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1 Introduction

The presence of public goods seriously challenges traditional or “natural” solutions for the
allocation of private goods. Important policy questions, of whether we can rely on the market
to provide optimal amounts of public goods such as air pollution, and how much we can rely
on “natural” processes such as voluntary contribution to solve environmental problems, boil
down to fundamental issues about human nature, i.e., about whether people are selfish or
cooperative. The vast experimental literature on voluntary provision of public goods shows
that

“although inexperienced subjects can be led to provide large contributions in
one-time decisions with the use of relevant discussions, one cannot rely on these
approaches as a permanent organizing feature without expecting an eventual
decline to self-interested behavior. ... Since 90 percent of subjects seem to be
responsive to private incentives, it is possible to create new mechanisms which
focus that self-interest toward the group interest.” (p. 173, “Public Goods: A
Survey of Experimental Research” in The Handbook of Experimental Economics,
1995.)

These “new mechanisms”, i.e., incentive-compatible mechanisms for public goods provi-
sion, are innovative allocation-taxation rules which can achieve a Pareto-optimal allocation
of resources with public goods. It is well known that it is impossible to design a mechanism
for making collective allocation decisions, which is informationally decentralized (i.e., mech-
anisms which only use the agents’ own messages), non-manipulable (or dominant strategy
incentive-compatible), and Pareto optimal’. There are many mechanisms which preserve
Pareto optimality at the cost of non-manipulability, some of which preserve “some degree”
of non-manipulability. In particular, some mechanisms have been discovered which have the
property that Nash equilibria are Pareto optimal?. These can be found in the work of Groves
and Ledyard (1977), Hurwicz (1979), Walker (1981), Tian (1989), Kim (1993), Peleg (1996)
and Falkinger (1996).

!This impossibility has been demonstrated in the work of Green and Laffont (1977), Hurwicz (1975),

Roberts (1979) and Walker (1980) in the context of resource allocation with public goods.
20ther implementation concepts include perfect Nash equilibrium (Bagnoli and Lipman (1989)), undom-

inated Nash equilibrium (Jackson and Moulin (1991)), etc.



Nash implementation theory has mainly focused on establishing static properties of the
equilibria. When a mechanism is implemented among real people, i.e., boundedly rational
agents, however, we expect the actual implementation to be a dynamic process, starting
somewhere off the equilibrium path. Following Hurwicz (1972), one could interpret the Nash
equilibrium strategies of a game form as the stationary messages of some decentralized learn-
ing process. The fundamental question concerning implementation of a specific mechanism
is whether the dynamic processes will actually converge to one of the equilibria promised by
theory.

The few theoretical papers on the dynamic properties of public goods mechanisms have
been using very specific learning dynamics to investigate the stability of mechanisms. Muench
and Walker (1983) and de Trenqualye (1988) study the convergence of the Groves-Ledyard
mechanism under Cournot best-reply dynamics. De Trenqualye (1989) and Vega-Redondo
(1989) propose mechanisms for which the Cournot best-reply dynamics is globally convergent
to the Lindahl equilibrium?® outcome. Kim (1993) proposes a mechanism which implements
Lindahl allocations and remains stable under the gradient adjustment process given quasi-
linear utility functions. One exception is Cabrales (1999) who studies dynamic convergence
and stability of the canonical mechanism in Nash implementation and the Abreu-Matsushima
mechanism under “naive adaptive dynamics”?.

Recent experimental studies on learning strongly reject the Cournot best-reply learning
model in favor of other models (e.g., Boylan and El-Gamal (1993)). So far there has been
no experimental investigation of the gradient adjustment process, even though it has been
used fairly extensively in the theoretical research on stability of games (Arrow and Hurwicz
(1977)). Experimental research on learning is still far from reaching a conclusion with regard
to a single “true” learning model that describes all adaptive behaviors. Furthermore, there
is strong evidence that individual players adopt different learning rules under different cir-
cumstances (El-Gamal and Grether (1995)). It is therefore desirable to identify mechanisms
which converge under a wide class of learning dynamics. This paper does so by focusing on

mechanisms which are supermodular games.

3A Lindahl equilibrium for the public goods economy is characterized by a set of personalized prices and

an allocation such that utility and profit maximization and feasibility conditions are satisfied.
4This is different from the adaptive learning in Milgrom and Roberts (1990). For a precise definition see

Cabrales (1999).



The class of supermodular games® has been identified as having very robust dynamic
stability properties (Milgrom and Roberts (1990)): it converges to the set of Nash equilibria
that bound the serially undominated set under a wide class of interesting learning dynamics,
including Bayesian learning, fictitious play, adaptive learning, Cournot best response and
many others. Therefore, instead of using a specific learning dynamic, we investigate whether
we can find Nash-efficient public goods mechanisms which are supermodular games.

The idea of using supermodularity as a robust stability criterion for Nash-efficient mech-
anisms is not only based on its good theoretical properties, but also on strong experimental
evidence. Chen (1997) examines all experiments on incentive-compatible mechanisms for
public goods. She finds that every experiment which converge to the Nash equilibrium pre-
diction is a supermodular game, while none of the experiments which does not converge is a
supermodular game. She proves that among the Nash-efficient public goods mechanisms the
Groves-Ledyard mechanism is a supermodular game in quasilinear environments when the
punishment parameter is above a certain threshold, while none of the Hurwicz (1979), Walker
(1981) and Kim (1993) mechanisms is supermodular. These results are consistent with the
experimental findings. The question remains whether we can find a Nash mechanism, which
implements Lindahl allocation in a general environment and has a robust stability property
(i.e., supermodular) in quasilinear environments.

In this paper, we propose a new family of mechanisms, which implement Lindahl alloca-
tions in Nash equilibrium in a general environment and are also supermodular games given
quasilinear utility functions.

Section 2 introduces the environment. Section 3 discusses supermodular games. Section 4
introduces the new family of mechanisms and proves the implementation and stability results.

Section 5 concludes the paper.

2 A general public goods environment

We will assume that there is one private good z, one public good y, and n > 3 players, indexed
by subscript i. Our results can be generalized to any number of public goods. Production
technology for the public good exhibits constant returns to scale, i.e., the production function
f(-) is given by y = f(z) = z/b for some b > 0. The assumption of constant returns to scale

is made to simplify the production side of the story. Theorem 2 still holds under a general

5See Section ?? for a formal definition.



convex production function, however, the stability results (Proposition 1) might also depend
on the parameters of the production function. Each player is characterized by a consumption
set which is the nonnegative orthant in R?, C; = ]Ri, a preference relation >; on C;, and
an initial endowment of the private good w} € R'. Let F; represent the set of individual

preference orderings and initial endowments. We formally define F; as follows.

DEFINITION 1 For each i € N, let E; = {(>=;,w?) :=; is transitive, complete, conver,

continuous, and strictly increasing in private good x, and wf > 0.}

The i agent’s characteristics are determined by e; € F;. The space of environments
for the economy is ¥ = 117, F;. An environment for the economy is represented by e € F.
The analysis for Nash implementation of the Lindahl allocations will be carried out in this
general environment, for any e € . To prove the implementation result (Theorem 2) we

need an additional assumption on the preference relation®.

ASSUMPTION 1 The upper contour sets are in the interior of the consumption space,
i.e., for any (zo,y0) € Ci, {(z,y) € Cil(z,y) =i (20, 40)} C C7.

Intuitively Assumption 1 requires that indifference curves do not hit the boundary of
the consumption set. Many frequently used utility functions, such as the Cobb-Douglas
utility functions, satisfy Assumption 1. For the dynamic stability analysis we will restrict
the environment further to the class of quasilinear preferences. Note although the class of
quasilinear preferences does not satisfy Assumption 1 it is straightforward to extend the

implementation theorem to this class of environment.

DEFINITION 2 E? = {(=;,w?) € E :=; is representable by a C* utility function of the
form v;(y) + x; such that Dv;(y) > 0 and —oo < D?v;(y) < 0 for ally > 0, and w? > 0},
where DF is the k™ order derivative.

An economic mechanism is defined as a non-cooperative game form played by the agents.
The game is described in its normal form. In all mechanisms considered in this paper, the
implementation concept used is Nash equilibrium. In the Nash implementation framework
the agents are assumed to have complete information about the environment while the

designer does not know anything about the environment.

6] thank William Thomson for suggesting this.



3 Supermodular Games

We first define supermodular games and review their stability properties. Then we discuss
alternative stability criteria and their relationship with supermodularity.

Supermodular games are games in which each player’s marginal utility of increasing her
strategy rises with increases in her rival’s strategies, so that (roughly) the player’s strategies
are “strategic complements”. Supermodular games need an order structure on strategy
spaces, a weak continuity requirement on payoffs, and complementarity between components
of a player’s own strategies, in addition to the above-mentioned strategic complementarity
between players’ strategies. Suppose each player i’s strategy set .5; is a subset of a finite-

dimensional Euclidean space IR¥. Then S = X7 1S; is a subset of ]Rk, where k = Y20 | k.

DEFINITION 3 A supermodular game s such that, for each player i, S; is a nonempty
sublattice of IR, w; is upper semi-continuous in s; for fized s_; and continuous in s_; for

fized s;, u; has increasing differences in (s;,s_;), and u; is supermodular in s;.

Increasing differences says that an increase in the strategy of player i’s rivals raises
her marginal utility of playing a high strategy. The supermodularity assumption ensures
complementarity among components of a player’s own strategies. Note it is automatically
satisfied when S; is one-dimensional. As the following theorem indicates supermodularity

and increasing differences are easily characterized for smooth functions in IR".

THEOREM 1 (Topkis (1978)) Let u; be twice continuously differentiable on S;. Then
u; has increasing differences in (s, s;) if and only if 0*u;/ds;0sj > 0 for all i # j and all
1 <h<k and all 1 <1 <kj; and u; is supermodular in s; if and only if 9*u;/Os;0sy > 0
foralli and all 1 < h <1 < k;;

Supermodular games are of interest particularly because of their very robust stability
properties. Milgrom and Roberts (1990) proved that in these games the set of learning
algorithms consistent with adaptive learning converge to the set bounded by the largest
and the smallest Nash equilibrium strategy profiles. Intuitively a sequence is consistent
with adaptive learning if players “eventually abandon strategies that perform consistently
badly in the sense that there exists some other strategy that performs strictly and uniformly

better against every combination of what the competitors have played in the not too distant



t”7. This includes a wide class of interesting learning dynamics, such as Bayesian learning,

pas
fictitious play, adaptive learning, Cournot best-reply and many others.

Since experimental evidence suggests that individual players tend to adopt different learn-
ing rules (El-Gamal and Grether (1995)), instead of using a specific learning algorithm to
study stability, one can use supermodularity as a robust stability criterion for games with
a unique Nash equilibrium. For supermodular games with a unique Nash equilibrium, we
expect any adaptive learning algorithm to converge to the unique Nash equilibrium, in par-
ticular, Cournot best-reply, fictitious play and adaptive learning. Compared with stability
analysis using Cournot best-reply dynamics, supermodularity is much more robust and inclu-
sive in the sense that it implies stability under Cournot best-reply and many other learning
dynamics mentioned above.

There are two caveats for using supermodularity as a robust stability criterion. First,
for supermodular games with multiple Nash equilibria, adaptive learning algorithms will
converge to the set bounded by the largest and the smallest Nash equilibrium strategy
profiles, however, players might not be able to learn to coordinate on a particular equilibrium.
Van Huyck, Battalio and Beil (1990) examine a finitely repeated coordination game with
seven Nash equilibria, which is supermodular. They found that with 14 to 16 players play
tended to converge to the Pareto-dominated Nash equilibrium where each player chooses the
minimum effort level. With two players, however, for 12 out of 14 pairs play converged to
the Pareto-dominant Nash equilibrium where each player chooses the maximum effort level.
Therefore, the equilibrium selection problem might depend on the group size and many other
factors. Supermodularity does not help to predict which equilibrium will be selected.

Second, supermodularity is sufficient but not necessary for convergence. This implies that
supermodular mechanisms with a unique Nash equilibrium ought to converge to the Nash
equilibrium prediction fairly robustly, but mechanisms which are not supermodular could still
converge to its equilibrium under some learning algorithms. In particular, supermodular
games with a unique pure strategy Nash equilibrium is dominance solvable, but not vice
versa. The robust convergence argument for supermodular games also applies to the larger
class of dominance solvable games (Milgrom and Roberts (1991)). Dominance solvability is
more inclusive but harder to check than supermodularity.

For a complete characterization of the dynamic stability of mechanisms, it is desirable to

find both sufficient and necessary conditions for convergence under a wide range of learning

"For a formal definition, see Milgrom and Roberts (1990).



dynamics. Since learning can differ from one context to another, we would need extensive
experimental studies of human learning behavior under different mechanisms and the result-
ing repertoire of algorithms, calibrated against human responses, to cover various contexts.
This is largely still an ongoing research enterprise. Once we have the accurately calibrated
algorithms, we can restrict ourselves to the stability analysis based on these algorithms, and
perhaps eventually characterize the sufficient and necessary conditions for these learning

dynamics to converge.

4 A new family of mechanisms

Kim (1986) has shown that for any game form implementing Lindahl allocations there does
not exist a decentralized adjustment process which ensures local stability of Nash equilibria
in certain classes of environments. Chen (1997) proves that none of the three existing game
forms which implement Lindahl allocations in Nash equilibrium, Hurwicz (1979), Walker
(1981) and Kim (1993), is supermodular in quasilinear environments. The question remains
whether we can find a mechanism which implements the Lindahl allocations in Nash equi-
librium in a general environment and also possesses a robust stability property at least with
quasilinear preferences. In this section we provide a positive answer to this question by
presenting a family of mechanisms which fulfill both roles.

In the mechanisms defined below the strategy space is two-dimensional. The new family
of mechanisms, I'"?, is defined by two free parameters, v and 6. Note when vy =1 and § = 0

we obtain the Kim (1993) mechanism.

DEFINITION 4 For mechanism ', the strategy space of playeri is S; C IR? with generic
element (m;, z;) € S;. The outcome function of the public good and the net cost share of the

private good for player v are
Y(m7 Z) = kaza
k=1

Tim.2) = Rlm.2)-Y(m2)+ 5= X m*+ 5T - 3 m

b
wherePi(m,z):——vzmj+12zj,’y>0 and 6 > 0.
J#i J#



The outcome function Y (m, z) is the level of public good, and T;(m, z) is the cost share
of player 7 in terms of private good. A player’s strategy m; is interpreted as the increment
(or decrement) of the public good player ¢ would like to add to (or subtract from) the
amounts proposed by others. Strategy z; is interpreted as player i’s estimation for the
public good level. If her estimation for the total level of public good is different from
the sum of each individual’s increment, she will be penalized by the quadratic difference,
%(zl — 0, my)?; furthermore, she will be penalized by a constant multiple of the sum of
the quadratic differences of other players, %Z#i(zj — Sr_,my)?% Under the mechanism
"9 since a player’s choice of (m;, z;) does not affect her price for the public good, P;(m, 2),
strictly increasing preferences in private good x; implies that a rational player will send her
estimation of the sum of proposals, z;, the same as the actual sum of proposals, that is,
zi = >p_1my =y, for all i. Therefore, in equilibrium the two quadratic punishment terms
drop out.

Theorem 2 establishes that in a general environment the mechanism "% implements the

Lindahl allocations in Nash equilibrium.

THEOREM 2 The mechanism I'"° implements the Lindahl allocations in Nash equilib-

rium for any e € F.
Proof:  See Appendix. |

Theorem 2 implies that in a general environment the Nash equilibrium of the mecha-
nism ' implements Lindahl allocations. Therefore, in equilibrium, the mechanism ' is
efficient, balanced and individually rational. A drawback of the mechanism is that off the
equilibrium path, the mechanism might not be balanced. How serious this drawback is de-
pends on how quickly the system converges when implemented, which is largely an empirical
question.

Since Assumption 1 is needed to prove Theorem 2, it does not apply to the class of
quasilinear preferences. However, it is straightforward to extend Theorem 2 to the class of

quasilinear preferences.

COROLLARY 1 The mechanism I'"® implements the Lindahl allocations in Nash equilib-
rium for any e € E°.

Proof:  See Appendix. |

10



COROLLARY 2 The mechanism I''"° has a unique Nash equilibrium for any e € E<.
Proof:  See Appendix. |

If we restrict ourselves to the class of quasilinear preferences, the mechanism I'"° has
a particularly attractive stability property, i.e., within certain parameter ranges, it is a
supermodular game. Therefore, it converges to the unique Nash equilibrium under a wide

class of learning dynamics.

PROPOSITION 1 The mechanism I'" is a supermodular game for any e € E if and

only if 52 52
S [1—1221}\1{1 (9yv2’+ o0) and y € [1—m1n 8in

+ (n— 1)d,nd).

Proof: (i) First, we prove that if § € [1 — min;ey %—y”i, +00) and v € [1 — min;ey %—y”i +(n—
1)d,n6], then I is a supermodular game for any e € E9.

Since S; C IR?, it is a sublattice. By Definition 2, payoff function wu;(z;,y) = v;(y) + w; —
Ti(m, z) is C% on S;, therefore, the continuity requirement is trivially satisfied.

Since )
0 U;

by Theorem 1, the payoff function w; is supermodular in s;.

=1,V

To show that u; has increasing differences in (s;, s_;), we need to check four conditions.
Since v > 1 — mingen %—y”i + (n —1)d, we have
Pu; 0

om;0m; Oy?

+y—1—(n—1)6 >0,V # j.
Similarly, since v < nd, we have

0%, v
— - L4 5>0.Vi ).
Om;0z; n+ 20.¥i# ]
The two conditions, v > 1 —min;ecy % .+ (n—1)d and v < nd can be satisfied simultaneously
as long as d € [1 — min;ey %y , +00) holds.

The last two conditions are straight forward to check:

821@

—— =1,Vi # j; and
aziamj ’ 7’7&]7 an

11



82’&1'

821'823‘

By Theorem 1, the payoff function u; has increasing differences. Therefore, I'"? is a super-

=0,Vi # j.

modular game for any e € E°,
(ii) Next we prove that if I'"? is a supermodular game for any e € E9, then 6§ € [1 —
min;e vy $% a L 400) and 7y € [1 — mingey %” + (n — 1), nd).

If I is a supermodular game for any e € E®, then u; has increasing differences in
(84,5 ). Since u; is C%, by Theorem 1, u; has increasing differences in (s;, s_;) if and only if
all of the following four inequalities hold,

0%u; 0%u; 0%u; 0%u;

—F >0, ———>0 >0, and
8mi8mj - 8mi82j - aziamj_ > o 8,2282]

>0, Vis#j.

From part (i), we know that the first two inequalities imply that

2

0“v
n5>7>1—1;r€%1w+( 1)(5,

which in turn implies that 6 € [1 — min;eny 5% a L, +00). Q.E.D.

Since the new mechanism is supermodular with a proper choice of parameters under
a class of quasilinear preferences, it has a robust dynamic stability property. Therefore,
compared with the Groves-Ledyard mechanism, it has the advantage of implementing Lindahl
allocations. Compared with other mechanisms implementing the Lindahl allocations, it has
a robust stability property. Compared with the Abreu-Matsushima mechanism which is
dominance-solvable but with a huge message space, the new mechanism is simple with only
a two-dimensional message space. Note in this entire class of Nash-efficient public goods
mechanisms only the Groves-Ledyard mechanism and the Walker mechanism are balanced
both on and off the equilibrium path. All others are balanced only in equilibrium.

Under the new mechanism as well as the Groves-Ledyard mechanism, when choosing
parameters to induce supermodularity, the planner needs to know the smallest second partial
derivative of the players’ utility for public goods in the society, i.e., min;cn %—y”’k, for all possible
levels of the public good, y. Note that by Definition 1 this term is bounded below. Note
also that this is state-dependent information. In Nash implementation theory we usually

assume that the planner does not have any information about the players’ preferences. In

12



that case, even though there exist a set of stable mechanisms among a family of mechanisms,
the planner does not have the information to choose the right one. Therefore, in order to
choose parameters to implement the stable set of mechanisms, the planner needs to have
some information about the distribution of preferences and an estimate about the possible

range of public goods level.

5 Concluding Remarks

So far Nash implementation theory has mainly focused on establishing static properties of
the equilibria. However, experimental evidence suggests that the fundamental question con-
cerning any actual implementation of a specific mechanism is whether decentralized dynamic
learning processes will actually converge to one of the equilibria promised by theory. Based
on its attractive theoretical properties® and the supporting evidence for these properties in
the experimental literature, we focus on supermodularity as a robust stability criterion for
Nash-efficient public goods mechanisms.

We present a new family of Nash mechanisms which implement Lindahl allocations in
a general environment; with quasilinear utility functions the new family of mechanisms are
supermodular games given a suitable choice of parameters. Thus theoretically the new
mechanisms have similar stability properties as the Groves-Ledyard mechanism and are also
individually rational.

Two aspects of the convergence and stability analysis in this paper warrant attention.
First, supermodularity is sufficient but not necessary for convergence to hold. It is possible
that a mechanism could fail supermodularity but still behaves well on a class of adjustment
dynamics, such as the Kim mechanism. Secondly, The stability analysis in this paper, like
other theoretical studies of the dynamic stability of Nash mechanisms, have been restricted
to quasilinear utility functions. It is desirable to extend the analysis to other more general

environments. The maximal domain of stable environments remains an open question.

APPENDIX

To prove Theorem 2, we need LLemmas 1 to 5.

8In particular, Milgrom and Roberts (1990) have shown that a supermodular game converges under a
wide class of learning dynamics, including Bayesian learning, fictitious play, adaptive learning, Cournot best

response and many others.
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LEMMA 1 If (m, %) is a Nash equilibrium of I for e € E, then z; = Y.1_, my, and

Proof: Since (m, z) is a Nash equilibrium, then for each 1,

[w? — Ti(m, 2),Y (in, 2)] =5 [w?

)

- E(m7 2723 Zi)7 Y(m, Z_s, ZZ)]

for all z;. Since preferences are strictly increasing in private good x, for each 1,

It follows that

Q.E.D.

LEMMA 2 Continuity, local nonsatiation and convexity of preferences, and continuity of
T;(m, z) in (my, z;) imply that X;(m, z) + T;(m, z) = w¥ for all i, where (m,Z2) is a Nash
equilibrium of I fore € E.

Proof:  See Groves and Ledyard (1977) p.799. |

LEMMA 3 Let A; = {(X;,Y) € C|(X;,Y) =; (X;,Y)}. If =; are complete, transitive and

convez, then A; is conver.

Proof: Take (X;,Y) € C;, (X;,Y) € C; and (X,,Y’) € C;. Suppose (X;,Y) =; (X;,Y) and
(X, Y) = (X, Y). Let X; = aX;+(1—a)X,, Y =aY +(1—a)Y’, where a € [0,1]. Then
(X;,Y) € C; since C; is a convex set. We next want to show that (X;,Y) =; (X;,Y). Since
preferences are complete, without loss of generality, we can assume (X;,Y) >=; (X;,Y).
By convexity of preferences, we have (XZ,Y) = (X;,Y"), which by transitivity yields
(X:,Y) = (Xi,Y). Q.E.D.

To prove the Pareto optimality of the Nash equilibrium, we need a minimum wealth
result, i.e., no player is in her minimum wealth condition in equilibrium. In equilibrium
although any strictly preferred point must be outside the budget set, since the budget set is
strictly convex along the boundary the separating hyperplane may contain strictly preferred

points. This possibility is ruled out by Lemma 4.

14



LEMMA 4 Under Assumption 1, if (m,z) is a Nash equilibrium of the mechanism 1",
for each i there exists (my,z;) such that [X;(m_;, Z_s,m4, 2;), Y (M_;, Z_;, m;, z;)] € C; and

Xi(m_i, Z_iymi, z;) + Ti(m_y, 2, my, z) < Xi(m, 2) + T;(m, 2).

Proof: Let X; = X;(m,2) and Y = Y (m, z). Assumption 1 implies that X; > 0 and ¥ > 0.
Let m; = m; and z; = Y + /2¢ for some ¢ > 0 such that X; — ¢ > 0. Since (1, z) is a Nash

equilibrium, we have T;(m, z) = P;(m, z) - Y (m, z) by Lemma 1, and

T(is 5, 2) = Ti(m, 5) + %(zi LV = T, F) + e
Let
Xi=w; —Ti(m 4,2 4,ms, %) =w; — Ti(m, 2) —e = X; — e > 0. (1)
Therefore, there exists o > 0 such that
Xi(m_i, Z_i,mi, z) = Xi — 0 > 0. (2)

By construction Y (m_;, Z_;, m;, ;) = Y > 0, therefore, [ X;(m_;, Z_;, my, z), Y (M_i, Z—i, m;, %;)] €
C;. Eq. (1) and (2) imply that

Xi(m_g, Z_iymy, z;) + Ti(M_i, 2o, my, 2) = wy — 0 < w; = Xi(m, 2) + Ti(m, 2).

Q.E.D.

LEMMA 5 If(m, 2) is a Nash equilibrium of I fore € E, then [(wf—T;(m,2))™,,Y (m, 2)]

=1

15 a Pareto optimal allocation for e € E.

Proof?: Each player must make three decisions: she must choose a private good consumption
bundle X; € R, and a pair of messages (m;, z;) to send to the planner. Nash behavior implies
that given others’ decisions a player will choose a decision triple (X, m;, 2;) to maximize
preferences over consumption bundle (X, Y) subject to a budget constraint.

We define the budget correspondence of player ¢ by

Bilm_s, z_i) = {(XF,m}, 27) € R'xSi|(X],Y (m_s, z_i,m}, 2])) € Co, X;+Ti(m_y, z_s,m}, 2]) < w¥}.

1771 1771

9The proof is similar to Groves and Ledyard’s (1977) p. 799.

15



The decision correspondence of player 7 is defined by

mi(mes, z—;) = {(X],m}, 27) € Bi(m—s, 2—) |(X], Y (m_s, 2=, m], 7)) = (X3, Y (m, 2))

for all (X;,my, z;) € Bi(m_;, z2_;)}.
We now prove Lemma 5 in seven steps. Let Y =Y (m, 2).
1. X;+ Ti(m, z) = w? for all i (Lemma 2).

2. For any (X;,Y) € C;, there is a pair (my, z;) such that Y =Y (m_;, Z_;, m;, 2;).
Simply let m; =Y — 3>, m;.

3. (XZ, Y) iz (XZ, Y), Y = m; + Z];éz mj 1mphes XZ + T;(m,i, 271'7 my;, Zz) Z XZ + T;(m, 2)
If not, X; + Ti;(m_;, Z2_;,my, z;) < wf (by 1). Continuity, local nonsatiation, convexity
of preferences and continuity of Tj(m, z) in (m, z) imply that there is a triple (X, m;, z;) such

that (X;,Y(m_i, Z_Z-,m;, z;)) € Ci,X;—I—TZ-(m_Z-, Z_,m, z’-) < w¥ and (X;,Y(m_i, Z_i z')) —i

(X;,Y). Then (X;,m;, 2;) & n;(m_4,z_;), which is a contradiction.

4. (X3, Y) = (X3,Y),Y =m; + >z my implies X; + T5(m_;, Z_;, m;, 2;) > X; + T;(m, 2).

If not, (X;, my, zi) € m(m_4, z_;), which is a contradiction.
5. (X3, Y) = (X;,Y) implies X; +t;-Y > X; + ;- Y.
Let TA}(Y; m_,z) = Pi(m_y, z)-Y—I—%(Y—zi)z—l—% Z#i(Y—zj)Q. Define t; = 87A}(Y; m_,2)/0Y =
P+ (Y —2) 4+ 0 (Y — 25). Let A; = {(X;,Y) € G|(X;,Y) =; (X;,Y)}. By Lemma 3, A;
is convex. And (X;,Y) is in the boundary of 4;. Let B; = {(X;,Y) € G| X;+T;(Y;m_;, z) <
w}. Since T}(-) is a convex function of Y, B; is convex. By 1, (X;,Y) is in the boundary
of B;. By 4, A N By = ¢, that is, the intersection of the interior of set A; and B; is empty.
Thus there exists a hyperplane through (X;,Y) separating A; and B;, and the vector (1, ;)
defines the hyperplane. It follows that (X;,Y) =; (X;,Y) implies X; +t;- Y > X; +t;- Y.

6. (X5, Y) = (X3, Y) implies X; +t;-Y > X; + ;- Y.

Suppose not. By 5, X; +t,-Y = X; +t;,-Y. By 2, 5 and Lemma 4, there exists
(X,Y) € C such that X; +t;-Y < X; +t,-Y. Let G = {(X,,Y) € G|(X],Y) =
(AXi + (1= NX,AY + (1 = \Y) forall A € [0,1]}. So all points along the line between
(X;,Y) and (X;,Y) have lower value than (X;,Y). By continuity of preferences there is a
neighborhood N of (X;,Y) such that (X;,Y") € NNC; implies that (X;,Y") =; (X;,Y). This
corresponds to a point in the closure of N with smaller value than (X;,Y). But NNG # ¢.

This leads to a contradiction of 5.
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7. Suppose [(X;),, Y] is not Pareto-optimal. Let [(X;)™,, Y] be a Pareto-superior feasible
allocation. It follows from 5 and 6 that 3, X; + 3, - Y > 3, X; + 3 t; - Y. In particular,
we can set z; =Y for all i. Then >, t; =3, P, = b. It follows that

Therefore, [(X;)™,,Y] is not feasible. Q.E.D.

Proof of Theorem 2: (i) We first show that if (n, 2) is a Nash equilibrium of I'" for e € F,
then [(P;(m, 2),wf —T;(m, 2))1,,Y (m, 2)] is a Lindahl equilibrium for e with P;(m, z) as the
Lindahl price of the public good for player 7. Since Lemma 5 show that Nash equilibrium
is Pareto-optimal, we only need to show that Pareto optima are Lindahl equilibria. The
following argument is similar to that in Foley (1970) p.68. Let X; = w? — Ti(m, ), and
Y =Y(m,z). Define

n

(W7 — X,
F o {(X0, Xoreee )Xo Vi Yar oo Ya) (X0, V2) € CoYi = Yy = ¥ for i # j and ¥ < 2=t = X0

b

).

It is easy to see that [ is a convex set and the point ()_(1,)_(2, XN, Y, - -+, Y,) is in
the boundary of F. Define

D = {(X17X27"' 7Xn7Y17)/é7' 7Yn)’(Xza}/z) € Cia (Xzyyz) iz (Xza}_/): VZ}

D is convex via the same argument as Lemma 3, and the point ()_(1, Xo, -, X, V1, Ys, - - -, Y,)
is in the boundary of D). The intersection of the interior of the two sets is empty, F°ND° = ¢,
since if it was not ({X;}%,,Y) would not be a Pareto optimum, which contradicts Lemma 5.
By the separating hyperplane theorem, there exists a price vector, (p¥,---, pZ, p{, -+, p%) #0
and a scalar ¢ such that for all (Xy, Xo, -+, X,,, Y1, Ys,---,Y,) € D,

n

S X+ () Y e (3)

i=1 i=1

Since (X1, Xo,---, X, Y1, Y5, ---,Y,) € DN F, we have

dop X+ (Qop) Y = (4)
i—1 =1
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By 5 of the proof of Lemma 5, the hyperplane going through (X;,Y) is defined by the vector
(1,t;) for all ¢ where
ti = Pi(m,z) + (Y — 2 —I—(SZ — Z;).
J#i

Therefore, pf = 1 and p! = t; for all i. Under the assumption of Nash behavior, we have

pl =PF(m,z)+ (Y —z)+ 6> (Y — z) = Pi(m,2), (by Lemma 1).
J#i
Next we want to show that (X;, V) maximizes the preference of player i subject to the
budget constraint. Suppose (X;,Y;) =; (X;,Y) while X; = X, and Y; = Y for all j # i, then
the point (X7, Xo, -+, X,,, Y7, Ys,---,Y,,) isin D. From Eq. (3) and (4) we have

Z X+ (Z Pk(m, 2)) LY > Z Xk + (Z Pk(m, 2)) Y.

k=1 k=1 k=1 k=1
Since all terms are the same on both sides except those corresponding to ¢, it follows that
Xi+Py(m,z)-Y > X;+ P;(m, z)-Y. By the same argument as in 6 of the proof of Lemma 5,
equality cannot hold. Therefore, we have

Xi+ Pi(m,2)- Y > X;+ P(in,z)- Y. (5)

Since P;(m, z) = Pi(m_;, Z_;, m;, z;), Eq. (5) implies

1

Xi+ Pi(m_i, Z_s,m4, z) - Y + = 2

Y -z + = Z — Zj] > X+ P(m,z)-Y.

J?él
By Lemma 1, this is equivalent to X; + T;(m_ 4,2 4, ms, 2;) > X; + Ti(m, z). Therefore,
(XZ‘, Y) i (XZ, Y) anhes XZ+E<m_“ 2y My, ZZ> > X2+i(m, Z), Le., [u)f-ﬂ(m, 2)7 Y(m, Z)]
maximizes the preference of player 7 subject to the budget constraint.

From Lemma 1, it follows that

Therefore, the allocation [(w¥ — T;(m, 2))*

7

" ., Y(m,Zz)] is feasible. Hence, [(P;(m,z),w? —

T;(m, 2)),,Y (m, z)] is a Lindahl equilibrium.

(ii) In the second part, we prove that if [(FP;, X;)7,,Y] is a Lindahl equilibrium for
e € [, then there is a Nash equilibrium (m, z) of ' for e, such that Y (m,z) = Y,
wf —Ti(m,z) = X;, and Py(m, z) = P,.
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Let [(P;, X;)®,,Y] be a Lindahl equilibrium. Let z; = Y for all i and (m;), be the
solution to the following n linear equations:

my+--4m, = Y
=YX my = Pi—k—lz#iéj, fori=1,...,n—1.

Note that the above system has a unique solution (m;)?,. Since [(F;, X;)%,, Y] is a Lindahl
equilibrium,
W — P Y, Y] = [wf — P+ Y, Y], forall Y.
Choose Y = m; + 37,2, m;. Then for each i,
Wi — P~ Y, Y] = [wf — P+ (mi + Y _my),m; + > _my), for all m;. (7)

J#i J#i

Since preferences are strictly increasing in the private good z, we have

) ] 1
(wi = By (my + 3 mmg)ymi + D my) = fwf = By (ma + Y my) — §<Zi —mi =2 m)”
i i#i i7i i
)
—5 (5 —mi =3 my)t m £ 3 ml, (®)

J#i J#i J#
for all m;, z;. From Eq. (7) and (8), it follows that

I 1
Wi — P Y, Y] = [wf — P+ (m; + > my) —5 (zi —m; — > _m;)?
JFi JF

) _ _ _
=5 2 (5 —mi =3 my)t m 4 3 m), (9)
i i Iz
for all m;, z;. From Eq. (6), for all 1,

Y =Y my =Y (m, 2),
k=1

P=—— Vng ZZJ = z m,z)= Pi(m—u?—iamuzi), (1())
J#i T i

Therefore, from Eq. (9) and (10), we have

[wf—]%(m,z)-Y(m,z)——(zi—zn:mk)Q 22 ka Y (m, 2)] =



0
2

> (z—mi—Y ),

o o 1 _
Wi —Pi(m i, Z_5,my, 2zi) - Y (Mg, 25, my, 2;) — §(zl —m;—» my;)’—
JFi JFi

JF
Y (mi, Z i, my, zi)]
for all m;, z;. Hence (m, z) is a Nash equilibrium of ', with Y (m, 2) = Y, w® — Ti(m, z) =

Xi, and R(m, 2) = pl QED

Proof of Corollary 1: (i) We first show that if (1, %) is a Nash equilibrium of '
for e € B9, then [(P(m, 2),wf — Ty(m, 2))™,, Y (m, 2)] is a Lindahl equilibrium for e with
Pi(m, z) as the Lindahl price of the public good for player i.
Maximizing the utility function, holding m_; and z_; fixed,
max v;(Y) + w? — Ty(m_;, 24, my, 2;),

mi,24

yields a first order condition

J#i
Using Eq. (11) and the Envelope Theorem we obtain the other first order condition,

DUZ(Y> — E(m_i, Z_i, my;, Zi) + 5Z<Zj — m; — ka> =0. (12)
JFi k#i

In Nash equilibrium, m; = m; and z; = z;, then Eq. (12) yields

Dvi(Y) = Py(m, 2). (13)

Feasibility is verified in the proof of Theorem 2. Therefore, [(P;(m, z),wf—T;(m, 2))",, Y (m, Z)]
is a Lindahl equilibrium for e € E¥ with P;(m, z) as the Lindahl price of the public good for
player 1.

(ii) If [(P;, Xi)™y, Y] is a Lindahl equilibrium for e € E?, then there is a Nash equilibrium
(m, 2) of I for e, such that Y (m, 2) = Y, w¥ —Tj(m, z2) = X;, and P;(m, z) = P;. This part
is identical to part (ii) of the proof of Theorem 2, since it does not require Assumption 1.

Q.E.D.

Proof of Corollary 2: Summing Eq. (13) over i yields
> Du(Y)=b (14)
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Since, by Definition 2, D?v;(Y) < 0 for all i, there can be at most one value of Y that
satisfies Eq. (14). Let this value be Y* = Y, m}.
Definition 2, Dv;(Y) > 0 for all ¢, and Eq. (13) imply that P} is also unique. By Lemma

1, zF =3, mf =Y*, then 2 is unique. Eq. (10) can be rearranged as

P Y b
Y n mn

which solves uniquely for m;.
Q.E.D.
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