for those in the enhanced sessions. The
experimental instructions are included in Appendix B, while the survey and response statistics are
included in Appendix C. Data are available from the authors upon request.

5 Hypotheses
In this section, we present our hypotheses regarding subject effort in the minimum effort game as
related to group identity. Our general null hypothesis is that behavior does not differ between any
pair of treatments.

HYPOTHESIS 1 (Effect of Groups on Effort Choices: Ingroup vs. Control). The average effort
level in the ingroup treatment is greater than that in the control sessions: x̄I > x̄N .

HYPOTHESIS 2 (Effect of Groups on Effort Choices: Ingroup vs. Outgroup). The average effort
level in the ingroup treatment is greater than that in the outgroup treatment: x̄I > x̄O.

HYPOTHESIS 3 (Effect of Groups on Effort Choices: Control vs. Outgroup). The average effort
level in the control sessions is greater than that in the outgroup treatment: x̄N > x̄O.

These hypotheses are based on Proposition 4. As αg increases, the stochastic choice function
shifts the probability weight from lower effort to higher effort. Since we expect αI > αN > αO,
we expect subjects in the ingroup sessions to choose higher effort than those in control sessions,
and subjects in the control sessions to choose higher effort than those in the outgroup sessions.

Furthermore, when we enhance the groups, we expect the effect on αg to be more extreme,
so αEI > αMI and αEO < αMO, where EI (MI) stands for “enhanced (near-minimal) ingroup”
and EO (MO) stands for “enhanced (near-minimal) outgroup.” Thus, we obtain the following
hypotheses on the effect of identity salience.

HYPOTHESIS 4 (Effect of Identity Salience on Effort Choices: Ingroup). The average effort
level in the enhanced ingroup treatment is greater than that in the near-minimal ingroup treatment:
x̄EI > x̄MI .

HYPOTHESIS 5 (Effect of Identity Salience on Effort Choices: Outgroup). The average effort
level in the enhanced outgroup treatment is less than that in the near-minimal outgroup treatment:
x̄EO < x̄MO.

An additional measure of interest in our experiment is efficiency. We define a normalized
efficiency measure following the convention in experimental economics:

Efficiency =
Total Payoff - Minimal Payoff

Maximal Payoff - Minimal Payoff
,

10One subject was from Eastern Michigan University, and one subject was not affiliated with a school.
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where Total Payoff is the total amount earned by two subjects in a match; Minimal Payoff (10) is
the minimum possible total amount that can be earned between two subjects in a match, achieved
if one subject chooses an effort of 110, and the other chooses an effort of 170; and Maximal Payoff
(85) is the maximum possible total amount that can be earned between two subjects in a match,
achieved if both subjects choose an effort of 170. With this definition, efficiency can be any value
from 0 to 1, with 0 denoting the case where subjects earn the minimum possible total payoff, and
with 1 denoting the case where subjects earn the maximum possible total profit.

We use the equilibrium distribution described in Equation (7) to compute the expected effort
and efficiency for different values of α. For each distribution, we assume that λ = 0.125, the value
estimated by Goeree and Holt (2005). Summary statistics of this distribution for various values of
α are included in Table 2.

[Table 2 about here.]

This table shows that the expected efficiency depends non-monotonically on the exact level of
α. As α increases from -1, the expected efficiency decreases until α reaches 0, then increases until
α reaches 1. Given the above definition of efficiency, this behavior is expected. That is, at low
values of α, subjects mostly give low effort. This results in a medium level of efficiency. At high
values of α, subjects give high effort, resulting in a high level of efficiency. The lowest level of
efficiency should be achieved when subjects giving low effort are paired with subjects giving high
effort. This occurs more frequently when α is not extreme.

6 Results
In this section, we first present our main results for the effects of group identity on equilibrium
selection. We then present our analysis of the interaction of learning and group identity.

Several common features apply throughout our analysis and discussion. First, standard errors
in the regressions are clustered at the session level to control for the potential dependency of
decisions across individuals within a session. Second, we use a 5% statistical significance level as
our threshold (unless stated otherwise) to establish the significance of an effect.

6.1 Group Identity and Effort
In this experiment, we are interested in whether social identity increases chosen effort. Figure 1
presents the minimum, median (solid lines) and maximum efforts in the near-minimal (top panel)
and enhanced (bottom panel) group treatments.

[Figure 1 about here.]

Our first observation is that the time-series effort levels in the control sessions move towards
the lowest effort, with a fairly widespread distribution in round 50. This is consistent with the
prediction of the stochastic potential theory and replicates the findings from the two-person, high-
cost treatment in Goeree and Holt (2005).11 However, when group identity is induced, 8 out of 12

11Using two-sided Kolmogorov-Smirnov tests of the equality of distributions for last round choices, we find that the
distribution of choices in our control sessions is not significantly different from that in the corresponding treatment in
Goeree and Holt (2005) (p = 0.170, two-sided).
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sessions show convergence towards the highest effort. In particular, all 3 sessions of the enhanced-
ingroup treatment converge towards the highest effort. Group identity also seem to increase the
effort level in the near-minimal treatments, but the effects are not as strong. We next use random-
effects OLS regressions to investigate the significance of the observed patterns.

[Table 3 about here.]

In Table 3, we present two random-effects OLS regressions, one with and one without demo-
graphic variables included, with clustering at the session level. The dependent variable for these
two regressions is the effort level chosen, while the independent variables for all regressions in-
clude dummy variables describing whether the subject participated in an ingroup or an outgroup
session, with the control as the omitted group. Two other independent variables included in both
regressions are the interaction terms between the matching scheme and a dummy variable for
whether the session was an enhanced session. These two independent variables allow us to test
the effect of group salience on effort level. For these regressions, we treat the two controls in our
design (one for the near-minimal and one for the enhanced sessions) as the same group of sessions.
The demographic variables include age and the following dummy variables (with omitted vari-
ables in parentheses): gender (male), race (Caucasian), marital status (single), employment status
(unemployed), number of siblings (zero siblings), expenses (self), voting history (not a voter), and
volunteer status (not a volunteer). The “expenses” variable captures the response to the question
of who in the subject’s household is responsible for the finances of the household (see Appendix
C). In Table 3, we omit some demographic variables, but none that are significant, even at the 10%
level. We summarize the results from Table 3 below.

Result 1 (Group effect on effort in near-minimal treatments). In the near-minimal sessions, par-
ticipants in the different treatments do not choose significantly different effort levels.

Support. In Table 3, the coefficients for the ingroup dummies (p = 0.217 for (1) and p = 0.407 for
(2)) and for the outgroup dummies (p = 0.160 for (1) and p = 0.290 for (2)) are not significant. A
test of equality of the ingroup and outgroup dummies yields p = 0.771 for (1), and p = 0.764 for
(2).

Result 1 indicates that, in the near-minimal treatments, subjects in different sessions make
roughly the same effort choices throughout the experiment. While the subjects in ingroup sessions
provide a slightly higher level of effort than subjects in the control sessions (by 8.82 and 5.81 units
of effort in (1) and (2), respectively), this amount is not significant. In fact, subjects in sessions
where they are paired with people not in their own group provide an amount of effort that is even
higher than that of subjects in the control sessions (10.76 and 7.89 more units, respectively). How-
ever, this difference is insignificant. Thus, this result fails to reject the null in favor of Hypotheses
1, 2, and 3 for the near-minimal treatments.

Result 2 (Group effect on effort in enhanced treatments). In the enhanced sessions, participants
in the ingroup sessions choose significantly higher effort levels than those in the control and out-
group sessions, while participants in the control and outgroup sessions do not choose significantly
different effort levels.

Support. A test that the sum of the coefficients on the ingroup dummy and ingroup-enhanced
interaction term is equal to 0 yields p < 0.0001 for (1) and p = 0.0003 for (2), while a test that the
previous sum is equal to the corresponding outgroup sum yields p = 0.023 for (1) and p = 0.009
for (2). A test that this outgroup sum is equal to 0 yields p = 0.976 for (1) and p = 0.807 for (2).
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Result 2 indicates that, in the enhanced treatments, subjects in the ingroup sessions provide
significantly higher effort than subjects in the other sessions (by 24.20 in (1) and 21.06 units of
effort in (2) compared to the control sessions, obtained by summing the coefficients on the ingroup
dummy and the ingroup-enhanced interaction term). Subjects in the outgroup sessions provide
approximately the same amount of effort compared to subjects in the control sessions (0.35 units
more in (1) and 2.62 units fewer in (2)). By Result 2, we reject the null in favor of Hypotheses
1 and 2, but we fail to reject the null in favor of Hypothesis 3 for the enhanced treatments. Both
of these results are consistent with those outlined in Brewer’s (1999) survey of social psychology
experiments relating to social identity. Brewer (1999) notes that ingroup favoritism does not have
to be mirrored by outgroup discrimination. Here, we see a significant ingroup favoritism effect
with no corresponding outgroup discrimination effect. However, this effect is only observed when
group identity is sufficiently salient.

Result 3 (Effect of group salience on effort). When groups are more salient, participants in the
ingroup sessions choose significantly higher effort levels, while those in outgroup sessions do not.

Support. In Table 3, the coefficients on the interaction terms between the ingroup dummy and the
enhanced dummy are highly significant (p = 0.001 for both (1) and (2)), while the coefficients on
the interaction terms between the outgroup dummy and the enhanced dummy are not significant
(p = 0.369 for (1) and p = 0.349 for (2)).

Result 3 shows that subjects matched with salient ingroup members are more likely to exhibit
a high effort than those matched with less-salient ingroup members (by 15.38 and 15.25 units of
effort in (1) and (2), respectively). Also, subjects matched with salient outgroup members do not
exhibit significantly less effort than subjects matched with less-salient outgroup members (they
exhibit 10.41 and 10.51 fewer units of effort in (1) and (2), respectively). Therefore, we reject the
null in favor of Hypothesis 4, but we do not reject the null for Hypothesis 5.

Overall, the effect of placing people into groups and then having them play a game with each
other is to increase their group-contingent other-regarding parameter, αgi . In the control sessions,
αgi is at its base level. In the ingroup sessions, we expect this value to increase; if the increase is
great enough, then the potential-maximizing effort choice changes from the minimum effort to the
maximum effort. In our experiments, the near-minimal ingroup sessions possibly increase αgi , but
not enough to change the potential-maximizing effort. In addition, the purpose of the enhanced
sessions is to further increase subjects’ group-contigent other-regarding parameters. The results
show that such a process increases αgi enough to also substantially increase the effort level chosen
by the participants. In Subsection 6.3, we estimate the parameter αgi together with other parameters
of the adaptive learning model described previously.

6.2 Equilibrium Play and Efficiency
[Figures 2 and 3 about here.]

In addition to examining the relation between group identity and effort, we also examine the
degree of coordination subjects exhibit in the various treatments. Figure 2 shows the frequencies
of the minimum effort levels chosen in each match for the first 10 (left column) and last 10 (right
column) periods of each session. Figure 3 shows the frequencies of “wasted” efforts exhibited
by each match for the first 10 (left column) and last 10 (right column) periods in each session.
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Here, “wasted” effort is defined as the difference in the maximum effort chosen in a match and the
minimum effort chosen in that match. Since subjects are paid only the minimum effort chosen in a
match, if a subject provides more than the minimum effort, then that subject pays more but receives
no extra benefit. This figure shows the degree of coordination that the matches exhibit. In Figure
3, matches with no wasted effort indicate subjects are in a Nash equilibrium. Conversely, matches
with high levels of wasted effort indicate subjects do not coordinate to a Nash equilibrium. For
both figures, the left columns show the first 10 periods while the right columns show the last 10
periods. The top rows show the near-minimal treatments while the bottom rows show the enhanced
treatments.

Several results can be observed from these figures. First, for the first 10 periods in the near-
minimal treatments, there is not much difference between the control, ingroup, and outgroup ses-
sions in terms of minimum effort chosen or amount of wasted effort. Furthermore, both metrics
seem to be uniformly distributed among the allowed values. In the enhanced treatments, the first
10 periods show that the subjects in ingroup sessions are more likely to give the maximum effort,
and there is a much higher frequency of little to no waste, indicating a higher degree of equilibrium
play than in the near-minimal treatments, the outgroup, or the control sessions.

However, as we move to the last 10 periods, several changes occur. First, in all treatments, the
fraction of matches that have little to no wasted effort increases greatly. As the game is repeated
50 times, subjects learn to coordinate with their matches, and are more successful in doing so than
in the first 10 periods. The most prominent difference between the near-minimal and enhanced
treatments can be observed in the minimum efforts chosen in the last 10 periods. For the near-
minimal treatments, subjects in non-control sessions are more likely to choose the highest effort
level, as both the ingroup and outgroup treatments have modes at the highest minimum effort level
of 165-170 (though the ingroup sessions also exhibit a mode at 140). In contrast, no match in the
control sessions has a minimum effort of 165-170; instead, that frequency graph has modes at 125
and 140.

With the enhanced treatments, we get a more interesting result. For the ingroup treatments, the
mode is clearly at 170. In fact, almost 60% of the matches have a minimum effort of 165-170. On
the other hand, the control and outgroup sessions exhibit very similar bimodal frequency graphs,
with many subjects choosing the lowest effort of 110 and the highest effort of 170. In the enhanced
sessions, the learning that takes place during the sessions causes the subjects to move towards
extreme effort levels, a phenomenon that is not necessarily seen in the near-minimal treatments.

We now use a probit regression to investigate the significance of the observed patterns. In Table
4, we present the results of this regression, reporting the marginal effects. The dependent variable
is a dummy variable indicating whether each pair is in an equilibrium (i.e. whether the subjects
in each pair choose the same level of effort). The independent variables are an ingroup dummy,
an outgroup dummy, an ingroup-enhanced interaction term, and an outgroup-enhanced interaction
term.

[Table 4 about here.]

The definitions of the independent variables are the same as described above for the effort
choice regressions. We summarize the results from Table 4 above.

Result 4 (Group effect on coordination). In the near-minimal sessions, matches in the ingroup,
outgroup, and control sessions coordinate to an equilibrium at about the same rate. In the en-
hanced sessions, matches in the ingroup sessions coordinate to an equilibrium significantly more
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often than subjects in the control or outgroup sessions while subjects in the outgroup sessions do
so at about the same rate as those in the control sessions. Increased group salience significantly
increases the rate of coordination in the ingroup treatment, but not in the outgroup treatment.

Support. In Table 4, neither the coefficient for the ingroup dummy (p = 0.186) nor that for the
outgroup dummy (p = 0.821) are significant. A test of equality of the ingroup and outgroup
dummies yields p = 0.270. The coefficient on the interaction term between the ingroup dummy
and the enhanced dummy is significant (p = 0.023), while the coefficient on the interaction term
between the outgroup dummy and the enhanced dummy is not significant (p = 0.918). A test that
the sum of the coefficients of the ingroup dummy and the ingroup-enhanced interaction term is
equal to 0 yields p = 0.0005, while a test that this sum is equal to the corresponding outgroup sum
yields p = 0.0162. Finally, a test that this outgroup sum is equal to 0 yields p = 0.775.

Result 4 indicates that pairs in different non-minimal treatments choose the same effort level at
about the same rate. Both the near-minimal ingroup and near-minimal outgroup sessions produce
slightly higher probabilities of matching effort (by 14% and 2% for the ingroup and outgroup
sessions, respectively), but neither increase is statistically significant. The result also shows that
pairs of salient ingroup members are significantly more likely to give equal efforts than pairs of
less-salient ingroup members (by 21%). Also, pairs of salient outgroup members are equally likely
to give equal efforts when compared to pairs of less-salient outgroup members (a 1% increase in
effort matching). Finally, the result indicates that, if we examine only the enhanced treatments,
subjects in the ingroup sessions choose the same effort more often than subjects in either the
outgroup or control sessions. While subjects in the ingroup sessions choose the highest effort
level of 170 nearly exclusively by the end of 50 periods, making the probability of obtaining an
equilibrium result more likely, subjects in the outgroup and control sessions seem unable to decide
whether to choose the lowest effort level of 110 or the highest effort level of 170 even after 50
periods. The minimum effort in each pair is 110 as often as it is 170, as shown in Figure 2. This
result generally supports the predictions of the theoretical model.

[Table 5 about here.]

Next, we examine efficiency in each treatment, as defined in Section 5. Table 5 presents the
average efficiency in each session and the overall efficiency in each treatment. While the overall
efficiency levels in the near-minimal treatments are similar, the ingroup sessions in the enhanced
treatment achieve much higher efficiency.

[Table 6 about here.]

To evaluate the statistical significance of our impressions from session averages, in Table 6,
we present a random-effects OLS regression, with standard errors clustered at the session level.
The dependent variable is the efficiency of each pair. The independent variables of the regression
are the ingroup and outgroup dummy variables, and the ingroup-enhanced and outgroup-enhanced
interaction terms.

Result 5 (Group effect on efficiency). In the near-minimal sessions, there is no significant differ-
ence in efficiency across the ingroup, outgroup and control treatments. In the enhanced sessions,
efficiency in the ingroup treatment is significantly higher than that in the control and outgroup
treatments. Increased group salience significantly increases efficiency in the ingroup treatment,
but not in the outgroup treatment.
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Support. In Table 6, neither the coefficient for the ingroup dummy (p = 0.594) nor that for the
outgroup dummy (p = 0.671) is significant. A test of equality of the ingroup and outgroup dummies
yields p = 0.392. The coefficient on the interaction term between the ingroup dummy and the
enhanced dummy is significant (p < 0.001), while the coefficient on the interaction term between
the outgroup dummy and the enhanced dummy is not significant (p = 0.978). A test that the sum
of the coefficients of the ingroup dummy and the ingroup-enhanced interaction term is equal to 0
yields p < 0.0001, while a test that this sum is equal to the corresponding outgroup sum yields
p = 0.001. Finally, a test that this outgroup sum is equal to 0 yields p = 0.779.

Result 5 shows that efficiency increases when subjects are matched with members of their
own group, but only when groups are more salient. This finding is consistent with the predictions
of the model in Table 2 (column 4), however, the predicted efficiency in Table 2, e.g., when α
approaches 1, is generally lower compared to the actual achieved efficiency, e.g., in the enhanced
ingroup treatment, in Table 5. This is because most of our subjects are able to coordinate on integer
values while the computation reported in Table 2 assumes a continuous strategy space.12 Subjects
in the enhanced ingroup sessions, by coordinating on the highest effort level, are able to achieve
much greater efficiencies than subjects in either the control or outgroup sessions. Coordination on
the lowest effort level occurs in both the control and outgroup sessions, causing them to be fairly
similar in terms of efficiency.

6.3 Learning Dynamics and Group Identity
While our reduced-form regression analysis establishes the significance of the effect of enhanced
group identity on equilibrium selection, it does not demonstrate the reason behind this effect.
In this subsection, we estimate a structural learning model and thus demonstrate the interaction
between group identity and learning. In what follows, we first examine initial round choices and
learning dynamics. We then estimate the parameters of the structural model and use these estimates
to run a simulation. Finally, we compare choices in the final rounds with the predictions of our
logit equilibrium model with calibrated parameters.

6.3.1 Initial Round

[Table 7 about here.]

We first examine whether any significant behavioral differences exist in the initial round choices.
Using two-sided Kolmogorov-Smirnov tests of the equality of distributions for first-round effort
choices (Table 7), we find that, within the near-minimal and enhanced treatments, only one of
the pairwise comparisons is significantly different: near-minimal outgroup 6= control (p = 0.043,
two-sided). Likewise, comparing the near-minimal treatments with the corresponding enhanced
treatments, only one of the pairwise comparisons is significantly different, and that only weakly:
NM outgroup 6= E outgroup (p = 0.083, two-sided).

Furthermore, we compare our initial round empirical distribution with both uniform and normal
distributions, and find that we can reject that our empirical distribution follows either a uniform or
a normal distribution (p < 0.001). Based on this analysis, we use the empirical distribution as the
initial round belief of how an opponent will behave in our simulation of the learning model.

12Of all choices, 92.8-percent are integer choices.
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6.3.2 Learning Dynamics: Stochastic Fictitious Play

In this subsection, we use a structural learning model to explain the effects of group identity on
the dynamics and convergence to various equilibria of the minimum effort game. To do so, we
look for a learning algorithm which incorporates key features of the adaptive learning models in
the theoretical derivations (Monderer and Shapley 1996). A model which meets this criterion is
the stochastic fictitious play model with discounting (Cheung and Friedman (1997), Fudenberg
and Levine (1998)). Unlike the deterministic fictitious play used for the theoretical analysis in
Monderer and Shapley (1996), the stochastic version allows decision randomization and thus better
captures the human learning process. It also more closely follows our theoretical model, which
uses decision randomization.

In our stochastic fictitious play model, player i holds a belief regarding her match’s effort level
xj in every period t. We calculate this belief using a weight function wti(xj). This weight function
assigns to each of her match’s possible effort levels a number which is positively correlated with
the number of times she has seen her match give that level of effort in the past. She believes that
the more times her match has given a particular effort level, the more likely it is that her match will
give that effort level again. Note that for this analysis, we use a discrete strategy space. The initial
value of this weight function is left unspecified by the model, giving w1

i (xj). This function is then
updated using the following rule:

wt+1
i (xj) = δ · wti(xj) +

{
1 if xj = xt

0 otherwise, (10)

where xt is the effort level exhibited by player i’s match in period t, and δ is the discount factor.
Player i’s beliefs in period t are then calculated as follows:

µti(xj) =
wti(xj)∑
xj
wti(xj)

. (11)

These beliefs are then be used to calculate player i’s expected utility for playing a strategy xi:

ut(xi) =
1

(x− x)

∑
xj

[ui(xi, xj) · µti(xj)], (12)

where ui(xi, xj) is as defined in Equation (5). We assume that all subjects in a given session have
the same group-contingent other-regarding parameter, so αgi = αg ∀i in the same session.

Using this expected utility, player i randomly chooses an effort level xi with a distribution
defined by the following:

f ti (xi) =
exp[λ · ut(xi)]∑
xi

exp[λ · ut(xi)]
, (13)

where λ is the inverse noise level that describes how much randomization a player will employ.
With this specification, as λ→ 0, the player uses full randomization, and as λ→∞, she plays her
best response to her belief of what her match will play with probability 1. This model has three
parameters: the sensitivity parameter λ, the discount factor δ, and the other-regarding parameter
αg.
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6.3.3 Calibration

We next compare the observations from our experiment to the predictions of the above model.
Performing a grid search over the three parameters, we calculate a score using the quadratic
scoring rule described in Selten (1998) for each subject and round. In any given round, let
fij = (fi1, . . . , fiK) be the predicted probability distribution over player i’s strategies, where K is
the number of strategies available to the players, and aij = (ai1, . . . , aiK) be the observed relative
frequency distribution over player i’s strategies, where aij = 1 if player i chooses action j, and
zero otherwise. This score, Si(f), is calculated by:

Si(f) = 1−
K∑
j=1

(aij − fij)2.

Our estimates for the parameters are the values of λ, δ, and αg that give the highest summed score
in each session (over all subjects and rounds).

We allow λ to vary from 0 to 7 in increments of 0.1, δ to vary from 0 to 1 in increments of 0.1,
and αg to vary from -1 to 1 in increments of 0.01.13 We perform this analysis at the session level.
The calibration consists of the following steps:

1. First, we set all subjects’ initial beliefs regarding their matches’ first-period efforts to the
empirical distribution of first period effort levels in the subjects’ sessions. That is, we set
w1
i (xj) to the number of times the effort level, xj , is used by any member of subject i’s

session (including subject i herself) in period 1.

2. For each subsequent period, we update a subject’s beliefs based on the history of effort levels
that the subject has observed from her matches, according to Equation (10).

3. For each period, given the subject’s beliefs, we calculate the probability distribution of effort
levels that the subject is predicted to play according to Equation (13).

4. Given this predicted distribution of effort levels, and the observed effort exhibited by the
subject, we use a quadratic scoring rule to calculate a score for the particular combination of
λ, δ, and αg that we are examining. This gives us a score for each period the subject plays.

5. For each subject, we sum the period scores in order to obtain a score for that subject and that
particular combination of λ, δ, and αg.

6. For each session, we sum the subject scores in order to obtain a score for that session and
that particular combination of λ, δ, and αg. This score is recorded.

7. After we have completed this process for every combination of λ, δ, and αg, we find the
parameters that give the highest score in each session. These are the values that are reported
in Table 8 in the “Near-Minimal” and “Enhanced” rows.

The results for the analysis are reported in Table 8 in the rows labeled “Near-Minimal” and
“Enhanced,” with treatment averages reported in the rows labeled “Average.”

13The upper bound for λ is based on an initial exploration where we tested fewer values of λ over a larger range.
As seen in Table 8, no session produced a λ that hit this upper bound.
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[Table 8 about here.]

For our purposes, the most important parameter is αg, which measures the level of group-
contingent social preference. As expected, we see that the enhanced ingroup treatment obtains
the highest average αg, consistent with our effort and efficiency results. Also, every session of the
enhanced ingroup treatment achieves a higher αg than any session of the near-minimal control. Us-
ing a permutation test, this comparison (enhanced ingroup > near-minimal control) is marginally
significant (p = 0.0506). The other comparisons are not significant since every other treatment has
one session in which the subjects converge to the efficient equilibrium.

Using these parameter estimates, we next run simulations of the learning model in order to
evaluate its accuracy.

6.3.4 Simulation

We compare a simulation using our estimated parameters with the observed subject actions. We
perform this simulation on a session level, so every session is treated separately from the others.
For each session, we track the beliefs and actions of the twelve simulated subjects. Also, we treat
the parameter estimates as the actual parameters used by these simulated subjects to update their
beliefs and choose their actions.

Our model is agnostic regarding the beliefs that the subjects hold and the actions that they
choose in the first period of the game, so we use the empirical first-period actions in the model.
Therefore, we assign the actual action of each subject to the subject’s simulated counterpart for the
first period. Also, we make each simulated subject’s belief distribution in the first period equal to
the empirical distribution of the first-period actions of the subjects in the session.

For subsequent periods, we use a one-period ahead version of the model to predict the actions
that the subjects will take. Using a one-period ahead model allows us to use the entire empirical
history of actions that the subjects observe in order to predict future actions. This is more realis-
tic than a k-period ahead model, which uses predicted actions from previous periods to generate
beliefs, since subjects make their decisions based on the entire history of opponent actions. Thus,
our model’s predictions are based on the same observables as those of the subjects.

For each period, we begin by updating the players’ beliefs regarding what their matches will
do in the next period. This is performed in the same way as described in step 2 of the calibration
procedure. Specifically, we use only the empirical actions from previous periods to update these
beliefs. By doing so, our model observes exactly what the subjects actually observed in the lab.
Using this procedure, we build the distribution of effort levels the subject will choose based on the
model, and use the distribution to randomly choose an effort. We repeat this process 70 times for
each subject and period. The average effort plus and minus one standard deviation are plotted as
solid lines in Figure 4. The actual choices by the subjects are also graphed as the black squares
and error bars.

[Figure 4 about here.]

The simulation is qualitatively similar to the observed actions. In particular, the model is able
to simulate the actions taken in the last few rounds. In Table 9, we report the Kolmogorov-Smirnov
minimum distance statistic between each treatment and the corresponding simulation for the last 5
periods. For all but the enhanced outgroup treatment, there is no significant difference between the
distribution of efforts from the simulation versus that from actual play. For the enhanced outgroup
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treatment, the difference between the distributions in the last period is significant at the 1% level.
Since we cannot reject that the simulated and actual distributions are equal for most treatments, we
take this as evidence that the calibrated model accurately describes actual behavior.

[Table 9 about here.]

6.4 Final Rounds
[Table 10 about here.]

To connect our learning model with the logit equilibrium model discussed earlier, we use the
calibrated values of αg from the learning model to compute theoretical distribution functions of
effort choices in the logit equilibrium, i.e., Equation (7). We then compare the means and standard
deviations of these theoretical distributions with the actual means and standard deviations of the
effort choices in the last 5 rounds. We perform this analysis on a treatment level. These values
are reported in Table 10. The means for the theoretical and actual distributions all fall within one
standard deviation of each other, with the highest and lowest actual average efforts mirrored in
the highest and lowest theoretical average efforts, respectively. We take this as a sign that the
theoretical model performs well in describing the data in the final rounds.

7 Reconciling Theory and Experiments
In this section, we apply our theoretical framework to previous experimental studies on coor-
dination games, including the minimum effort games, Battle of Sexes, and the provision point
mechanism. By incorporating group identity into the potential games framework, we can reconcile
findings from previous studies and thus showcase the applications of our theory.

[Table 11 about here.]

We first examine studies of the minimum effort games that are successful in achieving higher
effort levels contrary to the predictions of the theory of potential games. A summary of these
studies and the other studies of the minimum effort game mentioned in Section 2 is shown in Table
11.14 In addition to the parameter configurations of each experiment (strategy space, T , n, a, b
and c), the last three columns present the cutoff marginal cost c∗, the theoretical predictions from
standard potential maximization, and the empirical trend observed in the experiment, respectively.
Recall that standard potential maximization theory predicts that choices converge to the low (high)
effort equilibrium if c > c∗ (c < c∗). This prediction is consistent with the results from the
three baseline studies by Van Huyck et al. (1990), Goeree and Holt (2005), and Knez and Camerer
(1994), as well as many treatments in subsequent categories. Whenever the theoretical prediction is
inconsistent with the observed trend, we put the treatment in bold face. In what follows, we discuss
the three approaches used in the literature to achieve higher effort levels contrary to the theoretical
predictions and how incorporating group identity into the potential function could reconcile theory
and the empirical findings (Propositions 1 and 4).

14Rather than exhaustively listing all experiments of the minimum effort games, we instead present representative
studies in each category.
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Over two papers, Camerer and Knez (1994 and 2000) show that, if they use the same param-
eters as VHBB (a = 0.2, b = 0.6, c = 0.1) in the minimum effort game, subjects will converge to
the efficient equilibrium after 5 periods if n = 2, but not if n = 3. Using the phenomenon of “trans-
fer of precedent,” Camerer and Knez show that it is possible to make 3-player matches converge to
the efficient equilibrium if the game is first played for 5 periods by 2-player matches with the third
player observing, and then for 5 more periods with all 3 players. The 2-player matches establish a
group norm of high effort that is consistent with potential theory, which is then transferred to the
3-player matches. Allowing the third player to watch the other 2 players for 5 periods implicitly
creates a group, establishes a group norm, and increases subjects’ other-regarding preferences.

Weber (2006) shows that it is possible to apply Camerer and Knez’s result successively to
achieve higher effort levels in larger groups. Using parameters similar to VHBB (a = 0.2, b =
0.2, c = 0.1), Weber slowly grows the number of players in the minimum effort game over 22
periods from n = 2 to n = 12. He shows that, if growth is too fast, or if no history is shown to
the new players, then subjects converge to the least efficient equilibrium. If, on the other hand, the
groups are grown slowly enough, and it is common knowledge that the new players observe the
entire history of efforts provided, the entire 12-person group is able to achieve a minimum effort
of 5 by the final period. Again, the observation of smaller groups facilitates the establishment of
group norms.

Bornstein et al. (2002) use a different method, intergroup competition, to promote higher effort
levels. Taking essentially the same game as VHBB (a = 20, b = 60, c = 10), Bornstein et al.
divide subjects into two competing groups of size n = 7. The group with the higher chosen
minimum effort level is paid according to the normal payoff function, while the group with the
lower chosen minimum effort level is paid nothing (in the case of a tie, everyone is paid according
to half the normal payoff function). This revised payment method changes the game. In particular,
the set of Nash equilibria is expanded. It is still a Nash equilibrium for every member of both
groups to give the same level of effort, but it is also a Nash equilibrium for the members of one
group to all give the same effort, and two members of the other group to give a lower effort
(the rest of the members of this other group can give any level of effort and still preserve the
Nash equilibrium). While the potential function is also changed in this scenario, the potential
maximizing Nash equilibrium remains the equilibrium in which every member of both groups
gives the minimum possible effort of 1. So, if social preferences are ignored, then the prediction of
potential theory is that players will converge to the least efficient equilibrium. In another treatment,
the subjects are all paid according to the normal payoff function, but are also given the extra
information of what the minimum effort level is in the other group (this information is withheld
in the control). This separates the effect of receiving this information from the actual competition.
While Bornstein et al. find that the extra information has no effect (the control yields an average
effort of 3.6 while the information treatment yields an average effort of 3.5), there is a significant
increase in chosen effort with intergroup competition (average effort 5.3). In another session,
instead of punishing the losing group, the winning group receives a bonus. This yields an average
effort of 4.5, also significantly higher than in the control or information sessions. By explicitly
tying the subjects’ payoffs to the choices of the group, and by making the 2 groups compete with
each other, Bornstein et al. create a very strong ingroup and outgroup effect that is able to raise the
threshold c∗ above the marginal cost of 10 used in the experiment.

Another approach to increase effort is to facilitate communication across group members.
Specifically, Chaudhuri, Schotter and Sopher (2009) suggest that giving subjects advice from pre-
vious subjects of the experiment can increase effort in large groups. Using the same parameters
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as VHBB and n = 8, the authors attempt to induce higher effort by providing subjects with full
histories of previous sessions of the experiment, and by providing advice about the game given by
previous subjects. Most of this advice suggests that players always give the highest effort. While
this is not successful in most treatments, all of which have “private advice”(all subjects receive the
advice but this is not common knowledge), the subjects do converge to the highest effort level when
the advice is “public”(common knowledge). One plausible interpretation is that, communication
between subjects creates an ingroup effect strong enough to induce high efforts, even if subjects
in a session simply receive communication from a third party, as long as it is common knowledge
that this communication is taking place.

Brandts and Cooper (2007) also examine the effect of communication in the minimum effort
game. Communication in this study is achieved through a manager, who is the only subject allowed
to talk to the other 4 subjects in a “firm.” These 4 other subjects are workers of the firm who play
a minimum effort game (a = 6 or 14, b = 200, c = 5) with efforts restricted to 0, 10, 20, 30 or
40. The manager’s payoff is also positively related to the minimum effort given by the 4 workers.
Brandts and Cooper run three different treatments. In the first, the manager cannot communicate
with the other subjects, but can control their financial incentives. In the second, managers can
send messages to the other subjects (after the 10th period). This treatment is the most similar to
the study run by Chaudhuri et al. The only difference here is that the third-party communicator
has a stake in the game being played between the other players. In the third treatment, managers
can send messages to other subjects and the subjects can send messages to the manager (also after
the 10th period). The main result of this paper is that more avenues of communication lead to
higher minimum effort levels. The two-way communication treatment yields higher minimum
effort levels than the one-way communication treatment, and the same is true for the one-way
communication treatment compared to the no-communication treatment. This result holds even
when they consider only the sessions with minimum effort levels of 0 after the 10th period. The
effect of communication in a coordination game may work through a different channel than other-
regarding preferences, such as trust or learning (see Brandts and Cooper (2007) for a list, based on
the content of the messages sent by the managers). However, discussions with the authors reveal
that the most successful messages appeal to a group identity.

In addition to the minimum effort game, experimental studies of the provision point mecha-
nism (PPM) indicate that competition between groups increases the likelihood of successful co-
ordination to efficient equilibrium. The PPM is proposed by Bagnoli and Lipman (1989), with
the property that it fully implements the core in undominated perfect equilibria in an environment
with one private good and a single unit of public good.15 In a complete information economy,
agents voluntarily contribute any non-negative amount of the private good they choose and the
social decision is to provide the public good if and only if contributions are sufficient to pay for
it. The contributions are refunded otherwise. This mechanism has a large class of Nash equilibria,
some of which are efficient while others not. Among a large number of experimental studies of
this mechanism (see Chen (2008) for a survey), two studies highlight the effects of group compe-
tition in equilibrium selection, even though neither was explicitly designed to test group effects.
First, Bagnoli and McKee (1991) study the mechanism with several independent groups simulta-
neously in the same room and publicly posted contributions for all groups. They find public good
is provided in 86.7% of the rounds. Second, Mysker, Olson and Williams (1996) use the same
parameters but with single, isolated groups. The latter is not nearly as successful as the former in

15With multiple discrete units, the theoretical results also hold, but there have been very few experimental studies
of the multiple unit case.
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coordinating to the efficient outcome. In the Bagnoli and McKee study, the efficient equilibrium
contribution is a modal distribution, while in the Mysker, Olson and Williams study, contributions
are evenly distributed along the strategy space. From the perspective of potential games, we can
show that, in general, PPM is not a potential game.16 However, with group competition, it can be
transformed into a potential game where the potential maximizing equilibrium is the set of efficient
equilibrium.

Another well-studied coordination game is the Battle of Sexes game (BoS hereafter). Charness
et al. (2007) report a series of experiments on the effects of group membership on equilibrium
selection in BoS games (as well as the prisoner’s dilemma games). In treatments where groups
are salient, the authors find that group membership significantly affects the rate of successful co-
ordination. Taking a version of BoS such as the one on the left in the table below (Charness et
al. 2007), it is straightforward to show that it is a potential game with the potential function given
by P = 4p1p2 − p1 − 3p2, where pi denotes the probability with which player i chooses A. Hence
the potential is maximized by the mixed strategy equilibrium (p1 = 0.25, p2 = 0.75). This predic-
tion is consistent with the findings of Cooper, DeJong, Forsythe and Ross (1989), who show that
subjects converge to a frequency of choices that is close to the mixed strategy equilibrium in BoS.
If we transform the game to incorporate the effects of group identity, we obtain the game on the
right, with the new potential function P = 4(1 +α)p1p2− (1 + 3α)p1− (3 +α)p2, which is again
maximized at its mixed strategy equilibrium. It is straightforward to show that the probability of
coordination, p1p2 + (1 − p1)(1 − p2), is increasing in α. This leads to a directional prediction
that the probability of coordination is higher for ingroup matching compared to the control and
outgroup matching, and increases with the salience of group identity.

Original BoS Transformed BoS
A B A B

A 3, 1 0, 0 A 3+α, 1+3α 0, 0
B 0, 0 1, 3 B 0, 0 1+3α, 3+α

In sum, we find that social identity, group competition, and group norms improve coordination
in games with multiple Nash equilibria. Incorporating group identity into potential games provides
a unifying framework which reconciles findings from a number of coordination game experiments.

8 Conclusion
In this paper, we study the effects of social identity on one of the most important and yet unresolved
problems in game theory, the problem of equilibrium selection in games with multiple Nash equi-
libria. By incorporating group-contingent social preferences into Monderer and Shapley’s theory
of potential games, we make theoretical predictions on how and when salient group identities can
influence equilibrium selection, and provide a unifying framework for a number of the previous
experimental studies performed on coordination games.

To further test the ability of this model to predict behavior in an experimental setting, we
design an experiment that uses induced group identity to increase group-contingent other-regarding
preferences in the minimum effort games. In our near-minimal treatments, we show that, while

16A counter example can be constructed from an example used in Menezes, Monteiro and Temimi (2001). Let
xi = {0, c}. In the two-player case, πi(c, c)− πi(c, 0)− [πi(0, c)− πi(0, 0)] = −vi, which violates the definition of
potential games when v1 6= v2.
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matching subjects with ingroup or outgroup members when playing the minimum effort game has
some effect on the effort levels chosen, they are not statistically distinguishable from the control,
where no groups are induced. On the other hand, when we enhance the groups by allowing them
to communicate with group members in solving a simple task before playing the minimum effort
game, we find that matching subjects with ingroup members has a statistically significant positive
effect on subject effort. When inducing groups, we find that it is only after the groups are made
more salient that we see an effect on the provided effort. These findings are consistent with the
predictions of our model.

In order to understand the mechanism through which this result is achieved, we incorporate
group-contingent social preferences into a learning model of stochastic fictitious play. This enables
us to specify the effect that creating groups and increasing their salience has on subjects’ other-
regarding preferences. The calibrated model also does well in predicting the empirical actions used
by the subjects.

Our paper contributes to the theoretical foundations of social identity by demonstrating that, by
using a simple group-contingent social preference model, we can endogenize the exogenous norms
in the original Akerlof and Kranton model and reconcile the theory with experimental findings in
a number of coordination games.

Beyond the fundamental problem of understanding and modeling identity on economic behav-
ior, our results have practical implications for organizational design. As the world becomes more
integrated, organizations are more frequently encountering the issue of integrating a diverse work-
force, and motivating members from different backgrounds to work towards a common goal. Our
paper demonstrates that creating a deep sense of common identity can motivate people to exert
more effort to reach a more efficient outcome.

A successful application of this idea comes from Kiva (http://www.kiva.org/), a person-
to-person microfinance lending site, which organizes loans to entrepreneurs around the globe. In
August 2008, Kiva launched its lending teams program, which organizes lenders into identity-
based teams. Any lender can join a team based on her school, religion, geographic location, sports,
or other group affiliation. As of July 2009, the top five most successful teams are “the Atheists,
Agnostics, Skeptics, Freethinkers, Secular Humanists and the Non-Religious Common Interest,”
followed by “Kiva Christians,” “Team Obama,” “Team Europe,” and “Australia.” The lending teams
program substantially increases the amount of funds raised.

There are several directions for future research. A possible next step in this line of research
would be to extend this result to other coordination games. While we touch on previous stud-
ies of the provision point mechanism, one could attempt to achieve higher contributions to public
goods using the same induced identity method used in this study. Our model predicts that success-
ful coordination to higher levels of public goods can be achieved systematically even with a very
weak method of increasing other-regarding preferences. Another direction is to evaluate the ef-
fects of identity-based teams in the field through natural field experiments in fundraising or online
communities.
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Appendix A. Proofs

Proof of Proposition 1: Maximizing Equation (6) gives us a new threshold marginal cost value,
which is a function of the group-contingent other-regarding parameter αgi ,

c∗(n, {αgi }ni=1) =
1

n−
∑n

i=1 α
g
i

. (14)

When αIi > αNi > αOi , ∀i, the corresponding threshold marginal cost is as follows:

c∗(n, {αIi }ni=1) > c∗(n, {αNi }ni=1) > c∗(n, {αOi }ni=1).

Furthermore, a more salient group identity increases αIi , which leads to an increase in the threshold
marginal cost, c∗(n, {αIi }ni=1).

Proof of Proposition 3: Based on the standard assumption of the logit model that payoffs are
subject to unobserved shocks from a double-exponential distribution, player i’s probability density
is an exponential function of the expected utility, uei (x),

fi(x) =
exp(λuei (x))∫ x̄

x
exp(λuei (s))ds

, i = 1, · · · , n, (15)

where λ > 0 is the inverse noise parameter and higher values correspond to less noise.
Let Fi(x) be player i’s corresponding effort distribution. For player i, letGi(x) ≡ 1−

∏
k 6=i(1−

Fk(x)) be the distribution of the minimum of the n−1 other effort levels. Thus, player i’s expected
utility from choosing effort level x is:

uei (x) =

∫ x

x

ygi(y)dy + x(1−Gi(x))− c[(1− αi)x+ αi

∫ x̄

x

ydFi(y)], (16)

where the first term on the right side is the benefit when another player’s effort is below player i’s
own effort, the second term is the benefit when player i determines the minimum effort, and the
last term is the cost of effort weighted by player i’s own effort and the average effort of others. The
first and very last term of the right side of (16) can be integrated by parts to obtain:

uei (x) =

∫ x

x

∏
k 6=i

(1− Fk(y))dy − c(1− αi)x+ cαi

∫ x̄

x

F (y)dy + x− cαix̄. (17)

Differentiating both sides of (15) with respect to x and using the derivative of the expected
utility in (17), we obtain:

f
′

i (x) = λfi(x)
duei (x)

dx

= λfi(x)[
∏
k 6=i

(1− Fk(x))− c(1− αi)], i = 1, · · ·n. (18)

Using symmetry (i.e., dropping subscripts), further assuming αi = α for all i, and integrating both
sides of (18), we obtain:
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∫ x

x

f
′
(s)ds = λ

∫ x

x

f
′
(s)[1− F (s)]n−1ds− c(1− α)λ

∫ x

x

f(s)ds.

Simplifying both sides, we obtain the first-order differential equation for the equilibrium effort
distribution:

f(x) = f(x) +
λ

n
[1− (1− F (x))n]− c(1− α)λF (x).

The proofs of Propositions 4 and 5 use similar structure and techniques as those of the correspond-
ing Propositions 4 and 5 in Anderson et al. (2001), with the marginal cost of effort, c, replaced by
c(1− α). We present them here for completeness.

Proof of Proposition 4: Let the other regarding parameters be α1 < α2, and let F1(x) and F2(x)
denote the corresponding equilibrium effort distributions. We want to show that F1(x) > F2(x)
for all interior x.

Suppose F1(x) = F2(x) on some interval of x values. Then the first two derivatives of these
functions must equal on the interval, which violates (18). Therefore, the distribution functions can
only be equal, or cross, at isolated points. At any crossing, F1(x) = F2(x) ≡ F . From (15), the
difference in slopes at the crossing is:

f1(x)− f2(x) = f1(x)− f2(x)− λc(α2 − α1)F, (19)

which is decreasing in F, and hence is also decreasing in x. It follows that there can be at most
two crossings, with the sign of the right-hand side nonnegative at the first crossing and nonpositive
at the second. Since the distribution functions cross at x and x̄, these are the only crossings. The
right-hand side of (19) is positive at x = x or negative at x = x̄, so F1(x) > F2(x) for all interior
x. This implies that an increase in α results in a distribution of effort that first-degree stochastically
dominates that associated with a smaller α.

Proof of Proposition 5: First, consider the case c < c∗, or cn(1 − α) < 1. We have to show that
F (x) = 0 for all x < x̄. Suppose not, and F (x) > 0 for x ∈ (xa, xb). From (7), we have:

f(x) = f(x) +
λ

n
[1− (1− F )n]− c(1− α)λF

= f(x) +
λ

n
[1− (1− F )n − cn(1− α)F ]

>
λ

n
[1− (1− F )n − F ]

=
λ

n
(1− F )[1− (1− F )n−1].

Since density cannot diverge on an interval, F (·) must be zero on any open interval. Therefore,
F (x) = 0 for x < x̄.
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Next, consider the case c < c∗, or cn(1− α) > 1. In this case, we have to prove that F (x) = 1
for all x > 0. Suppose not, and F (x) < 1 for x ∈ (xa, xb). From (7), we have:

f(x̄) = f(x) +
λ

n
[1− (1− F (x̄))n]− c(1− α)λF (x̄)

= f(x) +
λ

n
− c(1− α)λ

= f(x) +
λ

n
[1− cn(1− α)],

which enables us to rewrite (7) as:

f(x) = f(x̄)− λ

n
[1− cn(1− α)] +

λ

n
[1− (1− F )n]− c(1− α)λF

= f(x̄) +
λ

n
[cn(1− α)(1− F )− (1− F )n]

>
λ

n
(1− F )[1− (1− F )n−1].

Again, since density cannot diverge on an interval, F (·) must be one on any open interval. There-
fore, F (x) = 1 for x > 0.

Finally, consider the case c = c∗, or cn(1− α) = 1. In this case, (7) becomes:

f(x) = f(x) +
λ

n
[1− (1− F )n]− c(1− α)λF

= f(x) +
λ

n
[1− (1− F )n − F ]

= f(x) +
λ

n
(1− F )[1− (1− F )n−1].

This equation implies that the density diverges to infinity as λ → +∞, when F (x) 6= 0 or 1.
Hence, F (·) jumps from 0 to 1 at the mode M . The above equation implies that f(x) = f(x̄),
so the density is finite at the boundaries and the mode is an interior point. Using symmetry, we
can rewrite (18) as f ′

(x) = λf(x)[(1 − F (x))n−1 − c(1 − α)] = λf(x)[(1 − F (x))n−1 − 1/n],

or f
′
(x)

λf(x)
= (1 − F (x))n−1 − 1/n. Integrating both sides from x to x̄ yields 1

λ
ln(f(x̄)/f(x)) =

M − (x̄− x)/n, since 1− F equals one to the left of M and zero to the right of M. The left side is
zero since f(x̄) = f(x), so M = (x̄− x)/n.
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Appendix B. Experimental Instructions

We present the experimental instructions for the Enhanced Ingroup treatment. Instructions for
other treatments are similar and can be found on the second author’s website.

Economic Decision Making Experiment: Part 1 Instructions

This is an experiment in decision-making. The amount of money you earn will depend upon the
decisions you make and on the decisions other people make. Your earnings are given in tokens.
This experiment has 2 parts and 12 participants. Your total earnings will be the sum of your payoffs
in each part. At the end of the experiment you will be paid IN CASH based on the exchange rate

$1 = 350 tokens.

In addition, you will be paid $5 for participation. Everyone will be paid in private and you are
under no obligation to tell others how much you earn.

Please do not communicate with each other during the experiment unless asked to do so. If you
have a question, feel free to raise your hand, and an experimenter will come to help you.

Before the experiment started everyone drew an envelope which contained either a Green or a
Red slip. You have been assigned to the Green group if you received a Green slip, and the Red
group if you received a Red slip. There are 6 people in each group. Your group assignment will
remain the same throughout the experiment. That is, if you drew a Green slip, you will be in the
Green group for the rest of the experiment, and if you drew a Red slip, you will be in the Red group
for the rest of the experiment.

In Part 1 everyone will be shown 5 pairs of paintings by two artists. You will have 5 minutes
to study these paintings. Then you will be asked to answer questions about two other paintings.
Each correct answer will bring you 350 additional tokens. You may get help from or help other
members in your own group while answering the questions.

After Part 1 has finished, we will give you instructions for the next part of the experiment.
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Economic Decision Making Experiment: Part 2 Instructions

The next part of the experiment consists of 50 periods. In each period, you will be randomly
matched with 1 other person in the room. If you are a member of the Green group, your match will
always be a member of the Green group, and if you are a member of the Red group, your match
will always be a member of the Red group. You will be reminded every period of your own group
and of your match’s group. Your earnings for this part of the experiment depend on your choices
as well as the choices of the people you are matched with.

Every period, each person will choose an effort level between 110.00 and 170.00. You will earn a
number of tokens equal to the minimum effort level chosen by you and the person you are matched
with, minus the cost of your own effort, which is 0.75 times your own effort choice. This is cap-
tured by the equation:

Payoff (Tokens) = Minimum Effort - 0.75*Your Effort

Note that the minimum effort here refers to the minimum of the effort levels chosen by you and
your match. Refer to the handout for some examples. Note that there may be some case in which
you earn a negative payoff. If your final payoff is negative, we will deduct that amount from your
participation fee.

We will show you a running tally of the number of tokens you have earned from this part of
the experiment, and after 50 rounds, we will add your earnings from Part 1 to this total and con-
vert your total earnings into a dollar amount based on the exchange rate. We will also show you a
list of your past effort choices and payoffs, as well as your matches’ past effort choices and payoffs.

When you are ready to begin Part 2 of the experiment, please click OK.

30



Appendix C. Post-Experiment Survey
(summary statistics in italics)

Please answer the following survey questions. Your answers will be used for this study only.
Individual data will not be exposed.

1. What is your age? (Mean 21.37, Std Dev 3.27, Median 21, Min 18, Max 40)

2. What is your gender? (Male 48.53%, Female 51.47%)

3. Which of the following best describes your racial or ethnic background? (Asian 38.73%,
Black 6.37%, Caucasian 42.16%, Hispanic 3.43%, Native American 0.49%, Multiracial
4.41%, Other 4.41%)

4. In what country or region were you primarily raised as a child? (US/Canada 74.51%, Africa
0.00%, Asia 23.53%, Australia 0.49%, Europe 0.98%, Latin America 0.00%, Middle East
0.49%)

5. What is your marital status? (Never Married 96.08%, Currently Married 3.43%, Previously
Married 0.49%)

6. How would you best describe your employment status? (Employed Full Time 5.88%, Em-
ployed Part Time 38.24%, Not Employed 55.88%)

7. How many siblings do you have? (Mean 1.55, Std Dev 1.13, Median 1, Min 0, Max 6)

8. Who in your household is primarily responsible for expenses and budget decisions? Please
select all that apply (Self 38.24%, Spouse 0.49%, Shared Responsibility with Spouse 3.43%,
Parent(s) 64.22%, Other 1.47%)

9. Have you ever voted in a state or federal government election (in any country)? (Yes 53.92%,
No 46.08%)

10. Before today, how many times have you participated in any economics or psychology exper-
imental studies? (Mean 3.46, Std Dev 3.47, Median 2, Min 0, Max 20)

11. In the past twelve months, have you donated money to or done volunteer work for charities
or other nonprofit organizations? (Yes 77.94%, No 22.06 %)

12. On a scale from 1 to 10, please rate how much you think communicating with your group
members helped solve the two extra painting questions, with 1 meaning “not much at all”.
(Mean 6.04, Std Dev 2.90, Median 7, Min 1, Max 10)

13. On a scale from 1 to 10, please rate how closely attached you felt to your own group through-
out the experiment, with 1 meaning “not closely at all”. (Mean 3.97, Std Dev 2.67, Median
3, Min 1, Max 10)

14. In Part 2 when you were asked to decide on an effort level, how would you describe the
strategies you used? Please select all that apply (I tried to earn as much money as possible
for myself 46.08%, I tried to earn as much money as possible for me and my match 50.00%,
I tried to earn more money than my match 17.65%, I gave high effort if my previous matches
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gave high efforts and low effort if my previous matches gave low efforts 27.45%, Other
14.22%)

15. Please tell us how your match’s group membership affected your decision. If I had been
matched with someone from the other group [my own group], (I would have picked higher
effort levels 16.67% [23.61%], I would have picked lower effort levels 8.33% [1.39%], I
would not have changed my effort levels 69.44% [72.22%], Other 5.56% [2.78%])

16. On a scale from 1 to 10, please rate how familiar you were with the paintings made by Klee
and Kandinsky before this experiment, with 1 meaning “not familiar at all”. (Mean 1.31, Std
Dev 1.00, Median 1, Min 1, Max 6)
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Table 1: Features of Experimental Sessions
Treatment # of Subjects Group Assignment Problem Solving

Control 3× 12 None None
Near-Minimal Ingroup 3× 12 Random None

Outgroup 3× 12 Random None
Control 3× 12 None Self

Enhanced Ingroup 3× 12 Random Chat
Outgroup 3× 12 Random Chat

Table 2: Theoretical Distributions
Effort

α µ σ Efficiency
-1.0 116.49 5.86 0.563
-0.8 117.40 6.59 0.558
-0.6 118.61 7.50 0.553
-0.4 120.30 8.69 0.546
-0.2 122.79 10.23 0.539
0.0 126.77 12.18 0.533
0.2 133.54 14.21 0.541
0.4 143.37 14.66 0.598
0.6 151.37 12.89 0.684
0.8 156.10 10.83 0.751
1.0 158.99 9.16 0.797
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Table 3: Group Identity and Effort Choice: Random-Effect OLS
(Effort = β0 + β1*Ingrp+β2*Outgrp+β3*Ingrp*Enh+β4*Outgrp*Enh+β5*X+uit)

Dependent Variable: Effort
(1) (2)

Ingroup 8.82 5.81
(7.15) (7.00)

Outgroup 10.76 7.89
(7.67) (7.45)

Ingroup*Enhanced 15.38*** 15.25***
(4.57) (4.51)

Outgroup*Enhanced -10.41 -10.51
(11.58) (11.22)

Female -3.82*
(2.06)

Asian 2.44
(2.55)

Black -1.91
(3.29)

Hispanic 1.64
(4.25)

Married -3.03
(7.37)

Employed Full -0.46
(3.69)

Employed Part 1.01
(1.26)

One Sibling 0.13
(3.34)

Two Siblings 2.66
(3.31)

Three+ Siblings 6.10*
(3.48)

Expenses Shared 10.63
(7.31)

Expenses Parents -3.71*
(2.23)

Volunteer -3.12
(2.10)

Constant 139.13*** 146.78***
(5.73) (16.19)

Observations 10800 10200
R2 0.1691 0.1938
Notes: Standard errors are adjusted for clustering at the session level.
Significant at: * 10% level; *** 1% level.
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Table 4: Group Identity and Equilibrium: Probit Regression
(Φ−1(equilibrium) = β0 + β1*Ingrp+β2*Outgrp+β3*Ingrp*Enh+β4*Outgrp*Enh+uit)

Dependent Variable: Equilibrium
Ingroup 0.14

(0.11)
Outgroup 0.02

(0.11)
Ingroup*Enhanced 0.21**

(0.10)
Outgroup*Enhanced 0.01

(0.13)
Observations 5400
Pseudo-R2 0.0584
Notes: Standard errors are adjusted for clustering
at the session level. Significant at: ** 5% level.

Table 5: Average Efficiency by Session and Treatment
Ingroup Outgroup Control

0.65 0.49 0.57
Near-minimal 0.63 0.67 0.70

0.70 0.68 0.63
Average 0.66 0.62 0.63

0.85 0.80 0.58
Enhanced 0.91 0.50 0.80

0.86 0.55 0.57
Average 0.87 0.62 0.65
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Table 6: Group Identity and Efficiency: Random-Effect OLS
(Efficiency = β0 + β1*Ingrp+β2*Outgrp+β3*Ingrp*Enh+β4*Outgrp*Enh+uit)

Dependent Variable: Efficiency
Ingroup 0.02

(0.04)
Outgroup -0.03

(0.06)
Ingroup*Enhanced 0.21***

(0.03)
Outgroup*Enhanced 0.00

(0.09)
Constant 0.64***

(0.04)
Observations 5400
R2 0.1251
Notes: Standard errors are adjusted for clustering
at the session level. Significant at: *** 1% level.

Table 7: First-round Effort Distributions across Treatments: Kolmogorov-Smirnov Tests
Comparison K-S Statistic p-value

Control Ingroup 0.17 0.615
Near-minimal Control Outgroup 0.31 0.043

(NM) Ingroup Outgroup 0.19 0.413
Control Ingroup 0.25 0.150

Enhanced Control Outgroup 0.17 0.615
(E) Ingroup Outgroup 0.17 0.615

NM Ingroup E Ingroup 0.19 0.413
Combined NM Outgroup E Outgroup 0.28 0.083

NM Control E Control 0.14 0.825
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Table 8: Parameter Calibration of the Stochastic Fictitious Play Model
Control Ingroup Outgroup

Treatments Sessions λ δ αN λ δ αI λ δ αO

1 0.8 0.7 0.27 5.4 0.8 0.51 0.1 0.4 0.07
Near-minimal 2 4.7 1.0 0.17 0.4 0.5 0.34 2.2 0.7 0.93

3 1.6 0.6 0.75 2.2 0.7 1.00 2.9 0.8 0.78
Average 2.4 0.8 0.40 2.7 0.7 0.62 1.7 0.6 0.59

1 1.2 0.7 0.12 2.2 0.7 1.00 2.4 1.0 1.00
Enhanced 2 2.5 0.7 1.00 3.0 0.7 1.00 0.8 0.3 -0.22

3 1.7 0.5 -0.16 2.9 0.3 0.91 0.6 0.7 0.24
Average 1.8 0.6 0.32 2.7 0.6 0.97 1.3 0.7 0.34

Note: λ, δ and αg are the sensitivity, discount, and other-regarding parameters, respectively.

Table 9: Kolmogorov-Smirnov Tests of Equality of Distributions Between Simulations and
Choices in the Last Five Rounds

Treatments Near-Minimal Enhanced
Period Control Ingroup Outgroup Control Ingroup Outgroup

46 0.1440 0.1607 0.1889 0.1060 0.1500 0.1857
47 0.1893 0.1996* 0.1746 0.1048 0.1647 0.1750
48 0.1567 0.1583 0.1675 0.0940 0.1456 0.2405**
49 0.1492 0.1611 0.1635 0.0889 0.1718 0.2393**
50 0.1948* 0.1603 0.2060* 0.1393 0.1635 0.2607***

Note: Significant at: * 10% level; ** 5% level; *** 1% level.

Table 10: Effort Distributions in the Last Five Rounds
Calibrated Predicted Actual

Treatment αg Mean SD Mean SD
Control 0.40 143.37 14.66 133.28 13.07

Near-Minimal Ingroup 0.62 151.97 12.68 148.29 19.18
Outgroup 0.59 151.06 13.00 157.46 20.96
Control 0.32 139.32 14.82 132.83 27.13

Enhanced Ingroup 0.97 158.63 9.38 166.15 6.78
Outgroup 0.34 140.34 14.82 133.65 25.97
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Figure 1: Effort Level in the Near-Minimal (Top) and Enhanced (Bottom) Treatments
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Figure 2: Minimum Effort Level in each Match for the First 10 Periods (Left Column) and the Last
10 Periods (Right Column), Separated by Near-Minimal (Top) and Enhanced (Bottom) Sessions
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Figure 3: Wasted Effort in each Match for the First 10 Periods (Left Column) and the Last 10
Periods (Right Column), Separated by Near-Minimal (Top) and Enhanced (Bottom) Sessions
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Figure 4: Simulation of Stochastic Fictitious Play (Borders) and Data (Black Dots and Error Bars)
in the Ingroup (Row 1), Outgroup (Row 2), and Control (Row 3) Sessions, separated by Near-
Minimal (Left Column) and Enhanced (Right Column) Sessions
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