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Abstract

When participating in school choice, students rarely know perfectly their preferences over

schools, and acquiring such information is costly. We study how two popular school choice

mechanisms, the Immediate Acceptance and the Deferred Acceptance mechanisms, incentivize

students’ information acquisition. Under the Immediate Acceptance mechanism, students pay

more to acquire information on their own preferences as well as that on others’ preferences.

We then show the potential welfare improvement when the education authority provides more

information on school quality. Evidence from our lab experiment is consistent with our the-

oretical predictions. Furthermore, students often over-pay for information, especially among

those who expect that others are paying more for information and among those who are more

curious. Taken together, our results underscore the crucial role of information provision by

education authorities.
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1 Introduction

“‘It was very hard, and very time-consuming,’ New Orleans resident Carrie Fisher said of trying

to find a school for her daughter, who entered kindergarten last fall. ‘I’m educated, I have a

bachelor’s degree, ... and I do have time to read articles online and research things.’” Writes

Prothero (2015) when reporting the obstacles that parents confront as school choice expands.

Upon participating in school choice, students or their parents usually do not know their prefer-

ences over the candidate schools, although they may invest to acquire more information. Prothero

also cites studies that showing this information acquisition is more difficult for those “with less

education or with children who have special needs” and those “who don’t have a flexible job, can’t

go to the open houses, and don’t have transportation.”

Such heterogenous costs of information acquisition in school choice have important implica-

tions for inequality in society. The decisions parents and students make about schools and colleges

can affect the education experiences, career choices and labor market outcomes of many young

people. While students from rich and middle class families can afford to spend considerable re-

sources investigating various options, those from low-income families often face information barri-

ers that lead to inferior choices. For example, while the federal No Child Left Behind Act of 2001

includes a provision allowing students in failing schools to choose to attend non-failing schools

outside their neighborhood, research finds that low-income families place much less weight on

academics when choosing schools (Hastings, Kane and Staiger 2005). Providing information on

school test scores to low-income families has been shown to significantly increase the fraction of

parents choosing higher-performing schools. Subsequent attendance of such schools leads to an

increase of student test scores (Hastings and Weinstein 2008). Similarly, interventions aimed to

reduce the information deficits faced by high-achieving low-income students at the college appli-

cation stage have led these students to submit more applications and be more likely to apply to

higher quality colleges (Hoxby and Turner 2015). These studies indicate that policies aimed to

lower the cost of information acquisition in school choice and college applications have the poten-

tial to reduce inequality and increase the upward mobility of students from low-income families.

Incomplete information on one’s own preferences is not uncommon in real life. Sometimes

students may face too many choices. For example, high school graduates usually choose among
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several hundred colleges. They might find it difficult to navigate the vast quantity of information

about college attributes. At other times, it might be costly to acquire information even when there

are not that many choices. For instance, to evaluate a candidate school, students may need to know

the academic performance, teacher quality, school facilities, extra-curricular activities offered, and

peer quality. As some of these aspects are less observable, one may have to pay substantial cost to

obtain such information.

In contrast, classical matching models typically assume that students know their own prefer-

ences, at least the ordinal ones. This assumption becomes unrealistic when the market is large or

when the cost of acquiring information is high. Nonetheless, preferences are fundamental to evalu-

ate mechanism performance, and more importantly, the information students need to play optimal

strategies in games induced by matching mechanisms might not be the same.

By relaxing the full information assumption, we investigate how mechanisms incentivize stu-

dent information acquisition in school choice. We focus on the two widely used mechanisms, the

Immediate Acceptance and the Gale-Shapley Deferred-Acceptance (hereafter shortened as DA)

mechanisms. As it takes into account both the benefit and cost of information acquisition and in-

formation provision, this study thus provides a more comprehensive and realistic evaluation of the

mechanism performance.

Specifically, in a school choice setting with unknown preferences and costly information ac-

quisition, we show theoretically that, while both the strategy-proof DA and the non-strategy-proof

Immediate Acceptance mechanisms incentivize students to acquire information on their own ordi-

nal preferences which improves efficiency, non-strategy-proof mechanisms also induce students to

acquire information on one’s own cardinal preferences as well as that on others’ preferences.

We then investigate the welfare effects of information provision by education authorities. In

a special setting where every student has the same ordinal preferences, we show that the ex ante

welfare is constant under the DA mechanism, while providing information on one’s own cardinal

preferences improves welfare under the Immediate Acceptance mechanism. However, providing

information on others’ preferences has ambiguous welfare effects.

As our theory predicts that incentives to acquire information depend on the strategic properties

of the mechanism, naturally-occurring field data typically do not enable a systematic evaluation of

the theory, especially at the welfare level, as there are often only one mechanism involved at a time
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(Hastings and Weinstein 2008). We resort to a laboratory experiment to quantify the net welfare

effect of endogenous information acquisition. In our experiment, we use the Becker-DeGroot-

Marschak mechanism to elicit participant willingness-to-pay (WTP) for information (Becker, De-

Groot and Marschak 1964a).

We find that participants’ WTP for their own and others’ preferences under the non-strategy-

proof Immediate Acceptance mechanism is significantly greater than that under the strategy-proof

DA mechanism, which is consistent with theory. However, their WTP is systematically higher

than the theoretical prediction. The excess WTP can be decomposed into understanding the game,

conformity, curiosity, cognitive load and learning. Students who do not understand well the school

choice game and those expecting that others are paying more for information tend to over-pay for

information.

At the welfare level, we find that free information on own preferences improves the perfor-

mance of both mechanisms, whereas free information on others’ preferences does not improve

the performance of either mechanism. Lastly, costly information acquisition on own or others’

preferences improves efficiency, if costs are not taken into account. Our results suggest that more

transparent information provision on school performance can significantly improves welfare.

The rest of this paper is organized as follows. Section 2 reviews the information acquisition

and school choice literature. Section 3 presents the theoretical results. Section 4 describes the

experimental design. Section 5 summarizes the results of the experiments. Section 6 concludes.

2 Literature Review

Most of papers in the matching literature deal with the case that students know their preferences

(Gale and Shapley 1962, Roth and Sotomayor 1990, Abdulkadiroğlu and Sönmez 2003). One

exception is Chade, Lewis and Smith (2014), where students have application cost, and colleges

only observe signals of students’ ability, but there is no cost forming preferences. Other examples

are Lee and Schwarz (2012) and Rastegari, Condon and Immorlica (2013) who study models where

firms’ preferences over workers are unknown or partially known and are revealed only through

interviews.

To our knowledge, the only two theoretical papers in market design that explicitly studies en-
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dogenous information acquisition on students preferences are Bade (2015) and Harless and Man-

junath (2015). In the setting of house allocation, Bade finds that there is a unique ex ante Pareto

optimal, strategy-proof and non-bossy allocation mechanism: serial dictatorship. Harless and Man-

junath (2015), however, show that top trading cycles mechanism dominates serial dictatorship un-

der progressive measures of social welfare, e.g., inequality-averse social welfare functions. In

both papers, the authors focus on ordinal mechanisms, and thus information acquisition is on one’s

ordinal preferences. As we show below, in any strategy-proof ordinal mechanism, students only

have incentives to learn their ordinal preferences. In the case where students have similar ordinal

preferences, information on cardinal preferences may be efficiency improving (Abdulkadiroğlu,

Che and Yasuda 2011).

One paper that compares a similar set of mechanisms is Bu (2012) who introduces an exoge-

nous cost of application for each additional choice in the context of school choice. He finds that the

DA and Immediate Acceptance are strategically equivalent no matter how small the cost is. One

may interpret the application cost as the cost for information acquisition. However, a per-school

cost is paid only if an additional school is included in the application. This then limits the extent

to which we can generalize the results to endogenous information acquisition. For example, it is

plausible that one spends time to acquire information about a school but only finds it a bad fit in

the end.

The growing experimental school choice literature has not dealt with endogenous informa-

tion acquisition. Most studies focus on strategy, stability and welfare comparisons among various

mechanisms, given that students know their own preferences (Chen and Sönmez 2006, Feather-

stone and Niederle 2008, Calsamiglia, Haeringer and Klijn 2010, Klijn, Pais and Vorsatz 2012). In

addition, Pais and Pintér (2008) and Pais, Pintér and Veszteg (2011) study matching mechanisms

in different information settings and provide evidence on how more information may change indi-

vidual strategies and overall efficiency of a mechanism, but the information structure is taken as

exogenous in their setting. Therefore, their results are more on the robustness of the mechanisms to

information. Two recent experimental studies of school choice focus on peer information sharing

in networks (Ding and Schotter 2015b) and intergenerational advice (Ding and Schotter 2015a),

whereas Guillen and Hing (2014) investigate top down advice.

Another feature of our study is the acquisition of information on others’ preferences, which
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is in contrast with the usual studies on information acquisition on ont’s own preferences. One

exception is Kim (2008) who compares two information structures in a common value first-price

auction with two bidders. In one of them, one of the bidders learns her opponent’s signal as well.

Kim shows when this information is not always beneficial to the informed bidder.

Costly information acquisition is considered in many other fields as well, e.g., bargaining (Dang

2008), committee decisions (Persico 2004, Gerardi and Yariv 2008), contract theory (Crémer,

Khalil and Rochet 1998, Crémer and Khalil 1992), finance (Barlevy and Veronesi 2000, Hauswald

and Marquez 2006, Van Nieuwerburgh and Veldkamp 2010), law and economics (Lester, Persico

and Visschers 2009),

There is a large theoretical literature on information acquisition in auctions or selling mecha-

nisms. For instance, Persico (2000) studies the incentives to acquire information and shows that

a first-price auction induces more information acquisition than a second-price auction. Allowing

costly information acquisition to learn an asset’s value, Compte and Jehiel (2007) show that selling

mechanisms in dynamic formats, such as ascending-price or multistage auctions, perform better

than their static counterpart; Crémer, Spiegel and Zheng (2009) further characterize optimal sell-

ing mechanism in auction environments; Shi (2012) develops a general framework for modeling

information acquisition in a private value setting. Focusing on information acquisition in conflicts,

which are two-player all-pay auctions, Morath and Münster (2013) show that the incentive to ac-

quire information is affected by the observability of information acquisition decision and that of

the information acquired.

Information acquisition was introduced into the general equilibrium theory as a paradox: the

assumptions that all markets, including that for information, are always in equilibrium and al-

ways perfectly arbitraged are inconsistent when arbitrage is costly (Grossman and Stiglitz 1980).

To reconcile this paradox, Milgrom (1981) introduces a two-stage bidding model which has the

market-like features that bidders act as price takers; bidders may acquire information at a cost

before bidding. Similarly, Verrecchia (1982) considers a model of information acquisition in a

competitive market in which traders can learn both from costly private enquiry and price. It is

shown an equilibrium exists in such a noisy rational expectation economy.

Bergemann and Valimaki (2006) survey the literature on the role of information in mechanism

design. In particular, Bergemann and Valimaki (2002) consider a general mechanism design setting
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with information acquisition to study ex ante efficiency (i.e., efficient incentives for information

acquisition) as well as ex ante efficiency (i.e., efficient allocation conditional on the private infor-

mation). They show that in every private value environment the Vickrey-Clark-Groves mechanism

guarantees both ex-ante as well as ex-post efficiency. In contrast, with common values, ex-ante

and ex-post efficiency cannot be reconciled in general.

More generally, Hellwig and Veldkamp (2009) investigate how optimal information choices

change the predictions of strategic models and show that strategic complementarity (substitutabil-

ity) leads to players choosing similar (different) information. In a flexible framework with strate-

gic complementarity or substitutability in actions and a rich set of externalities, Colombo, Fem-

minis and Pavan (Forthcoming) relate the (in)efficiency in the acquisition of information to the

(in)efficiency in the use of information and explain why efficiency in the use is no guarantee of ef-

ficiency in the acquisition. Moreover, they show how the acquisition of private information affects

the social value of public information.

While most studies of information acquisition in other domains is theoretical, there are sev-

eral experimental investigations in various contexts. Gabaix, Laibson, Moloche and Weinberg

(2006) use two experiments with costly information acquisition to test the directed cognition model

against the fully rational model. Choi, Guerra and Kim (2015) combine theoretical and experimen-

tal investigations. The paper considers a model of interdependent value auctions with ex ante infor-

mation asymmetry. They compare the second-price (sealed-bid) auction and the English auction

with two types of bidders: insiders, who are perfectly informed about their value, and outsiders,

who are informed only about the private component of their value. In their setting, outsiders can

acquire information from the history of prices, and switching an outsider to an insider has a positive

impact on the seller’s revenue. Their laboratory experiment confirms key theoretical predictions.

Bhattacharya, Duffy and Kim (2015) study endogenous information acquisition in voting. We will

compare our findings with those from these studies in more detail in Section 5.

3 Theoretical Analysis

In this section, we outline a theoretical model of endogenous information acquisition for own

and others’ preferences under two commonly used school choice mechanisms, the Immediate and
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Deferred Acceptance mechanisms.

3.1 The Setup

There is a finite set of students, I , to be assigned to a finite set of schools, S, through a centralized

school choice mechanism. S contains a “null school” or outside option s0 that denotes the possi-

bility of not being matched with any school in S \ {s0}. For each s ∈ S, there is a finite supply

of seat, qs ∈ N, and there are enough seats to accommodate all students,
∑

s∈S\{s0} qs = |I|, while

qs > 0 for all s. By assumption, qs0 ≥ |I|. In the mechanism, schools rank students by a common

and even lottery (single tie-breaking) whose realization is unknown by students when entering the

mechanism.

For each student i ∈ I , her valuations of schools are i.i.d. draws from a distribution F and

are denoted by a vector Vi = [vi,s]s∈S , where vi,s ∈ [0, 1] is i’s von Neumann-Morgenstern utility

associated with school s.

To simplify notations, student preferences are assumed to be strict: For any pair of distinct

schools s and t, vi,s 6= vi,t for all i. Furthermore, we define strict ordinal preferences R on S

such that sRit if and only if vi,s > vi,t. The set of all possible strict ordinal preferences (<) is

augmented with a “null preference” R0 (e.g., being indifferent among all schools in S), which is

denoted as <̄(≡ < ∪ R0) . The distribution of V conditional on R is denoted as F (V |R), while

the distribution of R implied by F is G (R|F ). We impose a full-support assumption on G (R|F ),

i.e., G (R|F ) > 0, ∀R ∈ <, while, on the other hand, G(R0|F ) = 0. That is, given the distribution

of cardinal preferences, every strict ordinal preference ranking is possible.

In the following, we first introduce two centralized mechanisms for student placement. Regard-

ing students’ information on their preferences, we will consider various cases, while it is main-

tained that the distribution of preferences, F (V ) and thus G(R|F ), are always common knowl-

edge. More importantly, deviating from the previous literature on school choice, we will introduce

an information-acquisition stage for each i to learn her own preferences (Ri and/or Vi) or others’

preferences (V−i) before entering the mechanism.
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3.2 School Choice Mechanisms

We focus on two school choice mechanisms that are popular both in the research literature and in

practice: the Immediate-Acceptance mechanism (also known as the Boston mechanism) and the

Gale-Shapley Deferred-Acceptance mechanism.

The Immediate-Acceptance mechanism (IA) asks students to submit rank-ordered lists (ROL)

of schools. Together with the pre-announced capacity of each school, the mechanism uses pre-

defined rules to determine school priority ranking over students and has the following rounds:

Round 1. Each school considers all students who rank it first and assigns its seats in order of

their priority at that school until either there is no seat left at that school or no such student left.

Generally, in:

Round (k > 1). The kth choice of the students who have not yet been assigned is considered.

Each school that still has available seats assigns the remaining seats to students who rank it as kth

choice in order of their priority at that school until either there is no seats left at that school or no

such student left.

The process terminates after any round k when every student is assigned a seat at some school,

or if the only students who remain unassigned listed no more than k choices.

The Gale-Shapley Deferred-Acceptance mechanism (DA) can be either student-proposing

or school-proposing. We focus on student-proposing DA in this study. The mechanism collects

school capacities and students’ submitted ROL of schools. With strict rankings of schools over

students that are determined by pre-specified rules, the process also has several rounds:

Round 1. Every student applies to her first choice. Each school rejects the least ranked students

in excess of its capacity and temporarily holds the others.

Generally, in:

Round (k > 1). Every student who is rejected in Round (k − 1) applies to the next choice on

her list. Each school pools together new applicants and those who are held from Round (k − 1)

and rejects the least ranked students in excess of its capacity. Those who are not rejected are

temporarily held by the schools.

The process terminates after any Round k when no rejections are issued. Each school is then

matched with students whom it is currently holding.
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3.3 Acquiring Information on Own Preferences

Nature draws cardinal preferences Vi for i,

which implies ordinal preferences Ri.

Knowing neither Vi nor Ri, i decides whether

to acquire info on ordinal preferences Ri.

No (α = 0)

i enters the school choice game

knowing only Vi’s distribution.

Yes (α > 0)

i chooses an amount to pay

for acquiring info on Ri: α.

Info on Ri not acquired

w/ prob. 1− a(α)

Info on Ri acquired

w/ prob. a(α)

Having learned Ri, i decides

whether to acquire info on Vi.

No (β = 0)

i enters the school choice

game only knowing Ri.

Yes (β > 0)

i chooses an amount to pay

for acquiring info on Vi: β.

Info on Vi not acquired

w/ prob. 1− b(β)

Info on Vi acquired

w/ prob. b(β)

i enters the school choice

game knowing Vi.

Figure 1: Acquiring Information on One’s Own Preferences.

We first investigate student incentives to acquire information on one’s own value (type). The

timing of the game and the corresponding information structure are described as follows and also

in Figure 1:

(i) Nature draws individual valuation, Vi, from F (V ) for each i, but i knows the value distribu-

tion F (V ) only;

(ii) Each individual i decides whether or not to acquire a signal on her ordinal preferences; If yes,

10



she decides how much she is willing to invest in information acquisition; Her willingness to

pay to acquire her ordinal preferences is denoted by α ∈ [0, ᾱ].

(iii) If i learns her ordinal preferences, she then decides whether to acquire a signal on her cardinal

preferences; If yes, she decides how much she is willing to invest in information acquisition,

denoted by β ∈ [0, β̄].

(iv) Regardless of the decision and outcomes of the information acquisition stage, every student

plays the school choice game under a given school choice mechanism, the IA or DA mecha-

nism.

3.3.1 Technology of Information Acquisition

Information acquisition in the model is covert. That is, i knows that everyone else is engaging in

information acquisition, but does not know what information has been acquired by whom.

The information acquisition has two stages (cf. Figure 1): i first pays a cost α to acquire a

signal on ordinal preference, ω1,i ∈ <̄. With probability a (α), she learns perfectly, ω1,i = Ri;

with probability 1 − a (α) nothing is learned, ω1,i = R0. At the second stage, having learned

ordinal preferences Ri, i may pay another cost, β, to learn her cardinal preferences by acquiring a

signal ω2,i ∈ [0, 1]|S|. With probability b (β), one learns her cardinal preferences, ω2,i = Vi; with

probability 1− b (β), she does not, ω2,i = V 0, where V 0 is a |S|-dimension vector of zeros.1

The technologies a (α) and b (β) are such that a (0) = b (0) = 0, limα→∞ a (α) = limβ→∞ b (β) =

1, a′, b′ > 0, a′′, b′′ < 0, and a′ (0) = b′ (0) = +∞.2 The cost of information acquisition is c (α, β)

where c (0, 0) = 0, cα, cβ, cαβ, cαα, cββ > 0 for all (α, β) and cα (0, 0) , cβ (α, 0) < +∞ for all

α > 0. Given these restrictions, we may limit our attention to α ∈ [0, ᾱ] and β ∈
[
0, β̄
]
, where

c(ᾱ, 0) = c(0, β̄) = 1. This is because c (α, β) can be greater than one, the maximum possible

payoff, when α and β are too large.

We summarize the signals that i may observe after the two-stage information acquisition by

1Given that Ri is known, i knows that it is impossible to have Vi = V 0, i.e., F (V 0|R) = 0 for all R ∈ <.
2The infinite marginal productivity at zero input is consistent with, for example, the Cobb-Douglas function. When

necessary, we define that 0 · ∞ = 0.
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ωi = (ω1,i, ω2,i) ∈ <̄ × [0, 1]|S|. If i pays (α, β), the distribution of signals is H (ω|α, β):

H (ωi = (R0, V 0) |α, β) = 1− a (α) ,

H (ωi = (Ri, V
0) |α, β) = a (α) (1− b (β)) ,

H (ωi = (Ri, Vi) |α, β) = a (α) b (β) ,

H (ωi = (R, V ) |α, β) = 0 if (R, V ) /∈ {(R0, V 0), (Ri, V
0), (Ri, Vi)}.

Upon observing signal ωi, the posterior distributions of cardinal and ordinal preferences are:

F (V |ωi) =


F (V )

F (V |Ri)

1Vi

if ωi = (R0, V 0) ,

if ωi = (Ri, V
0) ,

if ωi = (Ri, Vi) ;

G (R|ωi) =


G (R|F )

1Ri

1Ri

if ωi = (R0, V 0) ,

if ωi = (Ri, V
0) ,

if ωi = (Ri, Vi) ;

where 1Vi (or 1Ri
) is the probability distribution placing probability 1 on point Vi (or Ri).

3.3.2 Game of School Choice with Information Acquisition

After observing the signal ωi, students enter the school choice game under DA or IA as pre-

announced. Each student i submits an ROL denoted by Li ∈ < such that sLit if and only if s

is ranked above t.3 The payoff if i submits Li and others submit L−i is:

u (Vi, Li, L−i) =
∑
s∈S

as (Li, L−i) vi,s ≡ A (Li, L−i) · Vi,

where as (Li, L−i) is the probability that i is accepted by s given (Li, L−i). The mechanism deter-

mines A (Li, L−i). We further distinguish between two types of mechanisms: strategy-proof and

non-strategy-proof.

Definition 1. A mechanism is strategy-proof if

u (Vi, Ri, L−i) ≥ u (Vi, Li, L−i) , ∀Li, L−i, and ∀Vi;
3We restrict the set of actions to the set of possible ordinal preferences, <. In other words, students are required

to rank all schools in S including s0, which differs from reality where the outside option is not included in ROL.
However, we assume that i is always assigned to s0 when she is rejected by all s s.t. sLis

0. It is therefore equivalent
to say that the effective ROL is truncated at s0, which makes our restriction of Li ∈ < innocuous.
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i.e., reporting true ordinal preferences is a dominant strategy.

It is well-known that the student-proposing DA mechanism is strategy-proof (Dubins and

Freedman 1981, Roth 1982), whereas the IA mechanism is not (Abdulkadiroğlu and Sönmez

2003).

Under either mechanism, a symmetric Bayesian Nash equilibrium is defined by a tuple

(α∗, β∗ (R,α∗) , σ∗ (ω)) such that for all i:

(i) A (possibly mixed) strategy σ∗ (ω) : <̄ × [0, 1]|S| → ∆ (<),

σ∗ (ω) ∈ arg max
σ

{∫ ∫ ∫
u (V, σ, σ∗ (ω−i)) dF (V |ω) dF (V−i|ω−i) dH

(
ω−i|α∗−i, β∗−i

)}
.

That is, given her own signal ω, everyone best responds to others, taking into account that

others have paid
(
α∗−i, β

∗
−i
)

to acquire information. To simplify notations, we suppress the

dependence of σ∗ (ω) on
(
α∗−i, β

∗
−i
)
. We further define the value function given

(
ω, α∗−i, β

∗
−i
)
:

Π
(
ω, α∗−i, β

∗
−i
)

= maxσ
{∫ ∫ ∫

u (V, σ, σ∗ (ω−i)) dF (V |ω) dF (V−i|ω−i) dH
(
ω−i|α∗−i, β∗−i

)}
.

(ii) Acquisition of information on cardinal preferences β∗ (R,α∗) : <× [0, ᾱ]→
[
0, β̄
]
, ∀R,

β∗ (R,α∗) ∈ arg max
β

 b (β)
∫

Π
(
(R, V ) , α∗−i, β

∗
−i
)
dF (V |R)

+ (1− b (β)) Π
(
(R, V 0) , α∗−i, β

∗
−i
)
− c (α∗, β)

 .

β∗ (R,α∗) is therefore the optimal decision given that one has learned her ordinal prefer-

ence (R) after paying α∗ for acquiring R. Again, β∗ (R,α∗) depends on others’ activities of

information acquisition
(
α∗−i, β

∗
−i
)
.

(iii) Acquisition of information on ordinal preferences α∗ ∈ [0, ᾱ],

α∗ ∈ arg max
α


a (α)

∫ 
b (β∗ (R,α))

∫
Π
(
(R, V ) , α∗−i, β

∗
−i
)
F (V |R)

+ (1− b (β∗ (R,α))) Π
(
(R, V 0) , α∗−i, β

∗
−i
)

−c (α, β∗ (R,α))

 dG (R|F )

+ (1− a (α))
[
Π
(
(R0, V 0) , α∗−i, β

∗
−i
)
− c (α, 0)

]


.
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The above expression has already taken into account that the optimal β equals to zero if one

obtains a signal ω1 = R0 in the first stage: β∗(R0, α) = 0 for all α.

We are now ready to show our existence result (Lemma 1) and analyses of information acqui-

sition behavior in equilibrium (Proposition 1).

Lemma 1. Under DA or IA, a symmetric Bayesian Nash equilibrium exists.

Proposition 1. In a symmetric Bayesian Nash equilibrium (α∗, β∗ (R,α∗) , σ∗ (ω)) under DA or

IA,

(i) α∗ > 0, i.e., students always have incentives to learn their ordinal preferences;

(ii) under DA, β∗ (R) = 0 for all R, i.e., there is no incentive to learn cardinal preferences;

(iii) under IA, there always exists a distribution of preferences F such that β∗ (R) > 0 for some

R.

Remark 1. Similar to the results on DA, for all strategy-proof mechanisms that elicits ordinal

preferences from students, students have no incentive to learn their own cardinal preferences.

3.4 Acquiring Information on Others’ Preferences

This section studies students’ incentive to acquire information on others’ types/preferences. We

now assume that everyone knows exactly her own cardinal preferences (Vi) but not others’ pref-

erences (V−i), and that the distribution of Vi, F (Vi), is still common knowledge and has the same

properties as before.

The process and technology for information acquisition are depicted in Figure 2, which are

similar to the acquisition of information on own preferences. Student i may pay δ to acquire a

signal of V−i, ωi,3 ∈ [0, 1]|S|×(|I|−1). With probability d (δ), she learns perfectly, ω3,i = V−i; with

probability 1 − d (δ), ω3,i = V 0
−i ≡ [0]|S|×(|I|−1), i.e., i learns nothing. The distribution of signals

and the posterior distribution of preferences are:

K
(
ω3,i = V 0

−i|α, β
)

= 1− d (δ) ,

K (ω3,i = V−i|α, β) = d (δ) ,

K
(
ω3,i = V ′−i|α, β

)
= 0 if V ′−i /∈ {V−i, V 0

−i};

F (V−i|ω3,i) =

 F (V−i)

1V−i

if ω3,i = V 0
−i;

if ω3,i = V−i.
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Nature draws cardinal preferences for everyone,

but Vi is i’s private information.

i decides whether to acquire information

on others’ preferences V−i.

No (δ = 0)

i enters the school choice game

knowing only V−i’s distribution.

Yes (δ > 0)

i chooses an amount to pay

for acquiring info on V−i: δ.

Info on V−i not acquired

w/ prob. 1− d(δ)

Info on V−i acquired

w/ prob. d(δ)

i enters the school choice

game knowing V−i.

Figure 2: Acquiring Information on Others’ Preferences.

The technology has the following properties: d (0) = 0, limδ→∞ d (δ) = 1, d′ > 0, d′′ < 0,

and d′ (0) = ∞. The cost for information acquisition is e (δ) such that e (0) = 0, e′, e′′ > 0 and

e′ (0) <∞. Similarly, we may restrict our attention to δ ∈
[
0, δ̄
]
, where e

(
δ̄
)

= 1.

Information acquisition is again covert, i.e., everyone knows that others engage in acquiring

information but does not know if they succeed or not. We focus on a symmetric Bayesian Nash

equilibrium, (δ∗ (V ) , σ̄∗ (ω3, V )), where:

(i) A (possibly mixed) strategy σ̄∗ (ω3, V ) : [0, 1]|S|×(|I|−1) × [0, 1]|S| → ∆ (<), such that

σ̄∗ (ω3,i, Vi) ∈ arg max
σ̄

{∫ ∫
u (Vi, σ̄, σ̄

∗ (ω3,−i, V−i)) dF (V−i|ω3,i) dK
(
ω3,−i|δ∗−i

)}
.

That is, given her own signal ω3,i, everyone best responds to others, taking into account

that they have paid δ∗ to acquire information (denoted as δ∗−i). We further define the value

function given
(
ω3,i, δ

∗
−i
)

and Vi as:

Φ
(
Vi, ω3,i, δ

∗
−i
)

= max
σ̄

{∫ ∫
u (Vi, σ̄, σ̄

∗ (ω3,−i, V−i)) dF (V−i|ω3,i) dK
(
ω3,−i|δ∗−i

)}
.
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(ii) Acquisition of information on others’ preferences δ∗ (V ) : [0, 1]|S| →
[
0, δ̄
]
, ∀V :

δ∗ (Vi) ∈ arg max
δ

{
d (δ)

∫
Φ
(
Vi, V−i, δ

∗
−i
)
dF (V−i) + (1− d (δ)) Φ

(
Vi, V

0
−i, δ

∗
−i
)
− e (δ)

}
.

δ∗ (Vi) is therefore the optimal information acquisition.

The existence of such an equilibrium can be proven by similar arguments in the proof of Lemma

1, and the properties of information acquisition in equilibrium is summarized as follows:

Proposition 2. Suppose (δ∗ (V ) , σ∗ (ω3, V )) is a symmetric Bayesian Nash equilibrium under a

given mechanism.

(i) δ∗ (V ) = 0 for all V under DA;

(ii) There always exists a distribution of preferences F such that δ∗ (V ) > 0 under IA for all V

in some positive-measure set.

Remark 2. Similar to the results on DA, for all strategy-proof mechanisms that elicits ordinal

information from students, students have no incentive to learn others’ preferences.

The above result thus provides another perspective on strategy-proofness as a desideratum in

market design: Strategy-proofness makes the school choice game easier to play by reducing the

incentive to acquire information on others’ preferences to zero.

3.5 Welfare Effects of Information Provision

The above results thus show students always have incentives to acquire information on own pref-

erences and sometimes even information on others’ preferences. However, such incentives do not

always lead to successful information acquisition which depends on how costly it is. Moreover,

what education authority should care about is the efficiency of school-student matching instead of

information acquisition itself.

Therefore, we now analyze the effects of information provision by the education authority.

We assume that information provision decreases the cost of information acquisition to zero, while

the lack of it increases such cost to infinity. For simplicity, we focus on a special setting where

everyone has the same ordinal (but different cardinal) preferences, similar to Abdulkadiroğlu et al.
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(2011) and Troyan (2012). Realizing its restrictiveness, we relax this assumption in the experiment

(cf. section 4).

In the same model as before, we start with a prior F and thus G (R|F ) such that after an R is

drawn, it becomes everyone’s ordinal preferences. Besides, every school is acceptable: vi,s > 0

for all i and s. We use Fvs to denote the marginal distribution of the cardinal preference for school

s.

The education authority decides how much information to release by sending a vector of sig-

nals to every i: ω̄i = (ω̄1,i, ω̄2,i, ω̄3,i) ∈ <̄ × [0, 1]|S| × [0, 1]
|S|×(|I|−1)

, where ω̄1,i and ω̄2,i are the

signals of i’s ordinal and cardinal preferences respectively, and ω̄3,i is the signal of others’ cardinal

preferences. All signals are “hard information” such that ω̄1,i ∈ {R0, Ri}, ω̄2,i ∈ {V 0, Vi}, and

ω̄3,i =
{
V 0
−i, V−i

}
, i.e., they are either perfectly informative or completely uninformative.

Under each of the following four information structures , we investigate the ex ante welfare in

equilibrium:

(i) Uninformed (UI): ω̄i =
(
R0, V 0, V 0

−i
)
∀i;

(ii) Ordinally Informed (OI): ω̄i =
(
Ri, V

0, V 0
−i
)
∀i;

(iii) Cardinally Informed (CI): ω̄i =
(
Ri, Vi, V

0
−i
)
∀i;

(iv) Perfectly Informed (PI): ω̄i = (Ri, Vi, V−i) ∀i.

It should be noted that the identical ordinal preference is common knowledge under OI, CI, or PI,

while under UI, nobody knows the realization of ordinal preference, but everyone knows that the

ordinal preference will be the same across students.

These four information structures can be considered as the outcomes of various policy in-

terventions. When the education authority makes it difficult for students and parents to acquire

information on schools, we are likely to be in the UI scenario. When it makes some information

easy to access, students may find it costless to learn their ordinal preferences, and thus we are

likely in the OI scenario. If all information on own preferences is readily available, we are likely

to be in the CI scenario.

We are also interested in the PI scenario, which relates to the gaming part of school choice

under a non-strategy-proof mechanism. From Proposition 2, individual students have incentives
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to acquire information on others’ preferences under the Immediate Acceptance mechanism. The

literature has shown that this additional strategic behavior may create additional inequalities in

access to public education. More precisely, if one does not understand the game and does not

invest enough to acquire information on others’ preferences, she may have a disadvantage when

playing the school choice game. As a policy intervention, the education authority can choose to

make this information public or at least easier to obtain. For example, in Amsterdam, strategies of

applicants are published, and students are allowed to submit and revise their strategies upon seeing

others’ strategies (De Haan, Gautier, Oosterbeek and Van der Klaauw 2015).

Note that a symmetric Bayesian Nash equilibrium, possibly in mixed strategies, always exists

under any of the four information structures by the standard fixed point arguments. We summarize

the results on ex ante welfare under DA and IA in the following two propositions.

Proposition 3. Under DA, ex ante welfare of every student under any of the four information

structures (UI, OI, CI, and PI) is the same and equals to
∑

s∈S\{s0}
qs
|I|

∫
vi,sdFvs (vi,s) in any

equilibrium.

It therefore implies that there is no gain in terms of ex ante student welfare by providing more

information under DA.

Proposition 4. Under IA, we obtain the following ex ante student welfare comparisons in terms of

Pareto dominance:

(i) under UI and OI, the ex ante welfare of every student is
∑

s∈S\{s0}
qs
|I|

∫
vi,sdFvs (vi,s);

(ii) CI > OI = UI in symmetric equilibrium;

(iii) PI > OI = UI in symmetric equilibrium;

(iv) However, PI can either Pareto dominate or be Pareto dominated by CI.

Therefore, it is always beneficial to provide more information on one’s own cardinal prefer-

ences, although the effect of providing information on others’ preferences is ambiguous. We use

two examples to prove part (iv) in the proposition: Section A.5.4 shows that PI can dominate CI

in symmetric equilibrium; and the example in section A.5.5 shows the opposite. The reason that

PI may be dominated is that PI sometimes leads multiple students of high type at a school to play

mixed strategies in Nash equilibrium, instead of always top-ranking that school. This can happen
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because multiple high-type students are competing for the same school seats knowing the pres-

ence of other high-type students, which makes top-ranking that school sub-optimal. As a result,

sometimes that school is assigned to students of low type, which leads to welfare loss. This may

not happen under CI in symmetric Bayesian Nash equilibrium, as high-type students do not know

precisely the number of other high-type students in the game.

3.6 Possible Extensions

There are several potential extensions to our model. For example, one may allow students to

acquire information on one’s own and others’ preferences simultaneously. Similarly, one may

consider general signals to be acquired instead of the “hard news” in our model. However, given

the lack of strategy-proofness and the role of cardinal utility under the IA mechanism, our results

should be robust to such generalizations.

For our analysis of information provision, we assume that the lack of information provision

makes the information acquisition cost infinite. While the education authority can manage to

increase the cost, it is impossible to increase it to infinity. Our results from the lab experiment will

show this limitation is less of a concern, as they call for more information provision by education

authority (see Section 5).

Another restriction is the limited student preference domain. That is, students have the same

ordinal preferences. This is not uncommon when studying the welfare performance of the two

mechanisms (Abdulkadiroğlu et al. 2011, Troyan 2012), with the justification that the common-

ordinal-preference assumption is plausible in real life. Nonetheless, we realize that an extension to

more general preference domain will be fruitful and leave this to future study.

Thus far, our theoretical analyses rely on the common knowledge of rationality assumption,

which is implausible in the lab or the field. Besides, our school choice game is augmented with

an information-acquisition stage, which makes the game even more complex. One may explore

a theoretical model with students of heterogenous sophistication levels as in Pathak and Sönmez

(2008), but it is necessary to restrict ourselves to a finite number of types of student sophistication.

Such considerations thus make it fruitful to study school choice with information acquisition

in the laboratory, where we can allow students to have any type of behavioral responses in an

otherwise controlled environment.
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4 Experimental Design

We design our experiment to compare student incentives to acquire information under the IA and

the DA mechanisms, and the subsequent welfare implications.

When designing the experiment, we relax the common-ordinal-preference assumption. Stu-

dents may have different ordinal preferences. On the other hand, to simplify the possibly over-

complex game, we design the payoff/preference distribution so that the two-step acquisition of

information on own preferences is reduced to one step. That is, upon learning one’s own ordinal

preferences, a student learns her cardinal preferences as well, because there is only one possible re-

alization of cardinal preferences consistent with such ordinal preferences. Therefore, the follow-up

acquisition of cardinal preferences is not needed, which simplifies the game considerably.

4.1 The Environment

Following our theoretical analyses, we consider a simple environment with three students, i ∈

{1, 2, 3}, and three schools, s ∈ {a, b, c}. Each school has one slot and rank students with lotteries.

Student cardinal preferences are presented in Table 1.

Table 1: Payoff Table for the Game Played in the Experiment

Students s = a s = b s = c
1 1 0.1 with prob. 4/5; 1.1 with prob. 1/5 0
2 1 0.1 with prob. 4/5; 1.1 with prob. 1/5 0
3 1 0.1 with prob. 4/5; 1.1 with prob. 1/5 0

Notes: The above payoffs are measured in dollars. In the experiment,
points are used to measure payoffs. The exchange rate is 100 points = 1
USD.

In this environment, the uncertainty comes from the realization of the value of school b, which

can be either better or worse than school a. We thus relax the common-ordinal-preference assump-

tion. Ex ante, the expected payoff of being assigned to b is 0.3 (= 4∗0.1
5

+ 1∗1.1
5

), which is less than

1/3 of the payoff from school a for any student. In terms of welfare, the inefficiency has only one

source, i.e., it is inefficient to assign a type-(1, 0.1, 0) student to school b if there is at least one

other student of type-(1, 1.1, 0).

Under the assumption that every student is a risk-neutral expected-utility maximizer, we solve

the equilibrium of the school choice game under either IA or DA for any given information struc-
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ture with or without costly information acquisition. Detailed derivations and results are presented

in Appendix B. We also derive the results under the assumption that students are risk averse (Ap-

pendix C). While risk-averse students are willing to pay less for information on either one’s own or

others’ preferences, the same directional comparison between the IA and DA mechanisms main-

tains. In particular, we quantify student incentives to acquire information on own preferences or

others’ preferences. When we measure the incentive to acquire information on own preferences

(denoted as “OwnValue”), every student is endowed with the same prior that everyone knows only

the preference distribution not the realizations. For each student, we then calculate the payoff dif-

ference between playing the game knowing and not knowing own preferences, taking into account

that the other two students may or may not know their own preferences. Therefore, we reach the

theoretical predictions on student willingness to pay (WTP, henceforth) for OwnValue. Similarly,

to measure student WTP for information on others’ preferences (denoted as “OtherValue”), prefer-

ence realizations are private information, and for any given student, we derive the payoff difference

between playing the game with and without the knowledge of others’ preferences.

4.2 Treatments

Following our theoretical analyses, we implement a 2(mechanisms)×2(information to be acquired)×2(information

cost) factorial design to evaluate the performance of the two mechanisms {IA, DA} under two in-

formation and cost conditions. The choice of the 2 × 2 × 2 design is based on the following

considerations.

(i) IA vs. DA (between-subject): The two mechanisms are the major contenders for the school

choice reforms. While DA is dominant strategy incentive compatible, the IA mechanism

is manipulable. However, welfare comparisons of these two mechanisms are ambiguous

depending on the information condition as well as parameters of the environment.

(ii) Acquiring OwnValue vs. OtherValue (between-subject): Our theoretical analyses have shown

that the incentive to acquire information depends on the types of information to be acquired.

(iii) Free vs. costly information acquisition (within-subject): While the free information condi-

tion allows us to evaluate information provision policies, the costly information acquisition
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condition reflects the reality. As this is implemented within-subject, we also take into account

the order effect: For half of the sessions, subjects first experience free-info periods and then

costly-info periods (denoted as “Free-Costly”); and for the other half of the sessions, subjects

experience costly-info periods first and then free-info periods (denoted as “Costly-Free”).

For the free information part, participants are provided the information regarding their own

value (or others’ values) for free. In comparison, in the costly information acquisition part, we use

the Becker-Degroot-Marshak (BDM) mechanism (Becker, DeGroot and Marschak 1964b) to elicit

participant’s WTP for the relevant piece of information, own value or others’ values for school B.

Specifically, each subject is asked to enter her WTP for her own value (or others’ values) in the

interval of [0, 15]. The server collects WTP from each participant and generates a random number

between [0, 15] for each participant independently. If her WTP is greater than the random number,

she finds out the relevant information and pay an amount equal to the random number; otherwise,

she does not find out the information and pays zero. To facilitate participant understanding of the

BDM mechanism, we use numerical examples in the instructions as well as quiz questions at the

end of the instructions to illustrate how it works. Our instructions for the BDM mechanism is

adapted from Benhabib, Bisin and Schotter (2010).

To elicit each participant’s belief about the average WTP of the other two participants in her

group, we use the binarized scoring rule (BSR) introduced in Hossain and Okui (2013). Compared

to the quadratic scoring rule (QSR), the BSR is more robust in the sense that it is incentive com-

patible under different risk attitude and even when the decision maker is not an expected utility

maximizer (Schotter and Trevino 2013). Specifically, each subject submits a guess for the aver-

age WTP of the other two participants. The server computes the MSE, i.e., the square root of the

squared difference between the guess and the actual average. We then randomly draw a number,

R, uniformly from [0, U ]. If the MSE is less than or equal to R, the subject gets a fixed prize of

5 points. Otherwise, she gets zero. Based on our pilot sessions, we find that 90% of the mean

squared errors (MSEs) are at or below 49. Therefore, we use 49 as the upper bound for BSR, i.e.,

U = 49. The random number, R, is drawn independently for each subject, and for each round.
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4.3 Experimental Procedures

In each experimental session, each participant is randomly assigned an ID number and is seated

in front of a terminal in the laboratory. The experimenter then reads the instructions for the first

ten periods aloud. Subjects have the opportunity to ask questions, which are answered in public.

Subjects are then given 10 minutes to read the instructions at their own pace and to finish the

review questions. After everyone finishes the review questions, the experimenter distributes the

answers and goes over the answers in public. Afterwards, participants go through 10 periods of a

school choice experiment. After the first ten periods, the experimenter reads the instructions for

the second ten periods aloud and answers questions. Then the participants complete the review

questions for the second half of the instructions, and go through the second ten periods of the

school choice experiment.

In the acquiring OwnValue treatments, each period consists of the following stages:

(i) Each participant is provided with the distribution of values (Table 1) to induce common

knowledge of value distribution.

(ii) Each participant is asked to rank the schools.

The server collects rankings, draws the school B value for each subject, generates the tie-

breaker, and allocates the schools, but withholds the outcomes till the end of the round.

(iii) Each participant acquires her value for school B, either for free or by paying a cost:

(a) For the free information treatment, we then provide each subject her own value for

school B for free.

(b) For the costly information treatment only, we then use the BDM mechanism to elicit

each participant’s willingness to pay for learning her own value. We tell the subjects

that everyone will know the number of other subject(s) in her group who observe their

value(s), regardless of whether she will observe her value or not.

The server collects WTP from each subject and generates a random number between

[0, 15] for each participant.

(iv) Afterwards, each subject receives the following feedback on her screen:
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(a) Free information treatment: her school B value and the fact that every subject in her

group is provided with one’s own value.

(b) Costly information treatment: her WTP, her random number, whether she observes her

value, and

i. if yes, her value, the number of other subject(s) in her group who also observe their

value(s); and

ii. if no, only the number of other subject(s) in her group who also observe their

value(s).

(v) Each participant is asked to rank the schools again.

The server again collects the rankings, draws a new set of values for every subject, generates

a new tie-breaker for each participant, and allocates the schools.

(vi) Each participant receives the following feedback on her screen:

(a) For the allocation before Own-Value acquisition: her ranking, her value, the tie-breaker,

her allocation and her payoff; and

(b) For the allocation after Own-Value acquisition: her ranking, her value, the tie-breaker,

her allocation and her payoff.

The OtherValue treatments proceed in a similar way, except that each subject always knows her

own value for school B before making any school ranking decisions. The information provided

for free or acquired in a costly manner using the BDM is the values for school B of the other two

participants in her group.

In each treatment, each session lasts 20 periods with no practice rounds. Each session uses

either costly or free information for the first ten periods, and another for the next ten periods. The

order is counterbalanced for each treatment. At the end of 20 periods, we implement the Holt and

Laury lottery choice procedure to elicit subject risk attitude. After telling each subject their payoff

from the risk elicitation task, we offer an opportunity for subjects to acquire information on the

realization of the lottery, again using the BDM mechanism. Their WTP for this useless information

is a measurement of their curiosity, which we will use in subsequent analysis.
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At the end of the experiment, each participant fills out a demographics and strategy survey on

the computer. Each participant is paid in private at the end of the experiment. The experiment is

programmed in z-Tree (Fischbacher 2007).

Table 2: Features of Experimental Sessions

Information to Be Acquired Immediate Acceptance Mechanism Deferred Acceptance

OwnValue: Own Preferences Free-Costly 3×12 Free-Costly 3×12
Costly-Free 3×12 Costly-Free 3×12

OtherValue: Others’ Preferences Free-Costly 3×12 Free-Costly 3×12
Costly-Free 3×12 Costly-Free 3×12

Notes: Each session has 10 periods with free information and another 10 periods with costly
information. For any given treatment, sessions with free information periods first are denoted
as “Free-Costly”; and the others with costly information first are denoted as “Costly-Free”.

Table 2 summarizes the features of the experimental sessions. For each treatment, we conduct

three independent sessions at the Behavioral Economics and Cognition Experimental Lab at the

University of Michigan. Each session consists of 12 subjects. The subjects are students from

the University of Michigan. No one participates in more than one session. This gives us a total

of 24 independent sessions and 288 participants. In addition, three sessions of DA-OtherValue

(Free-Costly) treatment use a z-Tree program with a coding error in the second ten periods of the

experiment, i.e., own value was not provided in the second ten periods, thus rendering the second

half of the data useless. Nonetheless, we use the data from the first ten periods from these three

sessions in our data analysis, since the instructions and program for the first half are both correct.

If we include these three sessions, we have a total of 27 independent sessions with 324 participants.

Our subjects are University of Michigan students, recruited using ORSEE (Greiner 2015)

Experimental instructions are included in the Appendix D, and the data are available from the

authors upon request.

5 Experimental Results

Our theoretical analyses provide a set of benchmarks for our data analyses, where we focus on

individual WTP and ROL, as well as efficiency.

We introduce several shorthand notations in presenting the results. First, let x > y, x, y ∈

{IA,DA}, denote that a measure under mechanism x is greater than the corresponding measure
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under mechanism y at the 5% significance level or less. Second, let x ≥ y denote that a mea-

sure under mechanism x is greater than the corresponding measure under mechanism y, but the

comparison is not statistically significant at the 5% level.

5.1 Willingness to Pay for Information

Our theoretical analyses provide the WTP comparisons across mechanisms, summarized by the

first two hypotheses.4 Hypothesis 1 is implied by Proposition 1, while Hypothesis 2 is implied

by Proposition 2. For our experimental environment, we derive the WTP for risk-neutral and risk

averse students in Appendices B and C, respectively.

Hypothesis 1 (WTP for OwnValue). Subject WTP to acquire information on own preferences

under the IA mechanism is greater than that under the DA mechanism, while both being positive,

i.e., IA > DA > 0.

Result 1 (WTP for OwnValue). Subject WTP to acquire information on OwnValue under the IA

mechanism is significantly greater than that under the DA mechanism, while both are positive.

Support: Table 3 presents session-level average WTP in each treatment. Treating each session as

an independent observation, we reject the null of no difference in favor of Hypothesis 1 that IA

> DA, using one-sided Wilcoxon rank-sum test (p = 0.03). Furthermore, the average WTP for

OwnValue under the IA mechanism is 6.56 (standard deviation or s.d. 4.78), and that under the

DA mechanism is 4.44 (s.d. 4.38). Both are statistically significantly different from zero at the 1%

level.

Furthermore, Figure 3 presents the time-series of the average WTP for OwnValue (upper panel)

and OtherValue (lower panel) over time. Theoretical predictions for risk neutral students are pre-

sented as the red horizontal line(s). Note that, while the session-level average WTP for own value

under the IA mechanism is mostly within the range predicted by theory, [5.2, 8], that under under

the DA mechanism is way above the risk neutral prediction of 0.67. We will explain this excess

WTP in subsequent subsections.

We now investigate subject WTP to acquire information on others’ preferences.

4Most of the predictions are valid for not-too-risk-averse subjects.
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Figure 3: Average WTP for own value (upper panel) and others’ values (lower panel) over time
Notes: Red horizontal lines denote theoretical predictions for risk neutral students. Error bars represent one standard
deviation.
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Table 3: Average Willingness-To-Pay for Information by Treatment

Treatment All 6 Free-Costly Costly-Free Theoretical
Sessions Sessions Sessions Predictiona

BOS OwnValue 6.56 5.56 7.57 [5.2, 8]
(4.78) (4.59) (4.75)

BOS OtherValue 4.51 4.00 5.02 [0, 0.24]
(4.55) (4.55) (4.49)

DA OwnValue 4.44 3.16 5.72 0.67
(4.38) (4.05) (4.33)

DA OtherValue 2.21 1.90 2.52 0
(3.16) (3.25) (3.04)

Notes: The WTPs are measured in experiment points. There are 6 sessions un-
der each treatment, and each session has 10 periods with free information and
another 10 periods with costly information. For any given treatment, three ses-
sions have free information periods first (denoted as Free-Costly); and the other
three have costly information first (denoted as Costly-Free). Standard deviations
are in parentheses and are calculated by treating each subject-period outcome as
an observation. Therefore, for each treatment, there are in total 720 observa-
tions from 72 subjects, half of which are Costly-Free, while the other half are
Free-Costly.
a. The predictions are for risk-neutral subjects, which are derived in details in
Appendix B. Under the two treatments of BOS, the predictions are intervals, be-
cause the WTPs depend on how many other students successfully acquire such
information. As it is uncertain how many others can successfully acquire in-
formation ex ante, the prediction is thus an interval that takes into account all
possibilities.

Hypothesis 2 (WTP for OtherValue). Subject WTP for OtherValue is zero under the DA mechanism

regardless of risk attitude, whereas it is positive under the IA mechanism. Therefore, IA > DA = 0.

Result 2 (WTP for OtherValue). Subject WTP for others’ values under the IA mechanism is sig-

nificantly greater that that under the DA mechanism, but both are significantly different from zero:

IA > DA > 0.

Support: Table 3 presents session-level average WTP in each treatment. Treating each session

as an independent observation, we reject the null of no difference in favor of Hypothesis 2 that

IA > DA concerning WTP for OtherValue, using one-sided Wilcoxon rank-sum test (p = 0.01).

Furthermore, the average WTP for OtherValue under the IA mechanism is 4.51 (s.d. 4.55), and

that under the DA mechanism is 2.21 (s.d. 3.16). Both are statistically significantly different from

zero at the 1% level.

Furthermore, we find that, under either the IA or the DA mechanisms, subject WTP for Own-

Value is significantly greater than that for OtherValue (p = 0.01, one-sided Wilcoxon rank-sum
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test), consistent with our theoretical predictions. While the WTP for OtherValue between the two

mechanisms is in the direction predicted by theory, we again find that the WTP for OtherValue

lie above the range predicted by theory, which is [0, 0.24] under the IA and zero under the DA

mechanism.

To explain the excess WTP for information, we first investigate determinants of WTP for infor-

mation at the subject level (subsection 5.1.1) and then using panel regressions (subsection 5.1.2).

Based on these investigations, we then decompose the excess WTP into various behavioral and

cognitive factors in subsection 5.2.

5.1.1 Determinants of WTP for Information: Subject-Average

To investigate the determinants of subject WTP, we analyze the subject-level average WTP in a

Tobit model as follows:

WTP
∗
i = Controlsi + εi,

WTP i = max{0,min{WTP
∗
i , 15}}.

The dependent variable is the subject-average WTP, WTP i, which is obtained by averaging over

all WTPs of subject i. We use the Tobit model to take into account that WTP i is censored be-

tween [0, 15] among 18% of observations (43 out of 241) in our main sample.5 For independent

variables (or controls), we include the four treatment dummies (without constant term) and some

demographic variables. Moreover, we consider effects of the following factors:

(i) Misunderstanding DA: This measure is negatively correlated with how well subjects under-

stand the school choice game under DA. We take the periods where no information acquisi-

tion is involved and determine if a subject plays a dominated strategy in each period given

her information. We then average over all such periods to obtain this variable. Unfortunately,

there is no similar measures for BOS, as there is no dominant strategy.

(ii) Costly-Free: When a session has a Costly-Free order, i.e., subjects play the game with costly

information first, it leaves little room for subjects to learn and understand the game. There-
5As a robustness check, results from linear models, which are available in Table E15 in Appendix E, are both

quantitatively and qualitatively similar.
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fore, subjects may have sub-optimal WTP due to this greater cognitive load, which is reflected

in Table 3.

(iii) Curiosity: We measure subject’s curiosity by her WTP for the lottery realization in the Holt-

Laury choice game. As such information is irrelevant to payoffs, this WTP thus provides

a good measure of subject’s “curiosity,” or her general taste for information. One may ex-

pect that a more curious subject is willing to pay more for information on OwnValue or on

OtherValue in the school choice game.

(iv) Risk aversion: Risk aversion is measured by the Holt-Laury lottery choice switching point,

and more risk-averse subjects switch later. As we show in Appendix C, risk aversion de-

creases WTP for information. Indeed, 78% of our subjects are risk averse.6

Note that the first two factors provide measures of how well subjects understand the game,

while the last two are behavioral factors. In Table 4, where we present the results, Column (1)

includes the full sample, (2)-(4) exclude subjects with more than one switching point or with irra-

tional choices in the Holt-Laury lottery choice game, and Column (4) further excludes observations

with missing demographic information and includes additional controls.

While the treatment effects estimated from the Tobit model are largely consistent with Results

1 and 2, we observe the following additional findings. First, the more a subject misunderstands

DA (i.e., playing dominated strategies more often under DA), the more she is willing to pay for

information. Second, measured by her WTP for useless information (i.e. the lottery realization

in the Holt and Laury lottery choice game), subject curiosity is positively correlated with WTP

for information on school values. Third, the timing for introducing the costly information acquisi-

tion game matters. When subjects have to learn both the mechanism and information acquisition

in the first ten periods, i.e., Costly-Free = 1, subject WTP is substantially higher. This is con-

sistent with previous experimental findings that higher cognitive load can cause suboptimal play

(Bednar, Chen, Liu and Page 2012). Lastly, consistent with the theoretical prediction, risk aversion

decreases WTP, but the results are not robust in terms of statistical significance.

6Among 241 subjects who have one switching point and make rational choices in the Holt-Laury game, 7%
(16/241) are risk loving; 16% (38/241) are risk-neutral; and 78% (187/241) are risk averse.
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Table 4: Determinants of Subject-Average WTP: Tobit Model

(1) (2) (3) (4)
Full Sample Sub-sample 1 Sub-sample 1 Sub-sample 2

IA OwnValue 6.45*** 6.26*** 5.22*** 5.77***
(0.56) (0.57) (1.10) (1.74)

IA OtherValue 4.32*** 4.05*** 3.46*** 3.91**
(0.62) (0.72) (1.21) (1.91)

DA OwnValue 4.13*** 3.78*** 2.94*** 3.60**
(0.71) (0.82) (1.07) (1.71)

DA OtherValue 1.47*** 1.01** 0.91 1.98
(0.45) (0.47) (1.13) (1.79)

Misunderstanding DAa 6.85*** 6.29***
(2.02) (2.21)

Curiosity 0.34*** 0.33***
(0.05) (0.04)

Costly-Free 1.88*** 1.87***
(0.45) (0.36)

Risk Aversion -0.28** -0.20
(0.13) (0.13)

Female -0.87*
(0.48)

Graduate Student -0.72
(0.51)

Black -1.09*
(0.59)

Asian -1.75**
(0.69)

Hispanic -0.83
(0.57)

N 288 241 241 233

Notes: Outcome variable is subject-level average WTP for information. There are 42
(out of 241, 17%) subjects with average WTP = 0 and 1/241 with WTP = 15. Columns
(2)-(4) exclude participants with multiple switching points in the Holt-Laury lottery
game or making irrational choices. Column (4) further excludes observations with miss-
ing age/gender/ehnicity information and includes other controls: age, ACT score, SAT
score, dummy for ACT score missing, dummy for SAT score Missing, and dummy for
degree missing. Standard errors clustered at session level are in parentheses. * p < 0.10,
** p < 0.05, *** p < 0.01.
a. “Misunderstanding DA” is defined as the percentage of times when the subject played
dominated strategies in the OwnValue or OtherValue treatment of DA in periods without
information acquisition. Mean = 0.09, standard deviation = 0.14 among all subjects
(n = 144) played the information acquisition game under DA. Only periods without
information acquisition, i.e., with no information or free information provision, are con-
sidered. This variable equals to zero for both treatments of BOS, because dominant
strategies are not well defined under BOS.
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5.1.2 Determinants of Willingness to Pay for Information: Panel Data Analyses

To explore within-subject across-period variations, we next take the subject-period observations

and use panel data methods. Similar to the analysis of subject-average WTP (Table 4), we take

into account that WTP is bounded within [0, 15], and specify the following Tobit model:

WTP ∗i,t =αi + β1high B × IA OtherV aluei,t + β2high B ×DA OtherV aluei,t

+ β3WTP guessi,t + Controlsi,t + εi,t,

WTPi,t = max{0,min{WTP ∗i,t, 15}};

(1)

where i indexes subjects and t for periods (within each session). Given the non-linear nature of

the Tobit model, we cannot consistently estimate αi as subject fixed effects with a short panel (ten

periods), which leads us to focus on a random effects Tobit model. For the above specification, we

run them with all four treatments pooled as well as treatment-by-treatment. 7

In terms of controls, we include high B × IA OtherV aluei,t which equals to one if in period

t subject i has a high valuation of School B (= 110) under the treatment BOS OtherValue. Other-

wise, it is equal to 0. high B ×DA OtherV aluei,t is similarly defined for subjects under the DA

OtherValue treatment. For the other treatments, BOS or DA OwnValue, it is impossible to define

such a variable, because subjects do not know the valuation of School B in advance. Our theory

predicts that the coefficient on high B × IA OtherV aluei,t should be positive, while the one on

high B×DA OtherV aluei,t should be zero (see Appendix B.6). This is confirmed in our results.

One key dependent variable is WTP guessi,t, i′s guess of her opponents’ average WTP in pe-

riod t. Our theory predicts that i′s own WTP should be negatively correlated with WTP guessi,t,

albeit weakly (see Appendices B.5 and B.6). 8

Other controls include accumulated wealth at the beginning of the period, period (i.e., a linear

time trend), period in Free-Costly sessions, and lagged average WTP of other players. Depending

on specification, sometimes we also include lagged guess of others’ WTP (WTP guessi,t−1 ).

Results are shown in Table 5, where the three columns only differ in terms of inclusion or

7For robustness checks, we present the respective fixed effects (Table E16) and random effects panel regressions
(Table E17) in Appendix E.

8One might be concerned with the endogeneity of WTP guessi,t. That is, there might be some common shocks
in period t which make i’s WTPi,t and WTP guessi,t higher. We address this with an IV approach in Tables E16
and E17 in Appendix E, from which we interpret that the endogeneity issue is not a big concern.
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exclusion of WTP guessi,t and its lag.

There are a few notable findings in the table. First, the coefficient on WTP guessi,t is signifi-

cantly positive, contrary to what the theory predicts. Second, subjects learn over time in the sense

that they lower their excess WTP. Third, the coefficients on the four factors (Misunderstanding

DA, Curiosity, Costly-Free, and Risk Aversion) are similar to those in Table 4, although the one

on Risk Aversion is never significant.

5.2 Decomposition of the WTP

From our above analyses of the determinants of WTP, several results are contrary to the theoretical

predictions. Indeed, given the complexity of the game, it is unlikely that subjects would behave

exactly as the model predicts. This subsection then investigates how much of the observed WTP

can be explained by the factors that we have found important in the above analyses. Specifically,

we decompose WTP treatment-by-treatment by quantifying the effects of the following factors:

(i) Cognitive load: Playing Costly-info periods before Free-info periods.

(ii) Learning: How WTP changes over periods.

(iii) Misunderstanding DA: How WTP is correlated with playing dominated strategies under DA.

(iv) Conformity: How own WTP is affected by the expectation of others’ WTP.

(v) Curiosity: How WTP is correlated with WTP for useless information.

(vi) Risk aversion: How WTP is correlated with risk aversion.

Again, the first four factors provide some measure of how well subjects understand the game,

which includes “Conformity.” If one understands the game perfectly, her own WTP for information

should be lower when she expects others paying more. The above analyses however show the

contrary, which indicates that subjects do not understand the game very well.

To perform the decomposition, we first estimate the Tobit model as in equation system (1) for

each treatment separately with sessions under that treatment only (Columns (1) - (4) in Table 6).

It is more flexible to do so, as this allows each factor has a different effect in a given treatment.

Indeed, coefficients of some of the key variables change significance level (e.g., “Period” and
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Table 5: Determinants of WTP: Random Effects Panel Tobit Analyses

(1) (2) (3)
IA OwnValue 2.37** 4.06*** 2.28**

(0.96) (1.07) (0.96)
IA OtherValue 0.48 1.20 0.43

(0.94) (1.04) (0.94)
DA OwnValue 2.11** 2.31** 2.08**

(0.89) (0.99) (0.89)
high B × IA OtherValue 3.38*** 3.47*** 3.38***

(0.40) (0.43) (0.40)
high B × DA OtherValue -0.49 -0.42 -0.50

(0.50) (0.53) (0.50)
Accumulated wealth 0.00 0.00 0.00

(0.00) (0.00) (0.00)
Successfully acquired info in t− 1 0.30 0.13 0.27

(0.19) (0.21) (0.19)
Period -0.20** -0.27*** -0.20**

(0.08) (0.09) (0.08)
Period × Free-Costly 0.11* 0.12* 0.11*

(0.06) (0.06) (0.06)
Average WTP of others in t− 1 -0.04 0.12*** -0.04

(0.03) (0.03) (0.03)
WTP guessi,t−1: Guess of others’ WTP in t− 1 -0.04 0.23***

(0.05) (0.05)
WTP guessi,t: Guess of others’ WTP in t 0.91*** 0.90***

(0.06) (0.05)
Misunderstanding DA 7.06** 8.86** 7.04**

(3.21) (3.57) (3.21)
Curiosity 0.38*** 0.47*** 0.38***

(0.06) (0.07) (0.06)
Costly-Free 1.78* 2.93*** 1.76*

(0.96) (1.05) (0.96)
Risk Aversion -0.29 -0.27 -0.29

(0.21) (0.23) (0.21)
# of observations 2097 2097 2097
# of subjects 233 233 233

Notes: The regression sample is the same as that in Column (4) in Table 6. There
are 233 subjects each of whom has 9 observations from 9 periods. Estimates are
form random effects panel Tobit models. All specifications include additional con-
trols: dummy for female, dummy for graduate student, dummy for black, dummy
for Asian, dummy for Hispanic, age, ACT score, SAT score, dummy for ACT score
missing, dummy for SAT score Missing, and dummy for degree missing. Standard
errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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“Risk Aversion”) or even switch signs across treatments (e.g., “Period× Free-Costly” and “Costly-

Free”). As a comparison, results based on the pooled regression are in Column (5)), which is the

same regression as in Column (3) of Tabel 5.

Based on these estimated coefficients, Table 7 presents the decomposition of subject WTP for

information.9 In short, the six factors can explain the majority of the observed WTP; without these

factors, WTP for information is close to the theoretical prediction, except in the BOS OwnValue

treatment, where subjects have insufficient WTP after controlling the factors. We now discuss the

effects of each factor in details.

(i) Cognitive Load

We focus on the cognitive load caused by Costly-Free (i.e., playing the costly information

acquisition before the free information game). From our regressions, the Costly-Free order

is associated with 1.76 points of extra WTP in every period on average among all treatments

(Table 6, Column (5)), while the effect is not present in the BOS OwnValue treatment (Table

6, Column (1)). Moreover, the order also affects learning over periods based on the coeffi-

cients on “Period” and “Period × Free-Costly”: In sessions with Costly-Free, learning over

periods decreases the WTP faster than those with Free-Costly. In the 10th period, WTP in

Costly-Free sessions is reduced by 1.80 points relative to the 1st period, while the reduction

is only 0.81 in sessions with Free-Costly.

To quantify the effect of cognitive load, we consider the counterfactual of replacing Costly-

Free by Free-Costly. That is, we set all “Costly-Free” to zero and all “Period × Free-Costly”

equal to “Period.” The effect of cognitive load is then measured by the difference between

two predictions: The model prediction based on current variable values and the prediction

under the counterfactual. Both predictions are censored to guarantee that the predicted WTP

is between 0 and 15. Table 7 reports average effect along with its standard deviation. The

presence of cognitive load increase WTP by 0.36 to 0.99 points, except in the BOS OwnValue

treatment where the sign is opposite.

(ii) Learning over periods

9As a robustness check, decomposition based on pooled regressions (Column (5) in Table 6) are presented in Table
E18 in Appendix E, which shows similar results.
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Table 6: Determinants of WTP: Separate and Pooled Random Effects Panel Tobit Analyses

BOS DA
OwnValue OtherValue OwnValue OtherValue Pooled

(1) (2) (3) (4) (5)

high B × IA OtherValue 3.95*** 3.38***
(0.61) (0.40)

high B × DA OtherValue -0.51 -0.50
(0.43) (0.50)

Accumulated wealth -0.00 0.00 0.00** 0.00* 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Successfully acquired info in t− 1 0.18 -0.36 0.45* 0.40 0.27
(0.29) (0.60) (0.25) (0.43) (0.19)

Period -0.20 -0.16 -0.26** -0.43** -0.20**
(0.14) (0.27) (0.12) (0.17) (0.08)

Period × Free-Costly 0.22** 0.24 0.07 -0.16 0.11*
(0.10) (0.19) (0.08) (0.12) (0.06)

Average WTP of others in t− 1 -0.05 0.05 -0.11*** -0.01 -0.04
(0.05) (0.09) (0.04) (0.07) (0.03)

Guess of others’ WTP in t 0.88*** 0.75*** 0.95*** 1.04*** 0.90***
(0.09) (0.16) (0.07) (0.11) (0.05)

Misunderstanding DA 6.55* 8.02* 7.04**
(3.48) (4.15) (3.21)

Curiosity 0.31*** 0.63*** 0.26** 0.46*** 0.38***
(0.12) (0.15) (0.10) (0.15) (0.06)

Costly-Free -0.36 2.72 2.98* 1.47 1.76*
(2.01) (2.87) (1.65) (1.98) (0.96)

Risk Aversion -1.49*** -0.31 -0.41 0.37 -0.29
(0.54) (0.48) (0.31) (0.38) (0.21)

IA OwnValue 2.28**
(0.96)

IA OtherValue 0.43
(0.94)

DA OwnValue 2.08**
(0.89)

# of observations 549 495 558 495 2097
# of subjects 61 55 62 55 233

Notes: Estimates are form random effects panel Tobit models separately for each treatment and then
for all treatments pooled. All specifications include additional controls: dummy for female, dummy for
graduate student, dummy for black, dummy for Asian, dummy for Hispanic, age, ACT score, SAT score,
dummy for ACT score missing, dummy for SAT score Missing, and dummy for degree missing. Standard
errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 7: Decomposition of Subject WTP for Information

(1) (2) (3) (4)
BOS OwnValue BOS OtherValue DA OwnValue DA OtherValue

WTP: data 6.49 4.29 4.30 1.78
(4.86) (4.67) (4.30) (2.81)

Model predictiona 6.40 4.18 4.26 1.69
(3.16) (2.98) (2.97) (1.95)

(i) Cognitive loadb -0.70 0.36 0.99 0.45
(0.74) (0.49) (1.02) (0.66)

(ii) Learning over periodsb 0.30 0.10 0.63 0.71
(0.46) (0.34) (0.52) (0.81)

(iii) Conformityb 4.10 2.10 2.78 1.30
(1.99) (1.62) (2.13) (1.62)

(iv) Misunderstanding DAb 0.41 0.25
(0.70) (0.62)

(v) Curiosityb 1.36 1.69 0.75 0.57
(1.35) (2.04) (1.01) (1.17)

(vi) Risk aversionb -1.43 -0.24 -0.51 0.31
(1.28) (0.28) (0.48) (0.37)

Totalc 3.60 3.17 3.73 1.68
(2.49) (2.79) (2.92) (1.95)

Explained by all other factorsd 2.88 1.13 0.58 0.11
(3.93) (3.82) (2.98) (2.05)

Theoretical predictione [5.2,8] [0, 0.24] 0.67 0
# of Observations 549 495 558 495
# of Subjects 61 55 62 55

Notes: Decompositions are based on random effects Tobit model for each treatment (Columns (1) - (4) in Table 6).
The table reports the sample average, while standard deviations are in parentheses.
a. “Model prediction” is the predicted value of E(WTP ) based on the corresponding estimated model, assuming that
unobserved error terms are equal to zero. The predicted values are censored to be in [0, 15].
b. The WTP explained by the corresponding factor is the difference between the model prediction with the factor and
that without the factor. The former is predicted with the current values of all variables; and the latter is calculated
by setting the relevant variable value to zero (for factors “Cognitive load,” “Conformity,” “Misunderstanding DA,” or
“Curiosity”) or setting the relevant variable to the counterfactual value (for “Risk aversion,” we set the risk aversion
measure to the risk-neutral value; for “Learning over period,” we set “Period” to be the last period, i.e., “Period” = 10).
c. “Total” is the total WTP explained by the six factors above. Note that it is not the sum of the explained WTP of the
six factors because of the censoring at 0 and 15.
d. “Explained by other factors” is the difference between the observed WTP and the total WTP explained by the six
factors.
e. These are the theoretical predictions for risk neutral subjects.

Learning here refers to the fact that WTP changes over periods, and moreover the changes

are in the direction of correcting the excess WTP. We consider the counterfactual of replacing

behavior in periods 2-9 by that in period 10. Note that period 1 is not included in our regres-

sion, as we do not have the lagged values for any variable in that period. Again, the same
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censoring as above is adopted when predicting WTP. The estimated effect of learning, which

is the difference between the prediction with the observed variable values and the prediction

under the counterfactual, is from 0.10 to 0.70 points of WTP.

(iii) Conformity

Conformity here summarize that subjects positively respond to their beliefs about others’

behavior, WTP guess. When expecting others to pay one extra point, each subject pays

additional 0.90 points on average (Column (5) in Table 6).

Although the theory predicts a negative correlation between own WTP and WTP guess, we

consider the counterfactual where the correlation is zero. That is, in the counterfactual, there

is no effect of WTP guess on WTP. After calculations similar to above, it turns out that this

can explain 1.30 to 4.10 points of the observed WTP, or 49% to 73%, which is by far the

single most important factor.

(iv) Misunderstanding DA

Misunderstanding DA is the fraction of times that a subject plays dominated strategies in

periods of the DA treatments without information acquisition. This is only defined for the

two DA treatments, and Table 6 shows that it significantly increases WTP.

Similarly, to quantify its effect in the two DA treatments, we predict the WTP under the coun-

terfactual without any misunderstanding of the mechanism (i.e., setting the variable to zero),

and then calculate the difference between the model prediction with the observed variable

values and the prediction under the counterfactual. Columns (3) and (4) in Table 7 show that

the effect is 0.41 under DA OwnValue and 0.25 under DA OtherValue.

(v) Curiosity

The WTP to pay for useless information is considered to be a measure of curiosity. From the

regression in Column (5) of Table 6, 1 point increase in WTP to pay for useless information

is associated with 0.38 additional points of WTP in each period.

We consider the counterfactual where WTP for information in the school choice game is not

associated with curiosity, and thus we set the coefficient on Curiosity to zero. After similar

calculations, curiosity explains 0.57 to 1.69 points of the observed WTP.
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(vi) Risk Aversion

Risk aversion is measured by subject’s switching point in the Holt-Laury lottery choice game.

Our theory predicts that risk-averse subjects pay less for information, which is consistent with

our findings. On average, being more risk averse is correlated with lower WTP, although

insignificantly (Table 6, Column (5)). However, this correlation is heterogeneous across

treatments, and it becomes insignificantly positive in the DA OtherValue treatment.

The counterfactual we consider is to have every subject risk neutral (i.e., switching at the 5th

choice in the Holt-Laury game), which requires us to change about 78% of subjects from risk

averse to risk neutral. The measured effect is that risk aversion decreases WTP by 0.51 to

1.43 points, except that it increases WTP in the DA OtherValue treatment.

Taking the above six factors together, the total explained WTP ranges from 1.68 to 3.73 points,

which amounts to 55% to 94% of the observed WTP. The rest of the observed WTP that are

explained by factors other than the six becomes very close to the theoretical prediction for the two

DA treatments. However, that part is much below the theoretical prediction in the BOS OwnValue

treatment (2.88 versus [5.2, 8]), while being substantially above the theoretical prediction in the

BOS OtherValue (1.13 versus [0, 0.24]). These results on BOS also imply the difficult of playing

the game under BOS.

5.3 Rank Ordered List

We now investigate the effects of information provision and the effects of information acquisi-

tion on individual strategies. In Appendix B, we derive the equilibrium strategies under various

information structure some of which are augmented with information acquisition.

The first information structure is UI (UnInformed: no one is informed about her valuation of

School B), under which we have the following hypothesis based on our theoretical results.

Hypothesis 3 (ROL: UI). A risk neutral player submits a ROL of ABC as a dominant strategy

under either BOS or DA.

Result 3 (ROL: UI). When subjects play the game under UI, more subjects play BAC instead of

ABC under BOS than under DA. Under BOS, ABC accounts for 72% of the ROLs, followed by
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BAC 25%; under DA, 90% play ABC, and 8% submit BAC. The rest plays some other strategies.

A session-level Wilcoxon rank-sum (or Mann-Whitney) test rejects the hypothesis that the ABC or

the BAC strategy is played equally often under BOS and DA (both p-values < 0.01).

Note that the strategy ABC is not a dominant strategy for subjects who are sufficiently risk-

averse under BOS, which implies that ABC may be less played by more risk-averse subjects. On

the contrary, after categorizing the subjects into two almost-equal-sized groups by risk aversion

measured in the Holt-Laury lottery choice game, we find that ABC (BAC) are played by 71%

(27%) of the less risk-averse subjects who switch choices before or at the 6th Holt-Laury lottery,

while ABC (BAC) are played by 77% (21%) of the rest subjects who are more risk averse. This

finding is consistent with Klijn et al. (2012) who also show that more risk-averse subjects are not

more likely to play “safer” strategies under BOS.

Recall that another information structure considered is CI (Cardinally Informed: everyone is

informed about her own valuation of School B but not others’ valuations).10 Also note that un-

der the treatment of OwnValue, one can acquire information on her own preferences by paying

some costs, which results in a game with some informed players and some uninformed. The next

hypothesis is about the informed players’ strategies. When testing the next hypotheses, the re-

ported p-value is from the session-level Wilcoxon rank-sum (or Mann-Whitney) test, unless noted

otherwise.

Hypothesis 4 (ROL: CI and Acquiring OwnValue). When a subject knows her own preferences

but does not know others’ preferences, it is a BNE (dominant strategy) to submit a ROL truthfully

under BOS (DA), regardless of the number of opponents who know their own preferences.

Result 4 (ROL: CI and Acquiring OwnValue). Under BOS, when the valuation of School B is 10,

informed subjects are truth-telling at a similar rate – 87% with free information, 88% with costly

acquired information. When the valuation of School B is 110, there are more subjects playing BAC

with acquired information (90%) than those with free information (85%). However, this difference

is not significant (p-value 0.52).

Under DA, when the valuation of School B is 10, informed subjects are truth-telling at insignif-

icantly different rates – 95% with free information, 91% with costly acquired information (p-value
10By design, in this experiment, CI is equivalent to OI (Ordinally Informed: everyone is informed of her ordinal

preferences but not others).
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= 0.87). When the valuation of School B is 110, however, there are significantly more subjects

playing BAC with acquired information (95%) than that with free information (79%) (p-value

= 0.01).

Lastly, we consider information structure PI (Perfectly Informed: valuations of School B are

common knowledge) as a result of information provision and also the OtherValue treatment. Our

theoretical prediction regarding the ROL is summarized below.

Hypothesis 5 (ROL: PI and Acquiring OtherValue). When a subject knows both her own pref-

erences and the preferences of her two opponents, it is a dominant strategy to rank the schools

truthfully under DA; the optimal strategy under BOS for low-B-valuation subjects report truth-

fully, while that for high-B-valuation subjects depends on the preference profile as well as the

number of informed players.

Result 5 (ROL: PI and Acquiring OtherValue). Under DA, when the valuation of School B is 10,

informed subjects are truth-telling at insignificantly different rates – 92% with free information,

84% with costly acquired information (p-value = 0.29). When the valuation of School B is 110,

there are fewer subjects playing BAC with acquired information (75%) than that with free infor-

mation (91%). The difference is again insignificant (p-value = 0.86), partly because there are only

16 subjects successfully acquired information.

Under BOS, when the valuation of School B is 10, informed subjects are truth-telling at a sim-

ilar rate – 86% with free information, 84% with costly acquired information. When the valuation

of School B is 110, there are insignificantly more subjects playing BAC with acquired information

(85%) than that with free information (81%) (p-value = 0.75).11

We consider our above results to be consistent with the theoretical predictions. Moreover, the

only incidence where costly acquired information and freely provided information have significant

effects is that acquired information on OwnValue makes subjects more likely to play dominant

strategy.

11One may be tempted to investigate subjects’ strategies conditional the preference profile of all subjects. This
however makes the samples very small, especially among those who successfully acquired information (61 in total).
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5.4 Welfare Analysis

We now turn to welfare analysis by investigating the effects of information provision and the

effects of information acquisition. Welfare is measured on two dimensions. The first is the payoffs

that subjects receive in the experiment; the other is the efficiency of the allocation outcome. An

efficient allocation is such that (i) the high-B subject, whose School-B valuation is 110, is matched

with School B, if there is any such subject; and (ii) otherwise every allocation is efficient.

5.4.1 Effects of Information Provision

We start with the theoretical results on information provision, where some information is freely

provided while the rest is impossible to be acquired. In Appendix B, we derive the equilibrium

strategies and outcomes under various information structure. Similar to the theoretical analyses, we

first consider three information structures without information acquisition: (i) UI (UnInformed),

(ii) CI (Cardinally Informed),12 and (iii) PI (Perfectly Informed). The ex ante welfare for risk-

neutral subjects and the allocation efficiency are summarized in Table 8, based on which we derive

the following three hypotheses:

Table 8: Effects of Information Provision on Subject Welfare and Allocation
Efficiency

BOS DA
UI CI PI UI CI PI

Subject ex ante payoff 43.33 52.93 52.93 43.33 48.67 48.67

Fraction of efficient allocations 68% 100% 100% 68% 87.2% 87.2%

Notes: The payoff and allocation efficiency are derived in symmetric equilibrium for
risk neutral agents in Appendix B. UI = UnInformed (No one is informed about her
valuation of School B); CI = Cardinally Informed (Everyone is informed about her own
valuation of School B but not others’ valuations); PI = Perfectly Informed (Valuations
of School B are common knowledge).

Hypothesis 6 (Efficiency: BOS). With free information provision, the ex ante subject welfare and

the fraction of efficient allocations under BOS should follow the order of UI < CI = PI. Moreover,

the allocation is always efficient under either CI or PI.

12By design, in this experiment, CI is equivalent to OI (Ordinally Informed: everyone is informed of her ordinal
preferences but not others).
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Hypothesis 7 (Efficiency: DA). With free information provision, the ex ante subject welfare and

the fraction of efficient allocations under DA should follow the order of UI < CI = PI. However,

the allocation is not always efficient under either CI or PI.

Hypothesis 8 (Efficiency: Comparing BOS with DA). With free information provision, in terms of

the ex ante subject welfare and the fraction of efficient allocations, BOS = DA under UI, BOS >

DA under either CI or PI.

Result 6. (i) No difference in subject payoffs or allocation efficiency between DA and BOS under

UI; (ii) Information provision transforming UI into CI improves subject payoffs and allocation

efficiency of both DA and BOS, but more so for BOS; (iii) Information provision transforming CI

to PI does not improve the performance of DA or BOS; and (iv) Outcomes of BOS under CI or PI

are closer to the efficient outcome relative to those of DA under CI or PI.

These conclusions are drawn based on the statistics in Table 9. For each treatment, we focus

on the same subjects who in each period play a pair of the school choice games under the no-info

and the free-info scenarios, where the order of the two scenarios are randomized in each period.

For each session, we also weight the data to account for small sample variation in the probabilities

of having a high valuations of School B.

Given the design of the experiment, we perform both within-treatment as well as between-

treatment tests. For instance, to test the effect of information provision under BOS that changes

information structure from UI to CI, we use a within-treatment test: the Wilcoxon matched-pairs

signed-ranks test. This is feasible because the same group of subjects play the game under both

UI and CI. An example for between-treatment tests is to test if BOS and DA reach the same level

of efficiency under CI, for which we use the Wilcoxon rank-sum (or MannWhitney) test for two

independent samples, given that no individual experiences the two treatment.

In the result, parts (i)-(iii) are directly from the test results in the table. For Part (iv), outcomes

of BOS under CI or PI achieve 93-96% of maximum payoffs and result in efficient allocations

among 89-94% of all games; as a comparison, outcomes of DA under CI or PI on average achieve

only 87-89% of maximum payoffs and result in efficient allocations among 81-84% of all games.
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Table 9: Effects of Information Provision on Payoffs and Allocation
Efficiency

Payoff Fraction(Efficient Allocation)

BOS OwnValue (# observations = 720)

UI 42.51 0.69
(51.12) (0.49)

CI 50.67 0.94
(52.52) (0.29)

H0: UI = CI; H1: UI <CI
p-value 0.01 0.01

BOS OtherValue (# observations = 720)

CI 49.13 0.89
(51.90) (0.35)

PI 49.12 0.91
(52.20) (0.34)

H0: CI = PI; H1: CI 6= PI
p-value 0.92 0.35

DA OwnValue (# observations = 720)

UI 42.96 0.71
(48.93) (0.48)

CI 47.22 0.84
(54.92) (0.43)

H0: UI=CI; H1: UI<CI
p-value 0.04 0.04

DA OtherValue (# observations = 1080)

CI 45.90 0.81
(49.96) (0.39)

PI 46.09 0.81
(49.53) (0.40)

H0: CI = PI; H1: CI 6= PI
p-value 0.86 0.86

Comparison between BOS & DA

H0: (BOS UI) = (DA UI); H1:(BOS UI) 6= (DA UI)
p-value 1.00 1.00

H0: (BOS CI) = (DA CI); H1:(BOS CI)> (DA CI)
p-value: OwnValuea 0.01 0.01

p-value: OtherValuea 0.02 0.02

H0: (BOS PI) = (DA PI); H1:(BOS PI) > (DA PI)
p-value 0.02 0.01

Notes: This table reports the means and standard deviations (in parentheses)
of payoffs and fraction of efficient allocation by information structure. It also
presents p-values for the Wilcoxon matched-pairs signed-ranks tests or for
the Wilcoxon rank-sum (or Mann-Whitney) tests. All tests are performed
with the session averages of payoffs or efficiency. All data are weighted at
the session level so that the probability of having high valuations of School
B equals to 1/5.
a. These two p-values are calculated with the sample of BOS and DA Own-
Value treatments and the one with OtherValues treatments, respectively.
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5.4.2 Effects of Information Acquisition

We now turn to the effects of costly information acquisition. Similar to our theoretical model, the

information acquisition technology results in a endogenous probability receiving the “hard news.”

Therefore, when entering the school choice game, there are probably some informed subjects as

well as some uninformed subjects. We thus expect the outcomes to be between no information and

free information provision, which leads us to three hypotheses similar to the above.

Hypothesis 9 (Efficiency: BOS). With costly information acquisition and not taking into account

its costs, the ex ante subject welfare and the fraction of efficient allocations under BOS should

follow the order of UI < (Acquiring OwnValue) and CI = (Acquiring OtherValue). Moreover, the

allocation is always efficient under either CI or (Acquiring OtherValue).

Hypothesis 10 (Efficiency: DA). With costly information acquisition and not taking into account

its costs, the ex ante subject welfare and the fraction of efficient allocations under DA should

follow the order of UI < (Acquiring OwnValue) and CI = (Acquiring OtherValue). However, the

allocation is not always efficient under either CI or (Acquiring OtherValue).

Hypothesis 11 (Efficiency: Comparing BOS with DA). With costly information acquisition and

not taking into account its costs, in terms of the ex ante subject welfare and the fraction of efficient

allocations, BOS > DA under either (Acquiring OwnValue) or (Acquiring OtherValue).

Result 7. When we do not taking into account the information acquisition cost, the results are: (i)

Acquiring OwnValue improves subject payoffs and allocation efficiency for both BOS and DA, but

more so for BOS; (ii) Acquiring OtherValue does not affect improves subject payoffs and allocation

efficiency of BOS or DA; (iii) and (iv) Outcomes of BOS under OwnValue or OtherValue are closer

to the efficient outcome relative to those of DA under OwnValue or OtherValue.

These conclusions are drawn based on the statistics in Table 10. Similar to before, for each

treatment, we focus on the same subjects who in each period play a pair of the school choice

games in both the no-information and the costly-information scenarios, where the order of the two

scenarios are randomized in each period. This design of the experiment allows us to perform both

within-treatment as well as between-treatment tests.
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Table 10: Effects of Information Acquisition on Payoffs and Allocation Efficiency

Payoff Fraction(Efficient Allocation) Info Acquired WTP Costs Paid

BOS OwnValue (# observations = 720)

UI 42.50 0.69
(51.00) (0.54)

Acquiring OwnValue 47.05 0.83 0.44 6.56 2.25
(52.77) (0.47) (0.50) (4.78) (3.56)

H0: UI = (Acquiring OwnValue); H1: UI < (Acquiring OwnValue)
p-value 0.01 0.01

BOS OtherValue (# observations = 720)

CI 49.98 0.92
(56.75) (0.42)

Acquiring OtherValue 51.36 0.96 0.28 4.49 1.29
(54.07) (0.35) (0.45) (4.56) (2.66)

H0: CI = PI; H1: CI 6= PI
p-value 0.25 0.25

DA OwnValue (# observations = 720)

UI 42.73 0.70
(52.73) (0.51)

Acquiring OwnValue 43.80 0.73 0.30 4.44 1.35
(48.73) (0.49) (0.46) (4.38) (2.88)

H0: UI = (Acquiring OwnValue); H1: UI < (Acquiring OwnValue)
p-value 0.06 0.06

DA OtherValue (# observations = 720)

CI 46.77 0.82
(50.46) (0.43)

Acquiring OtherValue 46.27 0.82 0.14 2.21 0.48
(52.46) (0.45) (0.35) (3.15) (1.50)

H0: CI = (Acquiring OtherValue); H1: CI 6= (Acquiring OtherValue)
p-value 0.92 0.92

Comparison between BOS & DA

H0: (BOS Acquiring OwnValue) = (DA Acquiring OwnValue)
H1: (BOS Acquiring OwnValue) > (DA Acquiring OwnValue)

p-value 0.00 0.00

H0: (BOS Acquiring OtherValue) = (DA Acquiring OtherValue)
H1: (BOS Acquiring OtherValue) > (DA Acquiring OtherValue)

p-value 0.00 0.00

Notes: This table reports the means and standard deviations (in parentheses) of payoffs, fraction of efficient al-
location by information structure, fraction of having successfully acquired info, WTP for information, and costs
of information acquisition. It also presents p-values for the Wilcoxon matched-pairs signed-ranks tests or for the
Wilcoxon rank-sum (or MannWhitney) tests. All data are weighted at the session level so that the probability of
having high valuations of School B equals to 1/5. All tests are performed with the session averages of payoffs or
efficiency.
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Parts (i) and (ii) are the test results in the table, while Part (iii) is concluded by some simple

calculations. With acquisition of information on OwnValue, BOS on average achieves 89% of

maximum payoffs and efficient allocations among 83% of all games; as a comparison, while DA

leads to 80% of maximum payoffs and efficient allocations among 73% of all games. Similarly,

with acquisition of information on OtherValues, BOS obtains 97% of maximum payoffs and 96%

efficient allocations, whereas the numbers are only 87% and 82% under DA.

Such welfare effects are certainly because some subjects manage to acquire the information.

Table 10 also presents the fraction of times each subject successfully acquiring the information as

well as their expressed WTP, which are positively correlated with each other due to our experimen-

tal design. In the BOS OwnValue treatment, on average 44% of subjects obtain the information

in each period, which is exactly the ratio of the average WTP (6.56) to the upper bound of WTP

(15). Subjects acquire the information less often in other treatments, ranging from 14% in the DA

OtherValue treatment to 30% in the DA OwnValue treatment.

To take into account the cost for information acquisition, we have to make some assumptions

on the acquisition technology. The one used in the experiment can be considered as providing a

lower bound of such costs, because one only pays a half of her WTP in expectation conditional on

information being acquired. Table 10 shows that the actual costs paid by subjects in each treatment,

which is on average 22-34% of the WTP.13 Under this technology, costly information acquisition

is welfare-improving in the BOS OwnValue treatment; it increases the average payoff for each

subject in each period by 2.3 points. However, in the BOS OtherValue treatment, it is essentially

welfare-neutral: costly information acquisition brings merely 0.09 points in profits. Moreover, in

both treatments of DA, costly information acquisition is welfare-decreasing.

An alternative technology of information acquisition, which can be considered as an upward

correction of the costs to the previous assumption, is to assume that everyone has to pay her WTP if

successfully acquiring information, while the probability of acquiring information is WTP/15.14

This alternative can be implemented with the same design as in the experiment, as it keeps the

incentive properties unchanged. It is equivalent to assume that the random lottery, which is drawn

between [0, 15] to determine if one receives the information or not, is always turns out to beWTP ,

13Given the experimental design, when one’s WTP is w, the expected cost of information acquisition is w2/30.
14The expected cost is then w2/15, where w is the WTP.
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and thus the subject always pays WTP when successfully acquiring the information. This leads

to the same WTP as well as the same probability of acquiring information, which allows us to

use the experimental data to calculate welfare.15 Under this assumption, information acquisition is

welfare-decreasing except in the BOS OwnValue treatment, based on the results in Table 10. The

net loss for each subject in each period ranges from 1.23 in the BOS OtherValue treatment to 1.57

in the DA OwnValue, while the net gain in the BOS OwnValue is only 0.22.

5.4.3 Total Welfare Effects of Information Provision

Based on the above results, we are now ready to calculate the welfare effects of policies of infor-

mation provision. More specifically, we focus on the following three regimes, whose welfare is

measured relative to the UI baseline where no one knows her own preferences:

(i) Laissez-Faire Policy: Education authority does not provide any information, but let students

conduct information acquisition as they wish with either the lower-cost or the higher-cost

technologies.

(ii) Free OwnValue and Free OtherValue: Education authority makes every piece of information

available.

(iii) Free OwnValue and Costly OtherValue: Education authority makes every piece of informa-

tion relevant to OwnValue available but does not provide information on OtherValues. This

policy corresponds to policies employed by many school districts where information about

school characteristics is readily available, but not the information on others’ strategies. Or

students have to rely on historical strategies to infer others’ strategies this year.

Based on the estimated effects of information acquisition and provision, we can calculate the

welfare, which measured by student average payoff in each period, of each policy regime. Results

are summarized in Table 11. Taking the free-OwnValue-free-OtherValue policy as an example,

its welfare effect under BOS is the sum of the welfare gain of providing OwnValue (8.16) and

15 Under this alternative technology, the mean cost paid is 4.33 (s.d. 5.50) in the BOS OwnValue, 2.61 (s.d. 4.69)
in the BOS OtherValue, 2.64 (s.d. 4.61) in the DA OwnValue, and 0.95 (s.d. 2.64) in the DA OtherValue treatment,
Note that the costs in the two OtherValue treatments are weighted to control for the probability of having high B value
(= 110).
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that of providing OtherValue (−0.01). Here we do not taking into account the cost of information

provision for education authority.

Table 11: Estimated Effects and Counterfactual Analyses

Panel A: Estimated Effects
Info Provision Information Acquisition
Payoff gaina Payoff gaina Lower costb Higher costb P(Info Acquired)

BOS OwnValue 8.16 4.55 2.25 4.33 0.44

BOS OtherValue -0.01 1.38 1.29 2.61 0.28

DA OwnValue 4.26 1.07 1.35 2.64 0.30

DA OtherValue 0.42 -0.50 0.48 0.95 0.14

Panel B: Estimated Welfare Effects (relative to UI)
Laissez-Faire Policy Counterfactual 1 Counterfactual 2

Costly Info Acquisition Free OwnValue Free OwnValue, Costly OtherValue
w/ lower costb w/ higher costb & OtherValue w/ lower costb w/ higher costb

BOS 2.34 -0.12 8.15 8.26 6.93

DA -0.57 -2.00 4.68 3.99 2.69

Notes: Panel A shows estimates from Table 10 and Footnote 15; Panel B presents welfare effects
of information acquisition and information provision relative to UI (i.e., nobody knows her own
preferences).
a. Payoff gain measures the difference in average subject payoff in each period with free information
provision or costly information acquisition and that without it under each mechanism, without taking
into account the costs.
b. “Lower costs” and “higher costs” are two technologies for information acquisition. The former is
exactly the one used in the experiment, where subject in expectation pays a half of her WTP when
successfully acquiring the information; in the latter, subject always pays her WTP if successfully
acquiring information.

To analyze the welfare of the laissez-faire policy, some additional assumptions are needed. For

instance, under BOS, we first take the net payoff gain of having OwnValue acquisition under either

of the cost assumption (4.55 − 2.25 or 4.55 − 4.33), and then only those who have successfully

acquired OwnValue can engage in acquiring OtherValue, which implies only 44% of subjects. We

further assume that this leads to 44% of the net payoff gain of acquiring OtherValue (44%×(1.38−

1.29) or 44% × (1.38 − 2.61)).16 Similarly, for the free-OwnValue-costly-OtherValue policy, we

16This is a simplification assumption, as we ignore the fact that the game with this two-stage information acquisition
will have both informed and uninformed players. However, given the effects of acquiring OtherValue, we do not expect
our conclusion on the policy comparison to change under more plausible assumptions.
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take into account the effect of providing OwnValue and that of letting them acquire OtherValue

(given that they know OwnValue already).

The results clearly show the advantages of making both OwnValue and OtherValue freely avail-

able, which leads to additional 8.15 points for every subject in each period under BOS, or 4.68

points under DA. If the costs of information acquisition is low, the laissez-faire policy increases

average payoffs under BOS but not under DA; this benefit goes away for BOS as well if the cost is

high. the free-OwnValue-costly-OtherValue policy is always welfare-improving. When the cost is

low, this policy increases the average payoffs by 0.11 points more than that of the free-OwnValue-

free-OtherValue policy. However, this small advantage disappears when the cost is high. Under

DA, the welfare under the free-OwnValue-costly-OtherValue policy is always lower than that under

the free-OwnValue-free-OtherValue policy, regardless of the costs.

6 Conclusions

This paper theoretically and experimentally studies endogenous information acquisition and the

effects of information provision. In a school choice setting, we provide evidence that mechanisms

provide heterogeneous degrees of incentives for students to acquire information.

We distinguish two types of information acquisitions. One is to learn one’s own preferences

over schools, and the other is to learn others’ preferences. Our findings provide new insights for

designing better school choice programs.

Acquiring information on own preferences is necessary in school choice, given the complex

nature of education production and the usual lack of information on schools. We show that better

information on own preferences in general improves student welfare, which is in line with the

recent calls for better information provision on school quality. However, our experimental results

also show that students tend to over-invest in information acquisition for own preferences. This

thus unveils another dimension of the benefits of information provision. Namely, free or less costly

information reduces the wasteful information acquisition by students.

Acquiring information on others’ preferences is related to the gaming aspect of school choice,

because one may enjoy a strategic advantage after learning others’ preference. Our results show

that this incentive is determined by a mechanism’s strategy-proofness, or the lack of it. Theoreti-
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cally, only a non-strategy-proof mechanism incentivizes students to acquire information on others’

preferences. Moreover, if students have learned their preferences, learning others preferences af-

fects more the re-distribution of welfare instead of promoting better matches.

More importantly, we find that a strategy-proof mechanism is not enough to prevent waste-

ful information acquisition on others’ preferences. In our experiment, students still over-invest

in acquiring information on others preferences even when facing a strategy-proof mechanism that

makes such information useless. And very often, students often over-pay for information, espe-

cially among those who do not understand well the school choice game and those expecting that

others are paying more for information. Such wasteful investment can be only avoided or reduced

if the information on others’ preferences or strategies is made freely available. This result thus

calls for information provision that is beyond what has been considered in practice.

References
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Pais, Joana, Ágnes Pintér, and Róbert F Veszteg, “COLLEGE ADMISSIONS AND THE

ROLE OF INFORMATION: AN EXPERIMENTAL STUDY*,” International Economic

Review, 2011, 52 (3), 713–737.
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A Appendix: Omitted Proofs

Before proving the propositions, let us summarize the properties of the two mechanisms. As the

results can be easily verified by going through the mechanisms, we thus omit the formal proof.17

Lemma 2. DA and BOS (with single tie breaking) have the following properties:

(i) Monotonicity: If the only difference between Li and L′i is that the position of s ∈ S\ {s0}

and t are swapped such that tLis, sL′it, sL
′
is

0, and # {s′′ ∈ S|s′Lis′′} = # {s′′ ∈ S|s′L′is′′} for

all s′ ∈ S\ {s, t}, then:

as (L′i, L−i) ≥ as (Li, L−i) ,∀L−i;

and the inequality is strict when Lj = Li, ∀j 6= i and there exits s∗ ∈ S\ {s0, s, t} such that

s∗Lis
0.

(ii) Guaranteed share in first choice: If school s ∈ S\ {s0} is top ranked inLi by i, as (Li, L−i) ≥

qs/ |I|, for all L−i.

(iii) Guaranteed assignment:
∑

s∈{s∈S|sLis0} as (Li, L−i) +as0 (Li, L−i) = 1 for all L−i.

A.1 Proof of Lemma 1.

The proof applies to either DA or BOS. Note that given any (α−i, β−i) of other students, σ∗ (ω)

exists. This can be proven by the usual fixed point argument. Note that σ∗ (ω) does not depend on

one’s own investments in information acquisition, although it depends on the signal that one has

received (ω).

Given ω, i’s payoff function can be written as:

∫ ∫ ∫
ui (V, σ, σ

∗ (ω−i)) dF (V |ω) dF (V−i|ω−i) dH (ω−i|α−i, β−i) ,

which is continuous in σ. Therefore, the value function Π (ω, α−i, β−i) is continuous in (α−i, β−i)

by the maximum theorem.

For student i, the optimal information acquisition is solved by the first-order conditions (second-

17Similar results on BOS and their proofs are available in He (2012).
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order conditions are satisfied by the assumptions on the functions a () , b (), and c ()):

a′ (α∗)

∫  b (β∗ (R))
∫

Π
(
(R, V ) , α∗−i, β

∗
−i
)
F (V |R)

+ (1− b (β∗ (R))) Π
(
(R, V 0) , α∗−i, β

∗
−i
)
− c (α∗, β∗ (R))

 dG (R|F )

−a′ (α∗)
[
Π
(
R0, α∗−i, β

∗
−i
)
− c (α∗, 0)

]
−a (α∗)

∫
cα (α∗, β∗ (R)) dG (R|F )− (1− a (α∗)) cα (α∗, 0) = 0

b′ (β∗ (R))

[∫
Π
(
V, α∗−i, β

∗
−i
)
dF (V |R)− Π

(
R,α∗−i, β

∗
−i
)]
− cβ∗ (α∗, β∗ (R)) = 0, ∀R ∈ <.

Given the non-negative value of information and the properties of a () , b (), and c (), one can verify

that there must exist α∗ and β∗(R) for all R ∈ < such that the first-order conditions are satisfied.

A.2 Proof of Proposition 1.

A.2.1 Proof of α∗ > 0

Given the existence of a symmetric equilibrium, let us suppose instead that α∗ = 0. It implies that

β∗ (R) = 0 for all R ∈ < and that the value function can be simplified as:

Π (ω, α∗, β∗) = Π
((
R0, V 0

)
, 0,0

)
= max

σ

{∫ ∫
ui (V, σ, σ

∗ (ω−i)) dF (V ) dF (V−i)

}
.

Since α∗ = 0 and β∗ = 0 (a |<|-dimensional vector of zeros) is a best response for i, ∀α > 0,

Π
((
R0, V 0

)
, 0,0

)
≥
{
a (α)

∫
Π
((
R, V 0

)
, 0,0

)
dG (R|F ) + (1− a (α)) Π

((
R0, V 0

)
, 0,0

)
− c (α, 0)

}
;

or

c (α, 0) ≤ a (α)

[∫
Π
((
R, V 0

)
, 0,0

)
dG (R|F )− Π

((
R0, V 0

)
, 0,0

)]
,∀α > 0,

which can only be satisfied if and only if Π ((R, V 0) , 0,0) = Π ((R0, V 0) , 0,0) for all R ∈ <,

given that
∫

Π ((R, V 0) , 0,0) dG (R|F ) ≥ Π ((R0, V 0) , 0,0) and c′ (0, 0) < a′ (0) =∞.
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Suppose that in a given symmetric equilibrium σ∗, the finiteness of the strategy space im-

plies that in the equilibrium pure strategies
(
L(1), ..., L(N)

)
are played with positive probabilities(

p(1), ..., p(N)
)

(N ∈ N). s∗ is ranked the last in L(1) among non-outside-option schools, i.e.,

#
{
s ∈ S|s∗L(1)s, s 6= s0

}
= 0 and there is at least another school s1 s.t. s1L

(1)s0 and s1L
(1)s∗.

Given the full support of ordinal preferences and Lemma 2, such an L(1) must exist (otherwise, it

cannot be an equilibrium). Similarly, there exists an ordinal preference R∗ such that s∗R∗s0R∗s

for all s 6= s∗, s0.

Since Π ((R∗, V 0) , 0,0) = Π ((R, V 0) , 0,0), it implies that L(1) is also a best response to σ∗

even if i has learned Ri = R∗. We then compare i’s payoffs from submitting L(1) and R∗.

By monotonicity of the mechanism (Lemma 2), as∗ (R∗, L−i) ≥ as∗ (R,L−i) for all L−i, where

R does not top rank s∗. Moreover, as∗ (R∗, L−i) > as∗ (R,L−i) when everyone else submits L(1)

in L−i.

σ∗ leads to a probability distribution over a finite number of possible profiles of other’s strate-

gies (L−i). With a positive probability, everyone else plays L(1). In this event, therefore, by

submitting R∗, i strictly increases the probability of being accepted by s∗, the only acceptable

school, comparing with that of submitting L(1). Furthermore, in any other possible profile of L−i,

the probability of being assigned to s∗ is also always weakly higher when submitting R∗. Hence,

L(1) is not a best response to σ∗ when Ri = R∗, and thus Π ((R∗, V 0) , 0,0) 6= Π ((R, V 0) , 0,0).

This contradiction proves that α∗ = 0 is not an equilibrium. Since an equilibrium always exists,

it must be that α∗ > 0.

A.2.2 Proof of β∗ (R) = 0 under DA

Suppose β∗ (R) > 0 for some R ∈ < under DA or any strategy-proof ordinal mechanism. It

implies that:

β∗ (R)

∫
Π
(
(R, V ) , α∗−i, β

∗
−i
)
dF (V |R) + (1− β∗ (R)) Π

((
R, V 0

)
, α∗−i, β

∗
−i
)
− c (α∗, β∗ (R))

> Π
((
R, V 0

)
, α∗−i, β

∗
−i
)
,
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or,

β∗ (R)

[∫
Π
(
(R, V ) , α∗−i, β

∗
−i
)
dF (V |R)− Π

((
R, V 0

)
, α∗−i, β

∗
−i
)]
> c (α∗, β∗ (R)) . (2)

However, strategy-proofness implies that:

∫
Π
(
(R, V ) , α∗−i, β

∗
−i
)
dF (V |R) = Π

((
R, V 0

)
, α∗−i, β

∗
−i
)
,

and thus Equation (2) cannot be satisfied. Therefore β∗ (R) = 0 for all R ∈ <.

A.2.3 Proof of β∗ (R) > 0 for some R under BOS

We construct an example where β∗ (R) > 0 for some R given the distribution F under BOS.

Suppose that F implies a distribution of ordinal preferences G (R|F ) such that for s1 and s2:

G (R|F ) =

 (1− ε) if R = R̄, s.t. s1R̄s2R̄s
0R̄s3...R̄s|S|;

ε
|<|−1

if R 6= R̄.

The distribution of cardinal preferences is:

F
(
V |R̄

)
=


1− η if (vs1 , vs2 , vs0) = (1, ξ, ξ/2) and vs < vs0 ,∀s ∈ S\ {s1, s2, s

0} ;

η if (vs1 , vs2 , vs0) = (1, 1− ξ, ξ/2) and vs < vs0 ,∀s ∈ S\ {s1, s2, s
0} ;

0 otherwise.

(ε, η, ξ) are all small positive numbers in (0, 1). Otherwise, there is no restriction on F (V |R) for

R 6= R̄ nor on vs, ∀s ∈ S\ {s1, s2, s
0}.

Suppose that β∗ (R) = 0 for all R ∈ <. If ωi =
(
R̄, V 0

)
(i.e., ordinal preferences are known

but not cardinal ones), the expected payoff of being assigned to s2 is:

E
(
vi,s2|R̄

)
= (1− η) ξ + η (1− ξ) .

And (η, ξ) are small enough such that E
(
vi,s2|R̄

)
< qs1/ |I|, and therefore obtaining s2 for sure

is less preferable than obtaining qs1/ |I| of s1. In equilibrium with such small enough (ε, η, ξ), it
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must be that:

σ∗
((
R̄, V 0

)
, α∗,0

)
= σ∗

((
R0, V 0

)
, α∗,0

)
= R̄.

Therefore, from i’s perspective, any other player, j, plays R̄ with probability:

(1− a(α∗)) + a(α∗)(1− ε) > 1− ε.

It then suffices to show that some students deviate from such equilibrium strategies. Suppose

that i had learned her ordinal preferences and Ri = R̄. If furthermore she succeeds in acquiring

information on Vi, there is a positive probability that (vs1 , vs2 , vs0) = (1, 1− ξ, ξ/2). In this case,

if she plays Li s.t., s2Lis1Lis
0Lis3...Lis|S| (or other payoff-equivalent strategies), her expected

payoff is at least:

(1− ξ) (1− ε)(|I|−1) ,

While playing Ri(= R̄) leads to an expected payoff less than:

(1− ε)(|I|−1)

[
qs1
|I|

+

(
1− qs1
|I|

)
ξ

2

]
+
(

1− (1− ε)(|I|−1)
)
.

This upper bound is obtained under the assumption that one is always assigned to s1 when not

everyone submits R̄. When (ε, ξ) are close to zero, it is strictly profitable to submit Li instead of

R̄: ∫
Π
((
R̄, V

)
, α∗−i,0

)
dF
(
V |R̄

)
> Π

((
R̄, V 0

)
, α∗−i,0

)
,

because in other realizations of V , i cannot do worse than submitting R̄. The marginal payoff of

increasing β
(
R̄
)

from zero by ∆ is then:

∆

(
b′ (0)

[∫
Π
((
R̄, V

)
, α∗−i,0

)
dF
(
V |R̄

)
− Π

((
R̄, V 0

)
, α∗−i,0

)]
− cβ (α∗, 0)

)
,

which is strictly positive given cβ (α∗, 0) < b′ (0) = +∞. This proves that under BOS β∗ (R) > 0

for some R ∈ < given F .
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A.3 Proof of Proposition 2.

For the first part, by the definition of strategy-proofness, information on others’ types does not

change one’s best response. Therefore, δ∗ (V ) = 0 for all V under any strategy-proof mechanism.

To prove the second part, we construct an example of F (V ) to show δ∗ (V ) > 0 for some V

under BOS:

F (V ) =


1
2
− ε if V = V (1) s.t. (vs1 , vs2 , vs0) = (1, 0, ξ) , vs ∈ (0, ξ) ∀s /∈ {s1, s2, s

0} ;

1
2
− ε if V = V (2) s.t. (vs1 , vs2 , vs0) = (0, 1, ξ) , vs ∈ (0, ξ) ∀s /∈ {s1, s2, s

0} ;

ε if V = V (3) s.t. (vs1 , vs2 , vs0) = (1, 1− η, ξ) , vs ∈ (0, ξ) ∀s /∈ {s1, s2, s
0} ;

where (ε, ξ, η) are small positive values. Besides, F
(
V ∈ [0, 1]|S| \ {V (1), V (2), V (3)}

)
= ε.

Suppose that for student i, Vi = V (3). If δ∗ (V ) = 0 for all V , the best response for i in

equilibrium is Ri or Li s.t. s2Lis1Lis
0Lis for all other s. Without knowing V−i, i has to play

a pure strategy, Ri or Li, or a mixed strategy ∆ ({Ri, Li}) in equilibrium. δ∗ (Vi) = 0 implies

that either the two pure strategies are always payoff-equivalent or one always dominates the other,

given any realization of V−i.

Given F (V ), there is a positive probability,
(

1
2
− ε
)|I|−1, that every other student has V (1) and

submit her true preferences. In this case, the payoff for i submitting Ri is less than qs1/ |I| + ξ,

while the one when submitting Li is (1− η).

There is also a positive probability,
(

1
2
− ε
)|I|−1, that every other student has V (2) and submit

her true preferences. In this case, the payoff for i submittingRi is 1, while the one when submitting

Li is at most (1− η) qs1/ |I| +ξ.

Since
∫

Φ
(
V, V−i, δ

∗
−i
)
dF (V−i) ≥ Φ

(
V, V 0

−i, δ
∗
−i
)

and the above shows they are different for

some realization of (Vi, V−i), thus:

∫
Φ
(
V, V−i, δ

∗
−i
)
dF (V−i)− Φ

(
V, V 0

−i, δ
∗
−i
)
> 0.

The marginal payoff of acquiring information (increasing δ (Vi) from zero to ∆) is:

∆

(
d′ (0)

[∫
Φ
(
V, V−i, δ

∗
−i
)
dF (V−i)− Φ

(
V, V 0

−i, δ
∗
−i
)]
− e′ (0)

)
,
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which is positive for small (ε, ξ, η) because e′ (0) < d′ (0) = ∞. This proves that δ∗ (V ) > 0 for

some V with a positive measure given F .

A.4 Proof of Proposition 3.

Under UI, the only information i has is that her preferences follow the distribution F (V ). De-

note WE
i as the expected (possibly weak) ordinal preferences of i such that sWE

i t if and only if∫
vi,sdFvs (vi,s) ≥

∫
vi,tdFvt (vi,t). Given WE

i ,
(
RE,1
i , ..., RE,M

i

)
∈ < are all the strict ordinal

preferences that can be generated by randomly breaking ties in WE
i if there is any. Therefore,

M ≥ 1.

When others play L−i, the expected payoff of i playing Li is:

∫ ∑
s∈S

as (Li, L−i) vi,sdF (V ) =
∑
s∈S

as (Li, L−i)

∫
vi,sdFvs (vi,s) .

Since DA with single tie breaking is essentially the random serial dictatorship, it is therefore a

dominant strategy that i submits any RE,m
i m ∈ {1, ...,M}. Moreover, a strategy that is not in(

RE,1
i , ..., RE,M

i

)
can never be played in any equilibrium, because there is a positive-measure set

of realizations of the lottery that such a strategy leads to a strictly positive loss.

We claim that in equilibrium for any L∗−i such that L∗j ∈
(
RE,1
i , ..., RE,M

i

)
, j 6= i, the payoff

to i is: ∑
s∈S

as

(
RE,m
i , L∗−i

)∫
vi,sdFvs (vi,s) =

∑
s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) ,∀m. (3)

Note that for any L∗−i,
∑

s∈S as

(
RE,m
i , L−i

) ∫
vi,sdFvs (vi,s) does not vary acrossm given that any

RE,m
i is a dominant strategy.

Since everyone has the same expected utility of being assigned to every school, the maximum

utilitarian sum of expected utility is:

∑
s∈S\{s0}

qs

∫
vi,sdFvs (vi,s) (4)

62



If Equation (3) is not satisfied and there exists i such that for some L̂∗−i:

∑
s∈S

as

(
RE,m
i , L̂∗−i

)∫
vi,sdFvs (vi,s) >

∑
s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) ,∀m. (5)

The maximum utilitarian social welfare in (4) implies that there exists j ∈ I\ {i} and m ∈

{1, ...,M} such that:

∑
s∈S

as

(
RE,m
j , L̂∗−j

)∫
vj,sdFvs (vj,s) <

∑
s∈S\{s0}

qs
|I|

∫
vj,sdFvs (vj,s) , (6)

where RE,m
j is j’s strategy in L̂∗−i and RE,m

j = RE,m
i . We can always find such RE,m

i and RE,m
j

because condition (5) is satisfied for all m. However, the even lottery implies that:

as

(
RE,m
i ,

(
L∗−(i,j), R

E,m
j

))
= as

(
RE,m
j ,

(
L∗−(i,j), R

E,m
i

))
∀s if RE,m

i = RE,m
j ,

and thus:

∑
s∈S

as

(
RE,m
j ,

(
L∗−(i,j), R

E,m
i

))∫
vj,sdFvs (vj,s) =

∑
s∈S

as

(
RE,m
i ,

(
L∗−(i,j), R

E,m
j

))∫
vi,sdFvs (vi,s) ,

which contradicts the inequalities (5) and (6). This proves (3) is always satisfied.

Under OI, CI, or PI, the unique equilibrium is for everyone to report the true ordinal prefer-

ences, and thus the expected payoff (ex ante) is:

∫ ∫ ∑
s∈S

as (R,L−i (R)) vi,sdF (V |R) dG (R|F )

=

∫ ∫ ∑
s∈S\{s0}

qs
|I|
vi,sdFvs (vi,s|R) dG (R|F )

=
∑

s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) ,

where L−i (R) is such that that Lj = R, ∀j ∈ I\ {i}.
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A.5 Proof of Proposition 4.

A.5.1 Welfare under UI and OI

We first show UI = OI in symmetric equilibrium in terms of ex ante student welfare.

Under UI, the game can be transformed into one similar to PI but everyone has the same

cardinal preferences that are represented in terms of the expected utilities
[∫
vi,sdFvs (vi,s)

]
s∈S . In

a symmetric equilibrium, everyone thus must play exactly the same strategy, either pure or mixed,

which further implies that everyone is assigned to each school with the same probability and has

the same ex ante welfare: ∑
s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) .

Under OI, everyone knows that everyone has the same ordinal preferences R. The game

again can be considered as one under PI where everyone has the same cardinal preferences,[∫
vi,sdFvs (vi,s|R)

]
s∈S . Similar to the argument above, the payoff conditional on R is:

∑
s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s|R) ,

which leads to an ex ante payoff:

∫ ∑
s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s|R) dG (R|F ) =

∑
s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) .

A.5.2 Proof of CI > UI = OI under BOS

We then show CI > OI = UI.

Under CI, everyone’s cardinal preferences Vi are her private information, although her ordinal

preferences R, which is common across i, are common knowledge. Suppose that σBN (V ) :

[0, 1]|S| → ∆ (<) is a symmetric Bayesian Nash equilibrium. We show that:

∫ ∫ (∫
A
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|R) · Vi

)
dF (Vi|R) dG (R|F )

≥
∑

s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) .
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The following uses the same idea as in the proof of Proposition 2 in (Troyan 2012). Note that∫
as
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|R) is i’s probability of being assigned to s in equilibrium

when the realization of cardinal preferences is Vi. Furthermore, the ex ante assignment probability,

i.e., the probability before the realization of R and Vi, is

∫ ∫ ∫
as
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|R) dF (Vi|R) dG (R|F ) ,

which must be the same across students by symmetry. Therefore, we must have:

|I|
∫ ∫ ∫

as
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|R) dF (Vi|R) dG (R|F ) = qs,∀s ∈ S\

{
s0
}
,

(7)

as in equilibrium all seats at all s ∈ S\ {s0} must be assigned.

Suppose i plays an alternative strategy σi such that σi =
∫ ∫

σBN (Vi) dF (Vi|R) dG (R|F ) =∫
σBN (Vi) dF (Vi). That is, i plays the “average” strategy of the equilibrium strategy regardless

of her preferences. Her payoff given any realization of R is:

∫ (∫
A
(
σi, σ

BN (V−i)
)
dF (V−i|R) · Vi

)
dF (Vi|R)

=

∫ (∫ (∫ ∫
A
(
σBN (Vi) , σ

BN (V−i)
)
dF (Vi|R) dG (R|F )

)
dF (V−i|R) · Vi

)
dF (Vi|R)

=

∫ (∑
s∈S

(∫ ∫ ∫
as
(
σBN (Vi) , σ

BN (V−i)
)
dF (Vi|R) dG (R|F ) dF (V−i|R)

)
vi,s

)
dF (Vi|R)

=

∫  ∑
s∈S\{s0}

qs
|I|
vi,s

 dF (Vi|R) .

The last equation is due to (7). Since σi may not be optimal for i upon observing her preferences

Vi, we thus have for ex ante welfare:

∫ ∫ (∫
A
(
σBN (Vi) , σ

BN (V−i)
)
dF (V−i|R) · Vi

)
dF (Vi|R) dG (R|F )

≥
∫ ∫ (∫

A
(
σi, σ

BN (V−i)
)
dF (V−i|R) · Vi

)
dF (Vi|R) dG (R|F )

=
∑

s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) ,
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which proves CI > OI = UI in terms of Pareto dominance of ex ant student welfare.

A.5.3 Proof of PI > OI = UI under BOS

Under PI, everyone’s cardinal preferences Vi are common knowledge. Given a symmetric equilib-

rium, by the same argument as above, we must have PI Pareto dominates OI and UI.

Suppose that σNE (Vi, V−i) : [0, 1]|S|×|I| → ∆ (<) is a symmetric Nash equilibrium. We show

that:

∫ ∫ ∫ (
A
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|R) dF (Vi|R) dG (R|F )

≥
∑

s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) .

Note that as
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
is i’s probability of being assigned to s in

equilibrium when the realization of cardinal preferences is (Vi, V−i). Furthermore, the ex ante

assignment probability, i.e., the probability before the realization of R and (Vi, V−i), is

∫ ∫ ∫
as

(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (V−i|R) dF (Vi|R) dG (R|F ) ,

which must be the same across students by symmetry. Therefore, we must have, ∀s ∈ S\ {s0}:

|I|
∫ ∫ ∫

as

(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (V−i|R) dF (Vi|R) dG (R|F ) = qs,

(8)

as in equilibrium all seats at all s ∈ S\ {s0} must be assigned.

Suppose i plays an alternative strategy σi such that

σi =

∫ ∫ ∫
σNE (Vi, V−i) dF (V−i|R) dF (Vi|R) dG (R|F ) .

That is, i plays the “average” strategy of the equilibrium strategy regardless of her and others’
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preferences. Her payoff given a realization of (Vi, V−i) is:

A
(
σi,
[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi

=

(∫ ∫ ∫
A
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (V−i|R) dF (Vi|R) dG (R|F )

)
· Vi

=
∑

s∈S

(∫ ∫ ∫
as

(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
dF (Vi|R) dG (R|F ) dF (V−i|R)

)
vi,s

=
∑

s∈S\{s0}

qs
|I|
vi,s.

The last equation is due to (8). Therefore, her payoff given a realization of R is:

∫ ∫ (
A
(
σi,
[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|R) dF (Vi|R)

=

∫  ∑
s∈S\{s0}

qs
|I|
vi,s

 dF (Vi|R) .

Since σi may not be optimal for i upon observing her and others’ preferences (Vi, V−i), we thus

have:

∫ ∫ ∫ (
A
(
σNE (Vi, V−i) ,

[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|R) dF (Vi|R) dG (R|F )

≥
∫ ∫ ∫ (

A
(
σi,
[
σNE (Vj, V−j)

]
j∈I\{i}

)
· Vi
)
dF (V−i|R) dF (Vi|R) dG (R|F )

=
∑

s∈S\{s0}

qs
|I|

∫
vi,sdFvs (vi,s) ,

which thus proves that PI > OI = UI in terms of Pareto dominance.

We use two examples to show part (iii) in Proposition 4: Section A.5.4 shows that PI can

dominate CI in symmetric equilibrium; and the example in section A.5.5 shows the opposite.
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A.5.4 Example: PI dominates CI in symmetric equilibrium under BOS

There are 3 schools (a, b, c) and 3 students whose cardinal preferences are i.i.d. draws from the

following distribution:

Pr ((va, vb, vc) = (1, 0.1, 0)) = 1/2

Pr ((va, vb, vc) = (1, 0.5, 0)) = 1/2

Each school has one seat. For any realization of preference profile, we can find a symmetric Nash

equilibrium as in Table A1.

Table A1: Symmetric Nash Equilibrium for Each Realization of the Game under PI
Realization of Probability Strategy given realized type Payoff given realized type

Preferences Realized (1, 0.1, 0) (1, 0.5, 0) (1, 0.1, 0) (1, 0.5, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

1/8 (a, b, c) - 11/30 -

(1, 0.5, 0)
(1, 0.1, 0)
(1, 0.1, 0)

1/4 (a, b, c) (b, a, c) 1/2 1/2

(1, 0.5, 0)
(1, 0.5, 0)
(1, 0.1, 0)

1/4 (a, b, c) (a, b, c) 11/30 1/2

(1, 0.5, 0)
(1, 0.5, 0)
(1, 0.5, 0)

1/8 - (a, b, c) - 1/2

The above symmetric equilibrium leads to an ex ante student welfare:

1

2

(
1

4

11

30
+

1

2

1

2
+

1

4

11

30

)
+

1

2

(
1

4

1

2
+

1

2

1

2
+

1

4

1

2

)
=

14

30
.

When everyone’s preference is private information, we can verify that the unique symmetric

Bayesian Nash equilibrium is that:

σBN ((1, 0.1, 0)) = σBN ((1, 0.5, 0)) = (a, b, c) .
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That is, everyone submits her true preference ranking. This leads to an ex ante welfare of:

1

2

11

30
+

1

2

15

30
=

13

30

which is lower than the above symmetric equilibrium under PI.

Also note that always playing (a, b, c) is also a symmetric Nash equilibrium under PI in all

realizations of preference profile, which leads to the same ex ante student welfare as σBN .

A.5.5 Example: PI is dominated by CI in symmetric equilibrium under BOS

There are 3 schools (a, b, c) and 3 students whose cardinal preferences are i.i.d. draws from the

following distribution:

Pr ((va, vb, vc) = (1, 0.1, 0)) = 3/4

Pr ((va, vb, vc) = (1, 0.9, 0)) = 1/4
.

Each school has one seat. For any realization of preference profile, we can find a symmetric Nash

equilibrium as in Table A2. The ex ante welfare under PI with the above symmetric equilibrium

profile is:

3

4

(
9

16

11

30
+

6

16

1

2
+

1

16

3073

3610

)
+

1

4

(
1

16

19

30
+

6

16

99

190
+

9

16

9

10

)
=

22 549

43 320
≈ 0.52052.

Under CI, i.e., when one’s own preferences are private information and the distribution of

preferences is common knowledge, there is a symmetric Bayesian Nash equilibrium:

σBN ((1, 0.9, 0)) = (b, a, c) ;σBN ((1, 0.1, 0)) = (a, b, c) .

For a type-(1, 0.1, 0) student, it is a dominant strategy to play (a, b, c). Conditional on her type, her

equilibrium payoff is:

9

16

(
1

3

(
1 +

1

10
+ 0

))
+

6

16

1

2
+

1

16
=

219

480
.
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Table A2: Symmetric Nash Equilibrium for Each Realization of the Game under PI
Realization of Probability Strategy given realized type Payoff given realized type

Preference Realized (1, 0.1, 0) (1, 0.9, 0) (1, 0.1, 0) (1, 0.9, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

27/64 (a, b, c) - 11/30 -

(1, 0.9, 0)
(1, 0.1, 0)
(1, 0.1, 0)

27/64 (a, b, c) (b, a, c) 1/2 9/10

(1, 0.9, 0)
(1, 0.9, 0)
(1, 0.1, 0)

9/64 (a, b, c) (a, b, c) w/ prob 3/19
(b, a, c) w/ prob 16/19 3073/3610 99/190

(1, 0.9, 0)
(1, 0.9, 0)
(1, 0.9, 0)

1/64 - (a, b, c) w/ prob 11/19
(b, a, c) w/ prob 8/19 - 19/30

For a type-(1, 0.9, 0) student, given others follow σBN , playing (b, a, c) results in a payoff of:

9

16

9

10
+

6

16

(
1

2

(
9

10
+ 0

))
+

1

16

(
1

3

(
9

10
+ 1 + 0

))
=

343

480
.

If a type-(1, 0.9, 0) student deviates to (a, b, c), she obtains:

9

16

(
1

3

(
9

10
+ 1 + 0

))
+

6

16

(
1

2
(1 + 0)

)
+

1

16
(1) =

291

480
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate to other

rankings such as (c, a, b) or (c, b, a).

The ex ante payoff to every student in this equilibrium under CI is:

219

480

3

4
+

343

480

1

4
=

25

48
≈ 0.52083,

which is higher than that under PI.

In this example, the reason that PI leads to lower welfare is because it sometimes leads to

type-(1, 0.9, 0) students to play mixed strategies in equilibrium. Therefore, sometimes school B is

assigned to a type-(1,0.1,0) student, which never happens under CI in symmetric Bayesian Nash

equilibrium.
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B Analyses of the Game in the Experiment under Risk Neutrality

Given the payoff table introduced in Section 4, this appendix derives in details the equilibrium

strategies and payoffs under the assumption that every student is risk neutral. We also vary in-

formation structure and derive the incentive to acquire information. The results on risk-averse

students are presented in Appendix C. Throughout, students do not know the realization of tie

breakers when playing the game.

B.1 Information Structure

We consider the following 5 scenarios where information structure differs:

(1) Complete information on preferences: Everyone knows her own and others’ realized pref-

erences;

(2) Incomplete information on preferences: Everyone knows her own realized preferences but

only the distribution of others’;

(3) Unknown preferences: Everyone only knows the distribution of her own preferences and of

others’;

(4) Unknown preferences (Scenario (3)) with acquisition of information on one’s own prefer-

ences;

(5) Incomplete information (Scenario (2)) with acquisition of information on others’ prefer-

ences.

The literature on school choice, or on matching in general, focuses on the first two scenarios –

complete or incomplete information. By introducing scenarios (3)-(5), we extend the literature by

endogenizing the acquisition of information on one’s own or on others’ preferences.

Figure B1 shows the relationship among the five scenarios.

B.2 Scenario (1): Complete Information on Preferences

The Immediate Acceptance Mechanism Given any realization of the preferences, we have the

following symmetric equilibrium strategies and payoffs under the Immediate Acceptance mecha-

nism (Table B3).

71



Scenario (1): Complete information on Preferences
Preference realizations are common knowledge

~wwwww Scenario (5)
Acquire information on others’ preferences

Scenario (2): Incomplete information on Preferences
Preference realizations are private information.

Distribution of preferences is common knowledge.

~wwwww Scenario (4)
Acquire information on own preferences

Scenario (3): Unknown Preferences
Preference realizations are unknown.

Distribution of preferences is common knowledge.

Figure B1: Scenarios Considered and the Corresponding Information Structure

Table B3: Symmetric Equilibrium under BOS given Each Realization of Preference Profiles

Realization of Probability Strategy given realized type Payoff given realized type
Preference Realized (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

64/125 (a, b, c) - 11/30 -

(1, 1.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

48/125 (a, b, c) (b, a, c) 1/2 11/10

(1, 1.1, 0)
(1, 1.1, 0)
(1, 0.1, 0)

12/125 (a, b, c) (b, a, c) 1 11/20

(1, 1.1, 0)
(1, 1.1, 0)
(1, 1.1, 0)

1/125 - (a, b, c) w/ prob. 3/7a

(b, a, c) w/ prob. 4/7a - 7/10

a. We may allow one student to play (a,b,c) and the other two to play (b,a,c), which is a pure-strategy Nash
equilibrium. As long as everyone has the same probability to play (a,b,c), the expected payoff of everyone is also
7/10.
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Ex ante, before the realization of the preferences, given that they know they will play the game

with complete information under BOS, the expected payoff of each student is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

(
7

10

)
1

25

)
=

4

5

326

750
+

1

5

681

750
=

397

750
.

The DA Mechanism Before looking at equilibrium, we use the following table to clarify the

assignment probabilities given students’ actions (Table B4). Note that we always use DA with

single tie-breaking.

Table B4: Assignment Probability under DA given Each Strategy Profile
Probability of Being Assigned to Each School if

Submitted Playing (a, b, c) Playing (b, a, c)
List a b c a b c

(a, b, c)
(a, b, c)
(a, b, c)

1/3 1/3 1/3 - - -

(b, a, c)
(a, b, c)
(a, b, c)

1/2 1/6 1/3 0 2/3 1/3

(b, a, c)
(b, a, c)
(a, b, c)

2/3 0 1/3 1/6 1/2 1/3

(b, a, c)
(b, a, c)
(b, a, c)

- - - 1/3 1/3 1/3

Given any realization of the preferences, we have the following equilibrium strategies and

payoffs under DA (Table B5).

Ex ante, before the realization of the preferences, given that they know they will play the game

with complete information under DA, the expected payoff to each student is:

4

5

(
11

30

16

25
+

31

60

8

25
+

2

3

1

25

)
+

1

5

(
22

30
∗16

25
+

43

60

8

25
+

(
21

30

)
1

25

)
=

365

750
.

B.3 Scenario (2): Incomplete Information on Preferences

The Immediate Acceptance Mechanism When one’s own preferences are private information

and the distribution of preferences is common knowledge, there is a unique symmetric equilibrium
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Table B5: Equilibrium under DA given each Realization of Preference Profiles
Realization of Probability Strategy given realized type Payoff given realized type

Preference Realized (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

64/125 (a, b, c) - 11/30 -

(1, 1.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

48/125 (a, b, c) (b, a, c)
1
2+

1
60

= 31/60

2
3
11
10

= 22/30

(1, 1.1, 0)
(1, 1.1, 0)
(1, 0.1, 0)

12/125 (a, b, c) (b, a, c) 2/3
11
20+

1
6

= 43/60

(1, 1.1, 0)
(1, 1.1, 0)
(1, 1.1, 0)

1/125 - (b, a, c) - 21/30

under BOS:

σ
(2)
BM ((1, 1.1, 0)) = (b, a, c) ;σ

(2)
BM ((1, 0.1, 0)) = (a, b, c) .

For any given student, there are three possibilities of opponents’ types:

Types Probability Others’ Strategy Profile
(1, 0.1, 0) (1, 0.1, 0) 16/25 (a, b, c) (a, b, c)
(1, 1.1, 0) (1, 0.1, 0) 8/25 (b, a, c) (a, b, c)
(1, 1.1, 0) (1, 1.1, 0) 1/25 (b, a, c) (b, a, c)

For a type-(1, 0.1, 0) student, it is a dominant strategy to play (a, b, c). Conditional on her type,

her equilibrium payoff is:

16

25

(
1

3

(
1 +

1

10
+ 0

))
+

8

25

1

2
+

1

25
=

326

750
.

If a type-(1, 0.1, 0) student deviates to (b, a, c), she obtains:

16

25

(
1

10

)
+

8

25

(
1

2

(
1

10
+ 0

))
+

1

25

(
11

30

)
=

71

750
.
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For a type-(1, 1.1, 0) student, given others follow σ
(2)
BM , playing (b, a, c) results in a payoff of:

16

25

11

10
+

8

25

(
1

2

(
11

10
+ 0

))
+

1

25

(
1

3

(
11

10
+ 1 + 0

))
=

681

750
.

If a type-(1, 1.1, 0) student deviates to (a, b, c), she obtains:

16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
(1 + 0)

)
+

1

25
(1) =

486

750
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate to other

rankings such as (c, a, b) or (c, b, a).

Before the realization of their own preferences while knowing that they will play the game

under DA with incomplete information, the ex ante payoff to every student is:

326

750

4

5
+

681

750

1

5
=

397

750
.

Remark B1. Note that the two scenarios, (1) and (2), result in the same ex ante payoffs under

BOS.

Remark B2. In neither scenarios, a type-(1, 0.1, 0) student is ever matched with school b as long

as there is at least one type-(1, 1.1, 0) student.

The DA Mechanism When one’s own preferences are private information and the distribution of

preferences is common knowledge, there is a unique equilibrium under DA:

σ
(2)
DA ((1, 1.1, 0)) = (b, a, c) ;σ

(2)
DA ((1, 0.1, 0)) = (a, b, c) .

For any given student, there are three possibilities of opponents’ types: For a type-(1, 0.1, 0)

Types Probability Others’ Strategy Profile
1 (1, 0.1, 0) (1, 0.1, 0) 16/25 (a, b, c) (a, b, c)
2 (1, 1.1, 0) (1, 0.1, 0) 8/25 (b, a, c) (a, b, c)
3 (1, 1.1, 0) (1, 1.1, 0) 1/25 (b, a, c) (b, a, c)

student, it is a dominant strategy to play (a, b, c). Conditional on her type, her equilibrium payoff
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is:
16

25

(
1

3

(
1 +

1

10
+ 0

))
+

8

25

(
1

2
+

1

60
+ 0

)
+

1

25

(
2

3
+ 0

)
=

320

750
.

If a type-(1, 0.1, 0) student deviates to (b, a, c), she obtains:

16

25

(
2

30
+ 0

)
+

8

25

(
1

20
+

1

6
+ 0

)
+

1

25

(
1

3

(
1 +

1

10
+ 0

))
=

95

750
.

For a type-(1, 1.1, 0) student, given others follow σ
(2)
DA, playing (b, a, c) results in a payoff of:

16

25

(
2

3

11

10

)
+

8

25

(
1

2

11

10
+

1

6

)
+

1

25

(
1

3

(
11

10
+ 1 + 0

))
=

545

750
.

If a type-(1, 1.1, 0) student deviates to (a, b, c), she obtains:

16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
+

11

60

)
+

1

25

(
2

3

)
=

520

750
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate to other

rankings such as (c, a, b) or (c, b, a).

The ex ante payoff to every student, before knowing their own true preferences, is:

320

750

4

5
+

545

750

1

5
=

365

750
.

Remark B3. Note that the two scenarios, (1) and (2), result in the same ex ante payoffs under DA.

Remark B4. In both scenarios, there is a positive probability that a type-(1, 0.1, 0) student is

matched with school b when there is at least one type-(1, 1.1, 0) student.

B.4 Scenario (3): Unknown Preferences

The Immediate Acceptance Mechanism Under BOS, the unique symmetric equilibrium is that

everyone plays σ(3)
BM = (a, b, c). The expected payoff of this strategy is:

1

3

(
1 +

(
1

5

11

10
+

4

5

1

10

)
+ 0

)
=

13

30
=

325

750
.
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If an student deviates to (b, a, c), her payoff is:

(
1

5

11

10
+

4

5

1

10

)
= 0.3 =

225

750
.

Remark B5. In Scenario (2), the ex ante payoff is 397
750

which is higher than that of Scenario (3),
225
750

.

Remark B6. Comparing Scenarios (1), (2), and (3), we can improve the social welfare by making

it easier for students to learn their preferences and then transforming (3) into (2) or (1) under the

Immediate Acceptance.

The DA Mechanism The unique symmetric equilibrium under DA is that everyone plays σ(3)
DA =

(a, b, c).

The expected payoff of this strategy is:

1

3

(
1 +

(
1

5

11

10
+

4

5

1

10

)
+ 0

)
=

13

30
=

325

750
.

If an student deviates to (b, a, c), her payoff is:

1

5

(
2

3

11

10

)
+

4

5

(
2

3

1

10

)
= 0.2 =

150

750
.

Remark B7. In Scenario (2), the ex ante payoff is 365
750

which is higher than that of Scenario (3),
325
750

.

Remark B8. Comparing Scenarios (1), (2), and (3), we can improve the social welfare by making

it easier for students to learn their preferences and then transforming (3) into (2) or (1) under DA.

Remark B9. The benefit of providing free information on own preferences is higher under the

Immediate Acceptance.

Remark B10. In Scenarios (3), the Immediate Acceptance mechanism achieves the same outcome

as DA.

In the following, we discuss students’ incentives to acquire information on one’s own prefer-

ences.
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B.5 Scenario (4): (3) + acquisition of information on one’s own preferences

The Immediate Acceptance Mechanism Now suppose that students only know the distribution

of their own and others’ preferences. We consider their incentives to acquire information on their

own preferences.

After acquiring the information, both informed and uninformed students know how many oth-

ers are informed. However, informed students know their own preferences, while uninformed

students only know the distribution of own preference.

Willingness to pay for information on own preferences can be defined in the following three

cases:

wown0 : when no other informed students;

wown1 : when there is another informed student;

wown2 : when there are two other informed students.

The following table summarizes the equilibrium strategies and ex ante payoffs for informed and

uninformed players (Table B6).

Table B6: Willingness to Pay for Information on Own Payoffs under BOS
# of Players Strategy: Strategy: Informed Ex Ante Payoff Willingness to

Informed Uninformed Uninformed (1, 0.1, 0) (1, 1.1, 0) Informed Uninformed pay for info

0 3 (a, b, c) - - - 325
750

60
750

1 2 (a, b, c) (a, b, c) (b, a, c) 385
750

335
750

49.5
750

2 1 (a, b, c) (a, b, c) (b, a, c) 384.5
750

358
750

39
750

3 0 - (a, b, c) (b, a, c) 397
750 -

Overt and covert information acquisition: In the current setting, we focus on overt informa-

tion acquisition. Namely, all students, informed and uninformed, know how many students in total

are informed. Note that, for uninformed students, knowing or not knowing how many students are

informed does not change their strategy. If information acquisition is covert, an informed student

should have other students behave as if she is uninformed. This is difficult to achieve in a lab

experiment, as everyone knows that everyone is offered a chance to learn their own preferences.
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Our overt-information-acquisition approach provides a lower bound on information acquisition

regarding one’s own preferences. That is, one always has a greater incentive to acquire informa-

tion covertly and choose to make it public only if she finds it profitable. Besides, the information

acquisition is purely about one’s own preferences, while all other information is costless.

When no other students are informed and an student acquires this information, the unique

equilibrium in the school choice game is:

(One) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(Two) Uninformed : (a, b, c) ,

The informed student obtains an expected payoff:

1

5

11

10
+

4

5

(
1

3

(
1

10
+ 1 + 0

))
=

385

750
.

When she chooses not to acquire information, the game is returned to Scenario (3) and her

expected payoff is 325
750

. Therefore, given there is no other informed student, her willingness to pay

for the information is:

wown0 =
385

750
− 325

750
=

60

750
.

If there is one informed student already, an additional student acquires this information, and

the game has two informed players and one uninformed. The unique equilibrium in this case is:

(Two) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(One) Uninformed : (a, b, c) .

Informed students obtain an ex ante payoff:

1

5

(
1

5

1

2

11

10
+

4

5

11

10

)
+

4

5

(
1

5

1

2
+

4

5

11

30

)
=

384.5

750
.

If the student chooses not to acquire information, she plays against one informed and one unin-
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formed players. The equilibrium is discussed above, and her payoff as an uninformed player is:

1

5

(
1

5

1

2
+

4

5

21

30

)
+

4

5

(
1

5

1

2
+

4

5

11

30

)
=

335

750

This implies that the willingness to pay for information in this case is:

wown1 =
384.5

750
− 335

750
=

49.5

750
.

When the other two students are informed, if the third student also decides to acquire this

information, the game turns into one with three informed players as in Scenario (2). We know that

her expected payoff is 397
750

. If she decides not to do so, she remains uninformed and plays against

two informed players. The equilibrium is discussed above and her expected payoff is:

1

5

(
16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
(1 + 0)

)
+

1

25
(1)

)
+

4

5

(
16

25

(
1

3

(
1

10
+ 1 + 0

))
+

8

25

(
1

2
(1 + 0)

)
+

1

25
(1)

)
=

358

750

Therefore, the willingness to pay is:

wown2 =
397

750
− 358

750
=

39

750
.

Remark B11. The willingness to pay depends on the number of informed students. When the cost

is lower than wown2 , all students choose to be informed.

Remark B12. When more students are informed, the incentive to acquire information is lower.

Remark B13. Information acquisition has externalities. Namely, when more students are in-

formed, the payoffs to uninformed students are higher.

Remark B14. If we only elicit one amount of willingness to pay, an student reports a number

in
[

39
750
, 60

750

]
, because she forms a probability distribution over the three possible realizations –

playing against another 0-2 informed students.
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The DA Mechanism Now we consider DA. Students only know the distribution of their own and

others’ preferences. The following table, Table B7, summarizes the equilibrium strategies and ex

ante payoffs for informed and uninformed players under DA.

Table B7: Willingness to Pay for Information on Own Payoffs under DA
# of Players Strategy: Strategy: Informed Ex Ante Payoff Willingness to

Informed Uninformed Uninformed (1, 0.1, 0) (1, 1.1, 0) Informed Uninformed pay for info

0 3 (a, b, c) - - - 325
750

5
750

1 2 (a, b, c) (a, b, c) (b, a, c) 330
750

342.5
750

5
750

2 1 (a, b, c) (a, b, c) (b, a, c) 347.5
750

360
750

5
750

3 0 - (a, b, c) (b, a, c) 365
750 -

When no other students are informed and an student acquires this information, the unique

equilibrium in the school choice game is:

(One) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(Two) Uninformed : (a, b, c) ,

The informed student obtains an expected payoff:

1

5

(
11

10

2

3

)
+

4

5

(
1

3

(
1

10
+ 1 + 0

))
=

330

750
.

If she chooses not to acquire information, the game is returned to Scenario (3) and her expected

payoff is 325
750

. Therefore, given there is no other informed student, her willingness to pay for the

information is:

wown0 =
330

750
− 325

750
=

5

750
.

If there is one informed student already, an additional student acquires this information, and

the game has two informed players and one uninformed. The unique equilibrium in this case is:

(Two) Informed : σ ((1, 1.1, 0)) = (b, a, c) and σ ((1, 0.1, 0)) = (a, b, c) ;

(One) Uninformed : (a, b, c) .
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Informed students obtain an ex ante payoff:

1

5

(
1

5

(
1

2

11

10
+

1

6

)
+

4

5

(
11

10

2

3

))
+

4

5

(
1

5

(
1

2
+

1

60

)
+

4

5

(
11

30

))
=

347.5

750
.

If the student chooses not to acquire information, she plays against one informed and one unin-

formed players. The equilibrium is discussed above, and her payoff as an uninformed player is:

1

5

(
1

5

(
1

2
+

11

60

)
+

4

5

21

30

)
+

4

5

(
1

5

(
1

2
+

1

60

)
+

4

5

11

30

)
=

342.5

750

This implies that the willingness to pay for information in this case is:

wown1 =
347.5

750
− 342.5

750
=

5

750
.

When the other two students are informed, if the third student also decides to acquire this

information, the game turns into one with three informed players as in Scenario (2). We know that

her expected payoff is 365
750

. If she decides not to do so, she remains uninformed and plays against

two informed players. The equilibrium is discussed above and her expected payoff is:

1

5

(
16

25

(
1

3

(
11

10
+ 1 + 0

))
+

8

25

(
1

2
+

11

60

)
+

1

25

(
2

3

))
+

4

5

(
16

25

(
1

3

(
1

10
+ 1 + 0

))
+

8

25

(
1

2
+

1

60

)
+

1

25

(
2

3

))
=

360

750

Therefore, the willingness to pay is:

wown2 =
365

750
− 360

750
=

5

750
.

Remark B15. The willingness to pay is independent of the number of informed students.

Remark B16. Information acquisition has very large externalities.

Remark B17. If we only elicit one amount of willingness to pay, an student reports 5
750

.
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B.6 Scenario (5): (2) + acquisition of information on others’ preferences

The Immediate Acceptance Mechanism Now suppose everyone knows her own preferences

but not others’, while the distribution of preferences is common knowledge. With some abuse of

terminology, an student is informed if she knows the realization of others’ preferences and whether

each student is informed or uninformed. An uninformed student knows her own preferences, but

neither others’ preference realizations nor how many being informed is revealed to uninformed

students.

Here, two pieces of information, i.e., other students’ preferences and whether they are informed

or not, are always acquired together, never separately. As we hypothesize that researching others’

preferences is wasteful given independent preferences, we thus study cases where the incentives

for wasteful information acquisition is high.

Note that a type-(1, 0.1, 0) student has no incentive to acquire information. Therefore, the

discussion of information acquisition is conditional on one’s own type being (1, 1.1, 0).

Willingness to pay for information on others’ preferences can be similarly defined in the fol-

lowing three cases:

wother0 : when no other informed students;

wother1 : when there is another informed student;

wother2 : when there are two other informed students.

Table B8 summarizes the equilibrium strategies and ex ante payoffs for informed and unin-

formed players under the Immediate Acceptance mechanism.

Table B8: Willingness to Pay for Information on Others’ Payoffs under BOS
# of Players Ex Ante Payoff Exp. Payoff to Type-(1,1.1,0) WTP for info

Informed Uninformed Informed Uninformed Informed Uninformed given type-(1,1.1,0)

0 3 - 397
750 - 681

750
9

750

1 2 398.8
750

396.1
750

690
750

676.5
750

0.6428
750

2 1 396.22857
750

398.54
750

677.14286
750

688.71
750 0

3 0 397
750 - 681

750 -
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When there is no other students informed, the third student can stay uninformed and obtain 397
750

ex ante, or 681
750

conditional on being type (1, 1.1, 0), as in Scenario (2). If she acquires information

on others and becomes informed, the school choice game has the following equilibrium:

(Two) Uninformed : σ ((1, 1.1, 0)) = (b, a, c) ;σ ((1, 0.1, 0)) = (a, b, c) ;

and the informed player’s strategies are summarized in Table B9:

Table B9: Equilibrium Strategies of the Player Informed of Others’ Payoffs under BOS
Others’ Ex Ante Strategy: Informed Player Ex Post Payoff: Informed Player

Preferences Probability (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)
(1, 0.1, 0)
(1, 0.1, 0) 16/25 (a, b, c) (b, a, c) 11/30 11/10

(1, 1.1, 0)
(1, 0.1, 0) 8/25 (a, b, c) (b, a, c) 1/2 11/20

(1, 1.1, 0)
(1, 1.1, 0) 1/25 (a, b, c) (a, b, c) 1 1

The ex ante payoff to the informed player is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

1

25

)
=

4

5

326

750
+

1

5

690

750

=
398.8

750
.

Therefore, conditional on being type (1, 1.1, 0), the willingness to pay is:

wother0 =
690

750
− 681

750
=

9

750

The ex ante payoff to uninformed players, given that there is one informed student, is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

11

20

1

25

)
=

4

5

326

750
+

1

5

676.5

750

=
396.1

750
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They have no incentives to deviate, and they are worse off than in Scenario (2).

When there is one other student informed, the third student can stay uninformed and obtain
396.1
750

ex ante, or 676.5
750

when being type (1, 1.1, 0) as above. If she acquires information on others

and becomes informed, the school choice game has the following equilibrium in pure strategies:

(One) Uninformed : σ ((1, 1.1, 0)) = (b, a, c) ;σ ((1, 0.1, 0)) = (a, b, c) ;

and the informed player’s strategy is in the following table (Table B10):

Table B10: Equilibrium Strategies with One Informed and Two Uninformed Players under BOS

Others’ Preferences Ex Ante Strategy: Informed Player Ex Post Payoff: Informed Player
Uninformed Informed Probability (1, 0.1, 0) (1, 1.1, 0) (1, 0.1, 0) (1, 1.1, 0)
(1, 0.1, 0) (1, 0.1, 0) 16/25 (a, b, c) (b, a, c) 11/30 11/10

(1, 1.1, 0) (1, 0.1, 0) 4/25 (a, b, c) (b, a, c) 1/2 11/20

(1, 0.1, 0) (1, 1.1, 0) 4/25 (a, b, c) (b, a, c) 1/2 11/20

(1, 1.1, 0) (1, 1.1, 0) 1/25 (a, b, c) (a, b, c) w/ prob. 6/7a

(b, a, c) w/ prob. 1/7a 1 4/7

a. We may allow one informed student to play (a,b,c) and the other informed to play (b,a,c), which is a pure-strategy Nash
equilibrium. When either of the two informed students has the same probability to play (a,b,c), the expected payoff of
everyone is 31/40 (> 4/7). This leads to a type-(1,1.1,0) student willing to pay 6.75/750 to become informed, given that
there is only one more informed student. Moreover, this makes the third uninformed student willing to pay 4.5/750 to be
informed. In any case, the interval prediction of WTP for information on others’ preferences, which is [0, 9/750] for a
type-(1,1.1,0) student, includes all these values.

The ex ante payoff to an informed player is:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

4

7

1

25

)
=

4

5

326

750
+

1

5

158

175

=
396.22857

750
.

Therefore, conditional on being type (1, 1.1, 0), the willingness to pay given there is another in-

formed agent is:

wother1 =
158

175
− 676.5

750
=

0.6428

750
.

When there are two other agents are informed, if the third chooses to be informed, we are back
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to Scenario (1). Conditional on being type (1, 1.1, 0), her payoff is 681
750

if being informed. When

two other agents are informed, the third agent, if being uninformed, has a payoff of:

4

5

(
11

30

16

25
+

1

2

8

25
+

1

25

)
+

1

5

(
11

10

16

25
+

11

20

8

25
+

46.9

49

1

25

)
=

4

5

326

750
+

1

5

688.71

750
=

398.54

750
.

Therefore,

wother2 =
681

750
− 688. 71

750
< 0.

That is, when the other two students are informed, the third student does not have incentive to

acquire information.

Remark B18. When only one amount of willingness to pay is elicited, a type-(1, 1.1, 0) student

reports a number in
[
0, 9

750

]
. Averaging over all student ex ante, the WTP for information on

others’s preferences is in [0, 1.8
750

].

The DA Mechanism Since reporting truthfully is a dominant strategy, there is no incentive to

know others’ preferences.

86



C Analyses of the Game in the Experiment under Risk Aversion

This appendix compares risk-neutral and risk-averse students in terms of their willingness to pay

for information.

Risk-neutral students have the same cardinal preferences as before (Table 1), and risk-averse

students have their von Neumann–Morgenstern utilities associated with each schools as in Table

C11.

Table C11: Preference/Payoff Table for Risk-Averse Students
Students s = a s = b s = c

1 1
√
0.1w/ prob. 4/5;

√
1.1w/ prob. 1/5 0

2 1
√
0.1w/ prob. 4/5;

√
1.1w/ prob. 1/5 0

3 1
√
0.1w/ prob. 4/5;

√
1.1w/ prob. 1/5 0

Note that
√

0.1 ≈ 0.316, and
√

1.1 ≈ 1.049. In the following, we evaluate the ex ante wel-

fare/payoff, i.e., before the realization of the utility associated with school b. Note that ex ante, the

expected payoff of being assigned to b is 0.463 (≈ 4∗
√

0.1
5

+ 1∗
√

1.1
5

) and is better than 1/3 of a for

any student.18

Conclusion C1. WTP for own values is smaller for risk-averse students; WTP for others’ values is

similar when measured as the percentage of expected utilities, but it is much lower when measured

in dollars.

C.1 Information on Own Values

Willingness to pay can be measured in dollars. However, one dollar does not mean the same in the

two cases. Therefore, it is also measured as a percentage of the expected utility under complete

information and then of the one under no information.

In the above table, the complete information expected utility with risk averse under BOS is

0.558, while the one with no info is 0.488. The corresponding two expected values for the risk

neutral students are 397
750

= 0.529 and 325
790

= 0.411, respectively.

18If u(x) = x(1−r)

1−r , the expected utility from being matched with b is increasing in r which is also the coefficient of
relative risk aversion.
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Table C12: WTP for Info on Own Values: Risk-Averse and Risk-Neutral Students under BOS
# of Other in dollars Pctg. of Complete Info EU Pctg. of no Info EU

Informed Players Averse Neutral Averse Neutral Averse Neutral
0 0.005 0.08 13.08% 15.11% 14.96% 18.46%
1 0.004 0.066 10.75% 12.47% 12.3% 15.23%
2 0.002 0.052 8.24% 9.82% 9.43% 12%

Table C13: Willingness to Pay for Info on Own Values: Risk-Averse and Risk-Neutral Students
under DA

# of Other in dollars Pctg. of Complete Info EU Pctg. of no Info EU
Informed Players Averse Neutral Averse Neutral Averse Neutral

0 0.000 0.007 0.57% 1.37% 0.61% 1.54%
1 0.000 0.007 0.57% 1.37% 0.61% 1.54%
2 0.000 0.007 0.57% 1.37% 0.61% 1.54%

C.2 Information on Others’ Values

Note that the willingness to pay for information given one’s type being (1, 0.1, 0) is always zero.

Therefore, the table below is conditional on the student being type (1, 1.1, 0).

Table C14: WTP for Info on Others’ Values: Risk-Averse and Risk-Neutral Students under BOS
# of Other in dollars Pctg. of Complete Info EU Pctg. of no Info EU

Informed Players Averse Neutral Averse Neutral Averse Neutral
0 0.000 0.012 2.33% 2.27% 2.66% 2.77%
1 0.000 0.0009 1.79% 1.7% 2.05% 2.08%
2 0.000 0.000 1.08% 1.13% 1.23% 1.38%

88



D Experimental Instructions: DA, Own Value

This is an experiment in the economics of decision making. In this experiment, we simulate a

procedure to allocate students to schools. The procedure, payment rules, and student allocation

method are described below. The amount of money you earn will depend upon the decisions you

make and on the decisions other people make. Do not communicate with each other during the

experiment. If you have questions at any point during the experiment, raise your hand and the

experimenter will help you. At the end of the instructions, you will be asked to provide answers to

a series of review questions. Once everyone has finished the review questions, we will go through

the answers together.

Overview:

• There are 12 participants in this experiment.

• The experiment consists of three parts:

– There will be 20 rounds of school ranking decisions and student allocations.

– At the end of the 20 rounds, there will be a lottery experiment.

– Finally, there will be a survey.

• At the beginning of each round, you will be randomly matched into four groups. Each group

consists of three participants. Your payoff in a given round depends on your decisions and

the decisions of the other two participants in your group.

• In this experiment, three schools are available for each group, school A, school B and school

C. Each school has one slot. Each school slot will be allocated to one participant.

• Your payoff amount for each allocation depends on the school you are assigned to. These

amounts reflect the quality and fit of the school for you.

– If you are assigned to school A, your payoff is 100 points.

– If you are assigned to school B, your payoff is either 110 points or 10 points, depending

on a random draw. Specifically,
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∗ with 20% chance, your payoff is 110 points;

∗ with 80% chance, your payoff is 10 points.

– If you are assigned to school C, your payoff is 0.

• Your total payoff equals the sum of your payoffs in all 20 rounds, plus your payoff from the

lottery experiment. Your earnings are given in points. At the end of the experiment you will

be paid based on the exchange rate,

$1 = 100 points.

In addition, you will be paid $5 for participation, and up to $2.00 for answering the Review

Questions correctly. Everyone will be paid in private and you are under no obligation to tell

others how much you earn.

Are there any questions?

Procedure for the first 10 rounds:

• Every round, you will be asked to rank the schools twice:

– Ranking without information (on your school B value): you will rank the schools with-

out knowing the realization of your value for school B;

– Ranking with information (on your school B value): the computer will first inform you

of your school B value, and then ask you to rank the schools.

• Ranking without information consists of the following steps:

– The computer will randomly draw the value of school B for each participant indepen-

dently, but will not inform anyone of his or her value.

– Without knowing the realization of school B value, every participant submits his or her

school ranking.

– The computer will then generate a lottery, and allocate the schools according to the

Allocation Method described below.

90



– The allocation results will not be revealed till the end of the round.

• Ranking with information consists of the following steps:

– The computer will randomly draw the value of school B for each participant indepen-

dently, and inform everyone of his or her school B value.

– After knowing his or her school B value, every participant submits his or her school

ranking.

– After receiving the rankings, the computer will generate a lottery, and allocate the

schools according to the Allocation Method described below.

• Feedback: At the end of each round, each participant receives the following feedback for

each of the two rankings: your and your matches’ school B values, rankings, lottery numbers,

assigned schools, and earnings.

• At the beginning of each round, the computer randomly decides the order of the two rank-

ings:

– with 50% chance, you will rank the schools without information first;

– with 50% chance, you will rank the schools with information first;

• The process repeats for 10 rounds.

Allocation Method

• The lottery: the priority of each student is determined by a lottery generated before each

allocation. Every student is equally likely to be the first, second or third in the lottery.

• The allocation of schools is described by the following method:

– An application to the first ranked school is sent for each participant.

– Throughout the allocation process, a school can hold no more applications than its

capacity.

If a school receives more applications than its capacity, then it temporarily retains the

student with the highest priority and rejects the remaining students.
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– Whenever an applicant is rejected at a school, his or her application is sent to the next

choice.

– Whenever a school receives new applications, these applications are considered to-

gether with the retained application for that school. Among the retained and new ap-

plications, the one with the highest priority is temporarily on hold.

– The allocation is finalized when no more applications can be rejected.

Each participant is assigned to the school that holds his or her application at the end of

the process.

Note that the allocation is temporary in each step until the last step.

Are there any questions?

An Example:

We will go through a simple example to illustrate how the allocation method works. This

example has the same number of students and schools as the actual decisions you will make. You

will be asked to work out the allocation of this example for Review Question 1.

Students and Schools: In this example, there are three students, 1-3, and three schools, A, B, and

C.

Student ID Number: 1, 2, 3 Schools: A, B, C

Slots: There is one slot at each school.

School Slot

A

B

C

Lottery: Suppose the lottery produces the following order:

1− 2− 3
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Submitted School Rankings: The students submit the following school rankings:

1st 2nd 3rd

Choice Choice Choice

Student 1 A B C

Student 2 A B C

Student 3 B A C

The allocation method consists of the following steps: Please use this sheet to work out the

allocation and enter it into the computer for Review Question 1.

Step 1 (temporary): Each student applies to his/her first choice. If a school receives more applica-

tions than its capacity, then it temporarily holds the application with the highest priority and

rejects the remaining students.

Applicants School Hold Reject

1, 2 −→ A −→

3 −→ B −→

−→ C −→

Step 2 (temporary): Each student rejected in Step 1 applies to his/her next choice. When a school

receives new applications, these applications are considered together with the application on

hold for that school. Among the new applications and those on hold, the one with the highest

priority is on hold, while the rest are rejected.
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Applicants School Hold Reject

−→ A −→

−→ B −→

−→ C −→

Step 3 (temporary): Each student rejected in Step 2 applies to his/her next choice. Again, new

applications are considered together with the application on hold for each school. Among

the new applications and those on hold, the one with the highest priority is on hold, while

the rest are rejected.

Applicants School Hold Reject

−→ A −→

−→ B −→

−→ C −→

Step 4 (final): Each student rejected in Step 3 applies to his/her next choice. No one is rejected at

this step. All students on hold are accepted.

Applicants School Accept Reject

−→ A −→

−→ B −→

−→ C −→

The allocation ends at Step 4.

• Please enter your answer into the computer for Review Question 1.

• Afterwards, you will be asked to answer other review questions. When everyone is finished

with them, we will go through the answers together.
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• Feel free to refer to the experimental instructions before you answer any question. Each

correct answer is worth 20 cents, and will be added to your total earnings.

Review Questions 2 - 7

2. How many participants are there in your group each round?

3. True or false: You will be matched with the same two participants each round.

4. Everyone has an equal chance of being the first, second or third in a lottery.

5. True or false: The lottery is fixed for the entire 20 rounds.

6. True or false: If you are not rejected at a step, then you are accepted into that school.

7. True or false: The allocation is final at the end of each step.

We are now ready to start the first 10 rounds. Feel free to earn as much as you can. Are there any

questions?

Procedure for the second 10 rounds:

• Every round, you will again be asked to rank the schools twice.

• Ranking without information is identical to that in the first ten rounds.

• Ranking with information, however, will be different. We will elicit your willingness-to-

pay for your school B value before you submit your ranking in each round. That is, the

information about your school B value is no longer free. Specifically,

– The computer will randomly draw the value of school B for each participant indepen-

dently.

– You will be asked your willingness to pay for this information. You can enter a number

in the interval of [0, 15] points, inclusive, to indicate your willingness to pay.
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– After everyone submits their willingness to pay, the computer will randomly draw a

number for each participant independently. The number will be between 0 and 15,

inclusive, with an increment of 0.01, with each number being chosen with equal prob-

ability.

∗ If your willingness to pay is greater than the random number, you will pay the ran-

dom number as your price to obtain your school B value. The computer will reveal

your school B value and charge you a price which equals the random number.

∗ If your willingness to pay is below the random number, the computer will not

reveal your school B value and you will not be charged a price.

It can be demonstrated that, given the procedures we are using, it is best for you,

in terms of maximizing your earnings, to report your willingness to pay for your

school B value truthfully since doing anything else would reduce your welfare. So

it pays to report your willingness to pay truthfully.

– You will also be asked to guess the average willingness to pay of the other two partici-

pants in your group, again, in the interval of [0, 15] points, inclusive.

– You will be rewarded for guessing the average of your matches’ willingness to pay

correctly. Your payoff from guessing is determined by the squared error between your

guess and the actual average, i.e., (your guess - the actual average)2. Specifically, the

computer will randomly choose a number between 0 and 49, with each number being

chosen with equal probability. You will earn 5 points, if your squared error is below the

random number and zero otherwise. Therefore, you should try to guess as accurately

as possible.

– Regardless of whether you obtain your school B value, the computer will reveal the

number of participant(s) in your group who have obtained their school B value(s).

– Every participant submits his or her school ranking.

– After everyone submits their rankings, the computer will generate a lottery, and allocate

the schools according to the same Allocation Method used in the first ten rounds.

• Feedback: At the end of each round, each participant receives the same feedback for each
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of the two rankings as in the first ten rounds.

In addition, for ranking with information, the computer will also tell you: your and your

matches’ willingness to pay, the actual prices paid, the random numbers, whether each par-

ticipant in your group knows their school B values, the guesses, and guess earnings.

• The process repeats for 10 rounds.

Are there any questions? You can now proceed to answer review questions 8-10 on your

computer. Recall each correct answer is worth 20 cents, and will be added to your total earnings.

Again, feel free to refer to the instructions before you answer any question.

Review Questions 8 - 10

8. Suppose you submitted 1.12 as your willingness to pay to obtain your school B value, and

the random number is 5.48. Do you get to know your school B value? What price do you

pay?

9. Suppose you submitted 10.33 as your willingness to pay to obtain your school B value, and

the random number is 8.37. Do you get to know your school B value? What price do you

pay?

10. Suppose your guess for the average willingness to pay of the other two participants is 7, and

the actual average is 10. The computer draws a random number, 14. What is your earning

from your guess?

Lottery Experiment

Procedure

• Making Ten Decisions: On your screen, you will see a table with 10 decisions in 10 separate

rows, and you choose by clicking on the buttons on the right, option A or option B, for each

of the 10 rows. You may make these choices in any order and change them as much as you

wish until you press the Submit button at the bottom.
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• The money prizes are determined by the computer equivalent of throwing a ten-sided die.

Each outcome, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, is equally likely. If you choose Option A in the

row shown below, you will have a 1 in 10 chance of earning 200 points and a 9 in 10 chance

of earning 160 points. Similarly, Option B offers a 1 in 10 chance of earning 385 points and

a 9 in 10 chance of earning 10 points.

Decision Option A Option B Your Choice

1 200 points if the die is 1 385 points if the die is 1

160 points if the die is 2-10 10 points if the die is 2-10 A or B

• The Relevant Decision: One of the rows is then selected at random, and the Option (A or

B) that you chose in that row will be used to determine your earnings. Note: Please think

about each decision carefully, since each row is equally likely to end up being the one that is

used to determine payoffs.

For example, suppose that you make all ten decisions and the throw of the die is 9, then your

choice, A or B, for decision 9 below would be used and the other decisions would not be

used.

Decision Option A Option B Your Choice

9 200 points if the die is 1-9 385 points if the die is 1-9

160 points if the die is 10 10 points if the die is 10 A or B

• Determining the Payoff: After one of the decisions has been randomly selected, the com-

puter will generate another random number that corresponds to the throw of a ten-sided die.

The number is equally likely to be 1, 2, 3, ... 10. This random number determines your

earnings for the Option (A or B) that you previously selected for the decision being used.

For example, in Decision 9 below, a throw of 1, 2, 3, 4, 5, 6, 7, 8, or 9 will result in the

higher payoff for the option you chose, and a throw of 10 will result in the lower payoff.

Decision Option A Option B Your Choice

9 200 points if the die is 1-9 385 points if the die is 1-9

160 points if the die is 10 10 points if the die is 10 A or B

10 200 points if the die is 1-10 385 points if the die is 1-10 A or B

For decision 10, the random die throw will not be needed, since the choice is between

amounts of money that are fixed: 200 points for Option A and 385 points for Option B.
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We encourage you to earn as much cash as you can. Are there any questions?

E Additional Analyses of Experimental Data

In this appendix, we present robustness checks on our earlier analyses in Section 5.1 on willingness

to pay for information.

E.1 Willingness to Pay for Information: Robustness of Results

In Section 5.1, we have used a Tobit model to investigate the determinants of WTP for information.

Here, we present results from linear panel regressions that allow more flexible specifications and

instrumental variables. In short, the following results are consistent with those in the main text,

and the endogeneity issue is not a concern.

Corresponding to Table 4 in Section 5.1, we present Table E15 where subject-average WTP is

regressed on treatment types and other controls. The two sets of results are qualitatively the same.

In comparison with results from a random effect Tobit model in Tables 5 and 6, the next two

tables investigate determinants of WTP in random and fixed effects panel regressions. In all spec-

ifications, our outcome variable is the subject-period WTP. Our specification is as follows:

WTPi,t = αi + β1highB IAi,t + β2highB DAi,t + β3WTP guessi,t + ...+ Controlsi,t + εi,t,

where i is the index for subjects and t for periods (with each session); αi is subject fixed effects; and

thus all control variables are time-subject-specific. Other controls are the same as in Section 5.1.

Depending on the model being random effects or fixed effects, we have different interpretations of

αi.

The endogeneity of WTP guessi,t is plausible if there are some common shocks in period t

makes everyone’s WTPi,t and WTP guessi,t higher. We address this with an IV approach where

the lagged WTP guessi,t−1 is the instrumental variable. Clearly, WTP guessi,t−1 is correlated

with WTP guessi,t, as there might some persistence in one’s guess of others WTP. Moreover,

conditional on what others have done in the previous period, WTP averagei,t−1, what i guessed

in t− 1 should not affect her decision in period t directly.
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Table E15: Determinants of Subject-Average WTP: Linear Regression

(1) (2) (3) (4)
Full Sample Sub-sample 1 Sub-sample 1 Sub-sample 2

IA OwnValue 6.56*** 6.41*** 5.70*** 6.11***
(0.55) (0.56) (0.90) (1.58)

IA OtherValue 4.51*** 4.31*** 4.00*** 4.34**
(0.48) (0.54) (0.91) (1.72)

DA OwnValue 4.44*** 4.16*** 3.66*** 4.18**
(0.63) (0.70) (0.87) (1.60)

DA OtherValue 2.21*** 1.92*** 2.02** 2.80*
(0.30) (0.27) (0.91) (1.61)

Misunderstanding DAa 5.44*** 4.87**
(1.85) (2.16)

Curiosity 0.29*** 0.28***
(0.05) (0.04)

Order: Costly-Free 1.61*** 1.62***
(0.36) (0.32)

Risk Aversion -0.27** -0.20*
(0.11) (0.11)

Female -0.73
(0.44)

Graduate Student -0.71
(0.45)

Black -0.81
(0.56)

Asian -1.28*
(0.63)

Hispanic -0.67
(0.48)

N 288 241 241 233
R2 0.65 0.63 0.73 0.75

Notes: Outcome variable is subject-level average WTP for information. Columns (2)-
(4) exclude participants with multiple switching points in the Holt-Laury lottery game
or making irrational choices. Column (4) further excludes observations with missing
age/gender/ehnicity information and includes other controls: age, ACT score, SAT score,
dummy for ACT score missing, dummy for SAT score Missing, and dummy for degree
missing. Standard errors clustered at session level are in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.
a. “Misunderstanding DA” is defined as the percentage of times when the subject played
dominated strategies (i.e., non-truth-telling) in the OwnValue or OtherValue treatment
of DA in periods without information acquisition. Mean = 0.09, standard deviation
= 0.14 among all subjects (n = 144) played the information acquisition game under
DA. Only periods without information acquisition, i.e., with no information or free in-
formation provision, are considered. This variable equals to zero for both treatment of
BOS, because dominant strategies are not defined under BOS.
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Fixed-effect results are shown in Table E16. The first three columns are from OLS regressions,

while Column (4) is from an IV regression, where the instrument for the potentially endogenous

variable, WTP guessi,t, is WTP guessi,t−1. Column (5) shows the first-stage result.

Table E16: Determinants of WTP: Fixed Effects Model and IV Regression Results

(1) (2) (3) (4) (5)
FE FE FE IV 1st Stage

high B × IA OtherValue 2.39** 2.36** 2.39** 2.38*** -0.06
(0.94) (0.98) (0.94) (0.88) (0.25)

high B × DA OtherValue -0.00 -0.03 -0.01 -0.01 -0.04
(0.44) (0.37) (0.44) (0.38) (0.23)

Accumulated wealth 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Successfully acquired info in t− 1 0.01 -0.11 -0.03 -0.03 -0.19*
(0.26) (0.25) (0.24) (0.22) (0.11)

Period -0.14** -0.19** -0.14** -0.15** -0.08
(0.06) (0.08) (0.06) (0.06) (0.06)

Period × Free-Costly 0.09 0.08 0.09 0.08 -0.01
(0.06) (0.06) (0.06) (0.05) (0.03)

Average WTP of others in t− 1 -0.03 0.08*** -0.02 0.00 0.17***
(0.02) (0.02) (0.02) (0.03) (0.02)

Guess of others’ WTP in t− 1 -0.05 0.12** 0.26***
(0.06) (0.05) (0.03)

Guess of others’ WTP in t 0.63*** 0.61*** 0.44**
(0.08) (0.08) (0.18)

N 2097 2097 2097 2097 2097
R2 0.19 0.07 0.19 0.18 0.20

Notes: Outcome variable is WTP for information of each subject in each period. Regressions
exclude participants with multiple switching points in the Holt-Laury lottery game or making
irrational choices as well as subjects with missing age/gender/ehnicity information. Standard
errors clustered at session level are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
“Guess of others’ WTP in t − 1” is used as IV for “Guess of others’ WTP in t” (1st-stage
results in the last column, i.e. outcome = “Guess of others’ WTP in t”).

Comparing column (1) with column (2), the WTP guess explains 12% of the variations in WTP

– excluding WTP guess decreases the R squared from 0.19 to 0.07. Besides, when WTP guessi,t

is included WTP guessi,t−1 has an insignificant coefficient both statistically and economically.

We then consider WTP guessi,t−1 as an IV for use WTP guessi,t. Column (5) presents the

first-stage result which shows that WTP guessi,t−1 is positively correlated with WTP guessi,t

(significant at 1% level).

Column (4) is the IV regression result. Observationally, IV results are not very different from

OLS results (Column (3)), although the coefficient on WTP guessi,t is increased. We then per-
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form an endogeneity test. Under the null hypothesis that WTP guessi,t can actually be treated as

exogenous, the test statistic is distributed as chi-squared with degrees of freedom equal to one. It

is defined as the difference of two Sargan-Hansen statistics: one for the IV regression, where the

WTP guessi,t is treated as endogenous, and one for the OLS regression, where WTP guessi,t

is treated as exogenous. It turns out that the test statistic is 0.50 (p-value 0.48), which leads us to

conclude that WTP guessi,t is exogenous.

In summary, the results in Table E16 are similar to those in Tables 5 and 6 from a random effect

Tobit model. Moreover, the IV results in Column (4) are not that different from other results in

Table E16.

When we repeat the same analyses with random effect panel regressions, we obtain similar

results as well (Table E17).

E.2 Decomposition based on Pooled Regression

Table 7 in Section 5.1 presents the decomposition of excess WTP based on Tobit models for each

treatment. As a robustness check, we also present results based on the pooled regression (Table

E18). Although results change to some extent, we still find “conformity” explains the most part of

the excess WTP.
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Table E17: Determinants of WTP: Random Effects Model and IV Regression Results

(1) (2) (3) (4) (5)
RE RE RE IV 1st Stage

IA OwnValue 1.28*** 2.15*** 1.19*** 1.42** 0.51***
(0.42) (0.42) (0.43) (0.58) (0.19)

IA OtherValue 0.18 0.58 0.14 0.25 0.19
(0.51) (0.49) (0.49) (0.68) (0.13)

DA OwnValue 1.13*** 1.13** 1.10*** 1.13** -0.18
(0.35) (0.44) (0.35) (0.51) (0.15)

high B × IA OtherValue 2.48*** 2.46** 2.48*** 2.48*** -0.04
(0.92) (0.96) (0.93) (0.93) (0.21)

high B × DA OtherValue 0.10 0.07 0 0.10 0.10 -0.10
(0.41) (0.34) (0.41) (0.43) (0.18)

Accumulated wealth -0.00 -0.00 -0.00 -0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Successfully acquired info in t− 1 0.67*** 0.65*** 0.64*** 0.66** -0.10
(0.23) (0.22) (0.21) (0.27) (0.08)

Period -0.05 -0.07 -0.05 -0.05 -0.00
(0.06) (0.06) (0.06) (0.06) (0.02)

Period × Free-Costly 0.08 0.08 0.08 0.08 0.03
(0.06) (0.06) (0.06) (0.05) (0.02)

Average WTP of others in t− 1 -0.06*** 0.06*** -0.06*** -0.04** 0.19***
(0.02) (0.02) (0.02) (0.02) (0.02)

Guess of others’ WTP in t− 1 -0.04 0.26*** 0.64***
(0.06) (0.05) (0.04)

Guess of others’ WTP in t 0.70*** 0.67*** 0.59***
(0.07) (0.06) (0.12)

Misunderstanding DA 2.38 3.28* 2.35 2.53 0.84
(1.70) (1.94) (1.69) (1.99) (0.62)

Curiosity 0.21*** 0.26*** 0.21*** 0.22*** 0.05***
(0.04) (0.04) (0.04) (0.04) (0.01)

Costly-Free 0.52 1.08* 0.50 0.61 0.51**
(0.55) (0.61) (0.54) (0.63) (0.21)

Risk Aversion -0.21** -0.19** -0.21** -0.20* 0.01
(0.10) (0.10) (0.10) (0.11) (0.03)

N 2097 2097 2097 2097 2097
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
Notes: Randome effects panel regressions; SE clustered at session level.
All regressions include: black asian hispanic age act sat act miss sat miss degree miss.
L.wtp guess is used as IV for wtp guess (1st-stage results in the last column, i.e. outcome = wtp guess).

Notes: The regression sample is the same as that in Column (4) in Table 6. There are 231 subjects each
of whom has 9 observations from 9 periods. Estimates are form random effects panel Tobit models. All
specifications include additional controls: dummy for female, dummy for graduate student, dummy for
black, dummy for Asian, dummy for Hispanic, age, ACT score, SAT score, dummy for ACT score miss-
ing, dummy for SAT score Missing, and dummy for degree missing. Standard errors are in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table E18: Decomposition of Subject WTP for Information Based on the Pooled Regression

BOS OwnValue BOS OtherValue DA OwnValue DA OtherValue
WTP: data 6.49 4.29 4.30 1.78

(4.86) (4.67) (4.30) (2.81)
Model predictiona 6.34 4.15 4.33 1.75

(2.71) (2.93) (2.65) (1.71)

Risk aversion -0.29 -0.25 -0.32 -0.25
(0.25) (0.30) (0.29) (0.24)

Cognitive load 0.47 0.36 0.42 0.22
(0.47) (0.43) (0.44) (0.29)

Learning over periods 0.46 0.36 0.40 0.23
(0.38) (0.35) (0.36) (0.25)

Curiosity 1.70 1.21 1.01 0.40
(1.67) (1.45) (1.37) (0.87)

Conformity 4.27 2.70 2.49 1.07
(1.94) (2.09) (1.85) (1.18)

Misunderstanding DA 0.41 0.20
(0.69) (0.45)

Totalb 5.45 3.49 3.30 1.34
(2.68) (2.76) (2.56) (1.63)

Explained by other factorsc 1.03 0.81 0.81 0.37
(4.00) (3.88) (3.17) (2.21)

Theoretical predictiond [5.2,8] [0,0.24] 0.67 0
# of Observations 549 495 558 495
# of Subjects 61 55 62 55

Notes: Decompositions are based on a random effects panel Tobit model that pools observations from all four treat-
ment (Columns (5) in Table 6). The table reports the sample average, while standard deviations are in parentheses.
a. “Model prediction” is the predicted value of E(WTP ) based on the corresponding estimated model, assuming
that unobserved error terms are equal to zero. The predicted values are truncated to be in [0, 15].
b. “Total” is the total WTP explained by the six factors above. Note that it is not the sum of the explained WTP of
the six factors because of the truncation at 0 and 15.
c. “Explained by other factors” is the difference between the observed WTP and the total WTP explained by the
six factors.
d. These are the theoretical predictions for risk neutral subjects.
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