Dynamic Stability of Nash-Efficient Public Goods

Mechanisms: Reconciling Theory and Experiments*

Yan Chen
Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220
Phone:(734)763-9619; Fax: (734)764-2769; Email: yanchen@umich.edu

Revised: March 6, 2000

*I thank John Ledyard, David Roth and Tatsuyoshi Saijo for discussions that lead to this project; Klaus
Abbink, Beth Allen, Rachel Croson, Roger Gordon, Elisabeth Hoffman, Matthew Jackson, Wolfgang Loren-
zon, Laura Razzolini, Sara Solnick, Tayfun S6nmez, William Thomson, Lise Vesterlund, Xavier Vives, anony-
mous referees and an associate editor, seminar participants in Bonn (EDP), Hamburg, Michigan, Minnesota,
Pittsburgh, Purdue, and participants of the 1997 North America Econometric Society Summer Meetings
(Pasadena, CA), the 1997 Economic Science Association meetings (Tucson, AZ), the 1998 Midwest Eco-
nomic Theory meetings (Ann Arbor, MI) and the 1999 NBER Decentralization Conference (New York, NY)
for their comments and suggestions. The hospitality of the Wirtschaftspolitische Abteilung at the Univer-
sity of Bonn, the research support provided by Deutsche Forschungsgemeinschaft through SFB303 at the
University of Bonn and NSF grant SBR-9805586 are gratefully acknowledged. Any remaining errors are my
own.



Proposed running head: Dynamic Stability of Mechanisms

Mailing address of the author:
Yan Chen

Department of Economics
University of Michigan

611 Tappan Street

Ann Arbor, MI 48109-1220

Abstract

We propose to use supermodularity as a robust dynamic stability criterion for pub-
lic goods mechanisms with a unique Nash equilibrium. Among the existing public goods
mechanisms whose Nash equilibria are Pareto efficient, the Groves-Ledyard mechanism is a
supermodular game if and only if the punishment parameter is sufficiently high, while none
of the Hurwicz, Walker and Kim mechanisms is supermodular in a quasilinear environment.
The Falkinger mechanism is a supermodular game in a quadratic environment if and only
if the subsidy coefficient is greater than or equal to one. These results are consistent with
the experimental findings in Smith (1979), Harstad and Marrese (1982), Mori (1989), Chen
and Plott (1996), Chen and Tang (1998), and Falkinger, Fehr, Géchter and Winter-Ebmer
(1998).
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1 Introduction

The design of decentralized institutions to provide public goods has been a challenging
problem for economists for a long time. Since the 1970s, economists have been seeking
informationally decentralized mechanisms (i.e., mechanisms which only use the agents’ own
messages) that are non-manipulable (or dominant strategy incentive-compatible) and achieve
a Pareto optimal allocation of resources with public goods.

By now it is well known that it is impossible to design a mechanism for making collective
allocation decisions, which is informationally decentralized, non-manipulable, and Pareto
optimal'. There are many mechanisms which preserve Pareto optimality at the cost of non-
manipulability, some of which preserve “some degree” of non-manipulability. In particular,
some mechanisms have been discovered which have the property that Nash equilibria are
Pareto optimal®. These can be found in the work of Groves and Ledyard (1977), Hurwicz
(1979), Walker (1981), Tian (1989), Kim (1993), Peleg (1996) and Falkinger (1996).

So far Nash implementation theory has mainly focused on establishing static properties
of the equilibria. When a mechanism is implemented among real people, i.e., boundedly
rational agents, however, we expect the actual implementation to be a dynamic process,
starting somewhere off the equilibrium path?. Following Hurwicz (1972), one could interpret
the Nash equilibrium strategies of a game form as the stationary messages of some decen-
tralized learning process. The fundamental question concerning implementation of a specific
mechanism is whether the dynamic processes will actually converge to one of the equilib-
ria promised by theory. This paper addresses this question by proposing supermodularity
as a robust stability criterion for public goods mechanisms when there is a unique Nash
equilibrium.

The few theoretical papers on the dynamic properties of public goods mechanisms have
been using very specific learning dynamics to investigate the stability of mechanisms. Muench
and Walker (1983) and de Trenqualye (1988) study the convergence of the Groves-Ledyard

!This impossibility has been demonstrated in the work of Green and Laffont (1977), Hurwicz (1975),

Roberts (1979) and Walker (1980) in the context of resource allocation with public goods.
20ther implementation concepts include perfect Nash equilibrium (Bagnoli and Lipman (1989)), undom-

inated Nash equilibrium (Jackson and Moulin (1991)), etc.
3Tt is also possible to have instant realization of the equilibrium state, if there exists some agent who

can compute the Nash equilibrium and recommend it to the other agents who then realize the wisdom of
the recommendation and follow it. There are mixed experimental evidence for this recommendation method
(Croson and Marks (1999)).



mechanism under Cournot best-reply dynamics. De Trenqualye (1989) and Vega-Redondo
(1989) propose mechanisms for which the Cournot best-reply dynamics is globally convergent
to the Lindahl equilibrium? outcome. Kim (1993) proposed a mechanism which implements
Lindahl allocations and remains stable under the gradient adjustment process given quasi-
linear utility functions. One exception is Cabrales (1999) who studies dynamic convergence
and stability of the canonical mechanism in Nash implementation and the Abreu-Matsushima
mechanism under “naive adaptive dynamics”®.

Recent experimental studies on learning strongly reject the Cournot best-reply learning
model in favor of other models (e.g., Boylan and El-Gamal (1993)). So far there has been
no experimental investigation of the gradient adjustment process, even though it has been
used fairly extensively in the theoretical research on stability of games (Arrow and Hurwicz
(1977)). Experimental research on learning is still far from reaching a conclusion with regard
to a single “true” learning model that describes all adaptive behaviors. Furthermore, there
is strong evidence that individual players adopt different learning rules under different cir-
cumstances (El-Gamal and Grether (1995)). It is therefore desirable to identify mechanisms
which converge under a wide class of learning dynamics. This paper does so by focusing on
mechanisms which are supermodular games.

The class of supermodular games® has been identified as having very robust dynamic
stability properties (Milgrom and Roberts (1990)): it converges to the set of Nash equilibria
that bound the serially undominated set under a wide class of interesting learning dynamics,
including Bayesian learning, fictitious play, adaptive learning, Cournot best-reply and many
others. Therefore, instead of using a specific learning dynamic, we investigate whether we
can find Nash-efficient public goods mechanisms which are supermodular games.

The idea of using supermodularity as a robust stability criterion for Nash-efficient mech-
anisms is not only based on its good theoretical properties, but also on strong experimental
evidence. In fact it is inspired by the experimental results of Chen and Plott (1996) and
Chen and Tang (1998), where they varied a punishment parameter in the Groves-Ledyard
mechanism in a set of experiments and obtained totally different dynamic stability results.

In this paper, we review the main experimental findings on the dynamic stability of Nash-

4A Lindahl equilibrium for the public goods economy is characterized by a set of personalized prices and

an allocation such that utility and profit maximization and feasibility conditions are satisfied.
This is different from the adaptive learning in Milgrom and Roberts (1990). For a precise definition see

Cabrales (1999).
6See Section 4 for a formal definition.



efficient public goods mechanisms, examine the supermodularity of existing Nash-efficient

public goods mechanisms, and use the results to sort a class of experimental findings.
Section 2 introduces the environment. Section 3 reviews the experimental results. Section

4 discusses supermodular games. Section 5 investigates whether the existing mechanisms are

supermodular games. Section 6 concludes the paper.

2 A public goods environment

We first introduce notation and the economic environment. Most of the experimental imple-
mentations of incentive-compatible mechanisms use a simple environment. Usually there is
one private good x, one public good y, and n > 3 players, indexed by subscript 7. Produc-
tion technology for the public good exhibits constant returns to scale, i.e., the production
function f(-) is given by y = f(z) = x/b for some b > 0. Preferences are largely restricted
to the class of quasilinear preferences’. Let E represent the set of transitive, complete and

convex individual preference orderings, ~;, and initial endowments, wf. We formally define
E? as follows.

DEFINITION 1 E® = {(=;,w¥) € E :=; is representable by a C* wutility function of the
form v;(y) + x; such that Dv;(y) > 0 and D?v;(y) < 0 for all y > 0, and w® > 0}, where D*

is the k™ order derivative.

Falkinger, Fehr, Géchter and Winter-Ebmer (1998) use a quadratic environment in their

experimental study of the Falkinger mechanism. We define this environment as F?”.

DEFINITION 2 E%9P = {(=; w¥) € E :=; is representable by a C* utility function of
the form A;x; — %lef +y where A;, B; > 0 and wf > 0}.

An economic mechanism is defined as a non-cooperative game form played by the agents.
The game is described in its normal form. In all mechanisms considered in this paper, the
implementation concept used is Nash equilibrium. In the Nash implementation framework
the agents are assumed to have complete information about the environment while the

designer does not know anything about the environment.

"Harstad and Marrese (1982) and Falkinger et. al. (1998) are exceptions.



3 Experimental results

Seven experiments have been conducted with mechanisms having Pareto-optimal Nash equi-
libria in public goods environments (see Chen (1999) for a survey). Sometimes the data
converged quickly to the Nash equilibria; other times it did not. Smith (1979) studies
a simplified version of the Groves-Ledyard mechanism which balanced the budget only in
equilibrium. In the five-subject treatment (R1) one out of three sessions converged to the
stage game Nash equilibrium. In the eight-subject treatment (R2) neither session converged
to the Nash equilibrium prediction. Harstad and Marrese (1981) found that only three out
of twelve sessions attained approximately Nash equilibrium outcomes under the simplified
version of the Groves-Ledyard mechanism. Harstad and Marrese (1982) studied the complete
version of the Groves-Ledyard mechanism in Cobb-Douglas economies. In the three-subject
treatment one out of five sessions converged to the Nash equilibrium. In the four-subject
treatment one out of four sessions converged to one of the Nash equilibria. Mori (1989) com-
pares the performance of a Lindahl process with the Groves-Ledyard mechanism. He ran
five sessions for each mechanism, with five subjects in each session. The aggregate levels of
public goods provided in each of the Groves-Ledyard sessions were much closer to the Pareto
optimal level than those provided using a Lindahl process. On the individual level, each
of the five sessions stopped within ten rounds when every subject repeated the same mes-
sages. However, since individual messages must be in multiples of .25 while the equilibrium
messages were not on the grid, convergence to Nash equilibrium messages was approximate.
None of the above experiments studied the effects of the punishment parameter® on the
performance of the mechanism.

Chen and Plott (1996) first assessed the performance of the Groves-Ledyard mechanism
under different punishment parameters. Each group consisted of five players with differ-
ent preferences. They found that by varying the punishment parameter the dynamics and
stability changed dramatically. This finding was replicated by Chen and Tang (1998) with
twenty-one independent sessions and a longer time series (100 rounds) in an experiment
designed to study the learning dynamics. Chen and Tang (1998) also studied the Walker
mechanism? in the same economic environment.

8See Section 5 for a formal definition. Roughly speaking, the punishment parameter in the Groves-
Ledyard mechanism determines the magnitude of punishment if a player’s contribution deviates from the
mean of other players’ contributions.

9See Walker (1981). A formal definition of the Walker mechanism is provided in the Appendix.



[Figure 1 about here.]

Figures 1 presents the time series data from Chen and Tang (1998) for two out of five types
of players'®. Each graph presents the mean (the black dots), standard deviation (the error
bars) and stage game equilibria (the dashed lines) for each of the two different types averaged
over seven independent sessions for each mechanism. The two graphs in the first column
display the mean contribution (and standard deviation) for type 1 and 2 players under the
Walker mechanism (hereafter Walker). The second column displays the average contributions
for type 1 and 2 for the Groves-Ledyard mechanism under a low punishment parameter
(hereafter GL1). The third column displays the same information for the Groves-Ledyard
mechanism under a high punishment parameter (hereafter GL.100). From these graphs, it is
apparent that all seven sessions of the Groves-Ledyard mechanism under a high punishment
parameter converged!' very quickly to its stage game Nash equilibrium and remained stable,
while the same mechanism did not converge under a low punishment parameter; the Walker
mechanism (Walker) did not converge to its stage game Nash equilibrium either.

Because of its good dynamic properties, GL.100 had far better performance than GL1
and Walker, evaluated in terms of system efficiency, close to Pareto optimal level of public
goods provision, less violations of individual rationality constraints and convergence to its
stage game equilibrium. All these results are statistically highly significant (Chen and Tang
(1998)).

These results illustrate the importance to design mechanisms which not only have good
static properties, but also good dynamic stability properties like GL100. Only when the
dynamics lead to the convergence to the static equilibrium, can all the nice static properties
be realized.

Falkinger, Fehr, Géchter and Winter-Ebmer (1998) studies the Falkinger mechanism

in a quasilinear as well as a quadratic environment. In the quasilinear environment, the

19The data for the remaining three types of players are not displayed due to limited space, but are available

from the author upon requests. They display very similar patterns.
1 “Theoretically, convergence implies that no deviation will ever be observed once the system equilibrates.

In an experimental setting with long iterations, even after the system equilibrates, subjects sometimes exper-
iment by occasional deviation. Therefore, it is necessary to have some behavioral definition of convergence:
a system converges to an equilibrium at round ,if ;( )= £,V andV > | except for a maximum of
rounds of deviation for , where is small. For our experiments of 100 rounds, we let <5, i.e., there
could be a total of up to 5 rounds of experimentation or mistakes after the system converged.” Chen and
Tang (1998).



mean contributions moved towards the Nash equilibrium level but did not quite reach the
equilibrium. In the quadratic environment the mean contribution level hovered around the
Nash equilibrium, even though none of the 23 sessions had a mean contribution level exactly
equal to the Nash equilibrium level in the last five rounds. Therefore, Nash equilibrium was
a good description of the average contribution pattern, although individual players did not
necessarily play the equilibrium.

In Section 5 we will provide a theoretical explanation for the above experimental results

in light of supermodular games.

4 Supermodularity and stability

We first define supermodular games and review their stability properties. Then we discuss
alternative stability criteria and their relationship with supermodularity.

Supermodular games are games in which each player’s marginal utility of increasing her
strategy rises with increases in her rival’s strategies, so that (roughly) the player’s strategies
are “strategic complements”. Supermodular games need an order structure on strategy
spaces, a weak continuity requirement on payoffs, and complementarity between components
of a player’s own strategies, in addition to the above-mentioned strategic complementarity
between players’ strategies. Suppose each player i’s strategy set .S; is a subset of a finite-

dimensional Euclidean space IR¥". Then S = xS, is a subset of R, where k = 7 k;.

DEFINITION 3 A supermodular game s such that, for each player i, S; is a nonempty
sublattice of IR, w; is upper semi-continuous in s; for fived s_; and continuous in s_; for

fized s;, u; has increasing differences in (s;,s_;), and u; is supermodular in s;.

Increasing differences says that an increase in the strategy of player ’s rivals raises
her marginal utility of playing a high strategy. The supermodularity assumption ensures
complementarity among components of a player’s own strategies. Note it is automatically
satisfied when S; is one-dimensional. As the following theorem indicates supermodularity

and increasing differences are easily characterized for smooth functions in IR".

THEOREM 1 (Topkis (1978)) Let u; be twice continuously differentiable on S;. Then
u; has increasing differences in (s, s;) if and only if 0*u;/ds;0sj > 0 for all i # j and all
1 <h<k andalll <1 <kj; and u; is supermodular in s; if and only if 0*u;/Dsy0sy > 0
foralli and all 1 < h <1 < k;;



Supermodular games are of interest particularly because of their very robust stability
properties. Milgrom and Roberts (1990) proved that in these games the set of learning
algorithms consistent with adaptive learning converge to the set bounded by the largest
and the smallest Nash equilibrium strategy profiles. Intuitively a sequence is consistent
with adaptive learning if players “eventually abandon strategies that perform consistently
badly in the sense that there exists some other strategy that performs strictly and uniformly
better against every combination of what the competitors have played in the not too dis-
tant past”!?. This includes a wide class of interesting learning dynamics, such as Bayesian
learning, fictitious play, adaptive learning, Cournot best-reply and many others.

Since experimental evidence suggests that individual players tend to adopt different learn-
ing rules (El-Gamal and Grether (1995)), instead of using a specific learning algorithm to
study stability, one can use supermodularity as a robust stability criterion for games with
a unique Nash equilibrium. For supermodular games with a unique Nash equilibrium, we
expect any adaptive learning algorithm to converge to the unique Nash equilibrium, in par-
ticular, Cournot best-reply, fictitious play and adaptive learning. Compared with stability
analysis using Cournot best-reply dynamics, supermodularity is much more robust and inclu-
sive in the sense that it implies stability under Cournot best-reply and many other learning
dynamics mentioned above. Among the seven experiments in Nash-efficient public goods
mechanisms which we discussed in Section 3, six of them has a unique Nash equilibrium.
The only one with multiple Nash equilibria is Harstad and Marrese (1982).

There are two caveats for using supermodularity as a robust stability criterion. First,
for supermodular games with multiple Nash equilibria, adaptive learning algorithms will
converge to the set bounded by the largest and the smallest Nash equilibrium strategy
profiles, however, players might not be able to learn to coordinate on a particular equilibrium.
Van Huyck, Battalio and Beil (1990) examine a finitely repeated coordination game with
seven Nash equilibria, which is supermodular. They found that with 14 to 16 players play
tended to converge to the Pareto-dominated Nash equilibrium where each player chooses the
minimum effort level. With two players, however, for 12 out of 14 pairs play converged to
the Pareto-dominant Nash equilibrium where each player chooses the maximum effort level.
Therefore, the equilibrium selection problem might depend on the group size and many other
factors. Supermodularity does not help to predict which equilibrium will be selected.

Second, supermodularity is sufficient but not necessary for convergence. This implies

12For a formal definition, see Milgrom and Roberts (1990).



that supermodular mechanisms with a unique Nash equilibrium ought to converge to the
Nash equilibrium prediction fairly robustly, but mechanisms which are not supermodular
could still converge to its equilibrium under some learning algorithms. In particular, super-
modular games with a unique pure strategy Nash equilibrium is dominance solvable, but
not vice versa. The robust convergence argument for supermodular games also applies to
the larger class of dominance solvable games (Milgrom and Roberts (1991)). Dominance
solvability is more inclusive but harder to check than supermodularity. There have been
some experiments, which support dominance solvability as the outcome of adaptive learn-
ing. Chen (1998) studies the serial and average cost pricing mechanism in an environment
where both mechanisms are dominance solvable. Under complete information, more than
80 percent of the players converged to the unique Nash equilibrium within eight rounds
under both mechanisms. Cox and Walker (1998) study whether subjects can learn to play
Cournot duopoly strategies in games with two kinds of interior Nash equilibrium. Their
type I duopoly has a stable interior Nash equilibrium under Cournot best-reply dynamics
and therefore is dominance solvable!®. Their type II duopoly has an unstable interior Nash
equilibrium and two boundary equilibria under Cournot best-reply dynamics, and therefore
is not dominance solvable. They found that after a few periods subjects did play stable
interior, dominance solvable equilibria, but they did not play the unstable interior equilibria
nor the boundary equilibria.

For a complete characterization of the dynamic stability of mechanisms, it is desirable to
find both sufficient and necessary conditions for convergence under a wide range of learning
dynamics. Since learning can differ from one context to another, we would need extensive
experimental studies of human learning behavior under different mechanisms and the result-
ing repertoire of algorithms, calibrated against human responses, to cover various contexts.
This is largely still an ongoing research enterprise. Once we have the accurately calibrated
algorithms, we can restrict ourselves to the stability analysis based on these algorithms, and
perhaps eventually characterize the sufficient and necessary conditions for these learning

dynamics to converge.

13Moulin (1984) shows that dominance solvability implies Cournot stability, but the converse need not hold
in general. The converse does hold for two-player games with one-dimensional strategy space and strictly

quasiconcave payoffs, which applies to the Cox and Walker experiments.

10



5 Supermodularity of existing Nash-efficient public goods mech-

anisms

In this section we investigate the supermodularity of five well-known Nash-efficient public
goods mechanisms. We use supermodularity to analyze the experimental results on Nash-
efficient public goods mechanisms.

The Groves-Ledyard mechanism (1977) is the first mechanism in a general equilibrium
setting whose Nash equilibrium is Pareto optimal. The mechanism allocates private goods
through the competitive markets and public goods through a government allocation-taxation
scheme that depends on information communicated to the government by consumers regard-
ing their preferences. Given the government scheme, consumers find it in their best interest
to reveal their true preferences for public goods. The mechanism balances the budget both
on and off the equilibrium path, but it does not implement Lindahl allocations. Later on,
more game forms have been discovered which implement Lindahl allocations in Nash equi-
librium. These include Hurwicz (1979), Walker (1981), Tian (1989), Kim (1993) and Peleg
(1996).

DEFINITION 4 For the Groves-Ledyard mechanism, the strategy space of player i is .S; C
IR with generic element m; € S;. The outcome function of the public good and the net cost

share of the private good for player i are

Y(m) = > my
k

Y (m) yon—1
Tetm) = Ty I

(mi — p—i)? — 02].

where v > 0, n > 3, p_y = >;2;m;/(n — 1) is the mean of others’ messages, and o2, =

Shoti(mp — p—3)?/(n — 2) is the squared standard error of the mean of others’ messages.

In the Groves-Ledyard mechanism each agent reports m;, the increment (or decrement)
of the public good player ¢ would like to add to (or subtract from) the amounts proposed by
others. The planner sums up the individual contributions to get the total amount of public
good, Y, and taxes each individual based on her own message, and the mean and sample
variance of everyone else’s messages. Thus each individual’s tax share is composed of three
parts: the per capita cost of production, Y-b/n, plus a positive multiple, v/2, of the difference

between her own message and the mean of others’ messages, ((n — 1)/n) x (m; — pu_;)?, and

11



the sample variance of others’ messages, 0%,. While the first two parts guarantee that Nash
equilibria of the mechanism are Pareto optimal, the last part insures that budget is balanced
both on and off the equilibrium path. Note that the free parameter, v, determines the
magnitude of punishment when an individual deviates from the mean of others’ messages.
It does not affect any of the static theoretical properties of the mechanism.

Chen and Plott (1996) and Chen and Tang (1998) found that the punishment parameter,
v, had a significant effect in inducing convergence and dynamic stability. For a large enough
v, the system converged to its stage game Nash equilibrium very quickly and remained stable;
while under a small v, the system did not converge to its stage game Nash equilibrium. In
the following proposition, we provide a necessary and sufficient condition for the mechanism
to be a supermodular game given quasilinear preferences, and thus to converge to its Nash

equilibrium under a wide class of learning dynamics.

PROPOSITION 1 The Groves-Ledyard mechanism is a supermodular game for any e €
E? if and only if v € [~ miniGN{%—y”i}n, +00).

Proof: (i) If v € [— min,e N{%}n, +00), then the Groves-Ledyard mechanism is a super-
modular game for any e € E9: see Chen and Tang (1998).

(ii) Next, we prove that if the Groves-Ledyard mechanism is a supermodular game for
any e € B9, then v € [— minieN{%—y”i}n, +00). Since it is a supermodular game, the payoff
function, u;, has increasing differences in (m;, m_;), for all 7. Since wu; is C? on S;, by

Theorem 1, u; has increasing differences in (m;, m_;) if and only if

821@ 821)2'
Dmom; O +v/n > 0,Vi,
which implies that v € [— minieN{%—y”i}n, +00). Q.E.D.

Therefore, when the punishment parameter is above the threshold, a large class of in-
teresting learning dynamics converge, which is consistent with the experimental results.
Intuitively, when the punishment parameter is sufficiently high, the incentive for each agent
to match the mean of other agents’ messages is also high. Therefore, when other agents
increase their contributions, agent ¢ also wants to increase her contribution to avoid the
penalty. Thus the messages become strategic complements and the game is transformed into

a supermodular game. Muench and Walker (1983) found a convergence condition for the

12



Groves-Ledyard mechanism using Cournot best-reply dynamics and parameterized quadratic
preferences. This proposition generalizes their result to general quasilinear preferences and
a much wider class of learning dynamics.

Falkinger (1996) introduces a class of simple mechanisms. In this incentive compatible
mechanism for public goods, Nash equilibrium is Pareto optimal when a parameter is chosen
appropriately'®, however, it does not implement Lindahl allocations and the existence of

equilibrium can be delicate in some environments.

DEFINITION 5 For the Falkinger (1996) mechanism, the strategy space of player i is
S; C R' with generic element m; € S;. The outcome function of the public good and the net

cost share of the private good for player i are

Y(m) = ; mg,
ity

n—1

TF(m) = bm; — B(m; —
where 3 > 0.

This tax-subsidy scheme works as follows: if an individual’s contribution is above the
average contribution of the others, she gets a subsidy of # for a marginal increase in her
contribution. If her contribution is below the average contribution of others, she has to pay
a tax whereby a marginal increase in her contribution reduces her tax payment by §. If 3 is
chosen appropriately, Nash equilibrium of this mechanism is Pareto efficient. Furthermore,

it fully balances the budget in and out of equilibrium path.

PROPOSITION 2 The Falkinger mechanism is a supermodular game for any e € EQP if
and only if 5 > 1.

Proof: (i) If 8 > 1, then the Falkinger mechanism is a supermodular game for any e € F¢P.
For any e € EQP, the continuity condition is satisfied. Since S; C IR', the supermodu-
larity condition is automatically satisfied. If 3 > 1, then

821,62‘ Blb2
= —1) >0, Vs.
om;Om; n— 1ﬁ<ﬁ )20,
'4In this mechanism, when =1—1 , Nash equilibrium is Pareto optimal.

13



By Theorem 1, u; has increasing differences in (m;, m_;), for all i. Therefore, it is a super-
modular game.

(ii) Next, we prove that if the Falkinger mechanism is a supermodular game for any
e € E9P then 8 > 1.

Since it is a supermodular game, the payoff function, w;, has increasing differences in
(mi, m_;), for all 4. Since u; is C? on S;, by Theorem 1, u; has increasing differences in

(m;, m_;) if and only if
2, 72
Oui B 55 1y>0,vi

om;0m; n—1

which implies that § > 1. Q.E.D.

Since Pareto efficiency requires that § = 1 — 1/n, in a large economy, this will produce
a game which is close to being a supermodular game. It is interesting to note that in the
quadratic environment of Falkinger, Fehr, Gachter and Winter-Ebmer (1998), the game is
very close to being a supermodular game: in the experiment 3 was set to 2/3. The results
show the mean contribution level hovered around the Nash equilibrium, even though none
of the 23 sessions had a mean contribution level exactly equal to the Nash equilibrium level
in the last five rounds. Their results suggest that the convergence in supermodular games
might be a function of the degree of strategic complementarity. That is, in games with a
unique Nash equilibrium which can induce supermodular games, as the degree of strategic
complementarity increases, we might observe increased convergence to its stage game Nash
equilibrium.

Three specific game forms' implementing Lindahl allocations in Nash equilibrium have

been introduced, Hurwicz (1979), Walker (1981), and Kim (1993). All three improve on the
Groves-Ledyard mechanism in the sense that they all satisfy the individual rationality con-
straint in equilibrium. While Hurwicz (1979) and Walker (1981) can be shown to be unstable
for any decentralized adjustment process in certain quadratic environments (Kim (1986)),
the Kim mechanism is stable under a gradient adjustment process given quasilinear utility
functions, which is a continuous time version of the Cournot-Nash tatonnement adjustment
process. Whether the Kim mechanism is stable under other decentralized learning processes

is still an open question. Kim (1986) has shown that for any game form implementing Lin-

15Since Tian (1989) and Peleg (1996) do not have specific mechanisms, we will only investigate the super-

modularity of these three mechanisms.

14



dahl allocations there does not exist a decentralized adjustment process which ensures local

stability of Nash equilibria in certain classes of environments.

PROPOSITION 3 None of the Hurwicz (1979), Walker (1981) and Kim (1993) mecha-

nisms is a supermodular game for any e € E9.
Proof: See Appendix. |

The following observation organizes all experimental results on Nash-efficient public goods

mechanisms with available parameters'® by looking at whether they are supermodular games.

OBSERVATION 1 (1) None of the following experiments is a supermodular game: the
Groves-Ledyard mechanism studied in Smith’s (1979) R2 treatment, Harstad and Marrese
(1982), Mori (1989), Chen and Plott (1996)’s low «y treatment, and Chen and Tang (1998)’s
low 7y treatment, the Walker mechanism in Chen and Tang (1998), and the Falkinger mech-
anism in Falkinger, Fehr, Gdchter and Winter-Ebmer (1998).

(2) The Groves-Ledyard mechanism under the high v in Chen and Plott (1996) and Chen
and Tang (1998) are both supermodular games.

Therefore, none of the existing experiments which did not converge is a supermodular
game, while those which did converge well are both supermodular games.

Note that none of the above experiments was designed to study supermodular games.
They were designed to study other issues but serendipitously studied supermodular games.
These studies revealed some very interesting results as well as important open questions
where theory is silent. In particular, the theory on the stability of supermodular games is
silent with regard to the degree of strategic complementarity on convergence. The results
from Falkinger, Fehr, Géchter and Winter-Ebmer (1998) seems to suggest the following
hypothesis:

HYPOTHESIS 1 In games with a unique Nash equilibrium which can induce supermod-
ular games, as the degree of strategic complementarity increases, we will observe increased

convergence to its stage game Nash equilibrium.

'6The design parameters used in Smith’s (1979) R1 treatment and Harstad and Marrese (1981) are not
available.
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Both the Groves-Ledyard and the Falkinger mechanism are good playground for studying
Hypothesis 1. One can design an experiment which set the free parameter in each mechanism
from below the threshold (to induce a supermodular game), then gradually increase it to
exactly equal the threshold, and then gradually increase it above the threshold, with finer
steps around the threshold. This will present a gradual increase in the degree of strategic
complementarities with finer partitions around the threshold. This will allow the researcher
to observe whether a gradual increase in the strategic complementarity will lead to a gradual

increase in the degree of convergence.

6 Concluding Remarks

So far Nash implementation theory has mainly focused on establishing static properties of
the equilibria. However, experimental evidence suggests that the fundamental question con-
cerning any actual implementation of a specific mechanism is whether decentralized dynamic
learning processes will actually converge to one of the equilibria promised by theory. Based
on its attractive theoretical properties'” and the supporting evidence for these properties in
the experimental literature, we focus on supermodularity as a robust stability criterion for
Nash-efficient public goods mechanisms with a unique Nash equilibrium.

This paper demonstrates that given a quasilinear utility function the Groves-Ledyard
mechanism is a supermodular game if and only if the punishment parameter is above a
certain threshold while none of the Hurwicz, Walker and Kim mechanisms is a supermodular
game. The Falkinger mechanism can be converted into a supermodular game in a quadratic
environment if the subsidy coefficient is above one. These results generalize a previous
convergence result on the Groves-Ledyard mechanism by Muench and Walker (1983). They
are consistent with the experimental findings of in Smith (1979), Harstad and Marrese (1982),
Mori (1989), Chen and Plott (1996), Chen and Tang (1998), and Falkinger, Fehr, Géchter
and Winter-Ebmer (1998).

Two aspects of the convergence and stability analysis in this paper warrant attention.
First, supermodularity is sufficient but not necessary for convergence to hold. It is possible

that a mechanism could fail supermodularity but still behaves well on a class of adjustment

7In particular, Milgrom and Roberts (1990) have shown that a supermodular game converges under a
wide class of learning dynamics, including Bayesian learning, fictitious play, adaptive learning, Cournot best

response and many others.
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dynamics, such as the Kim mechanism. Secondly, The stability analysis in this paper, like
other theoretical studies of the dynamic stability of Nash mechanisms, have been mostly
restricted to quasilinear utility functions. It is desirable to extend the analysis to other
more general environments. The maximal domain of stable environments remains an open

question.

APPENDIX

Before proving Proposition 3, we first define the three mechanisms. All three mechanisms

require that the number of players is at least three, i.e., n > 3.

DEFINITION 6 For the Hurwicz (1979) mechanism, the strategy space of player i is S; C
IR* with generic element (p;,y;) € S;. The outcome function of the public good and the net

cost share of the private good for player i are

2k Yk
n 9

Y(y) =
TiH(pa y) = R;- Y(y) +pi- (yz - yi+1)2 — Dit1 - (yi+1 - yi+2)2,
where R; = L + pis1 — pige.

DEFINITION 7 For the Walker (1981) mechanism, the strategy space of player i is S; C
IR with generic element m; € S;. The outcome function of the public good and the net cost

share of the private good for player i are
Y(im) = > my,
e
1
TV (m) = (; +m;_ 1 —miq) - Y (m).

DEFINITION 8 For the Kim (1993) mechanism, the strategy space of player i is S; C IR?
with generic element (my;, z;) € S;. The outcome function of the public good and the net cost

share of the private good for player i are

Y(m) = ;mk?
%(zi—zmk)Q,

k

TK(m,z) = Pi(m,z)-Y(m)+
where P;(m, z) = % — 2 imy + % > i Zj-
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Proof of Proposition 3:

(1) To show that the Hurwicz mechanism is not a supermodular game for any e € E9, it

suffices to show that the payoff function, u;, does not have increasing difference in (s;, s ;).
Since u;(p, y) = vi(y) +w; — T, we have

82’&1' . i@%)l'
Oyidy;  n? Oy?’

for all j # i+ 1.

By Definition 1, %y”" < 0, so

82ui

0y;0y;

< 0, for all ¢ and for ally # @ + 1.

By Theorem 1, u; does not have increasing difference in (s;, s_;).

(2) To show that the Walker mechanism is not a supermodular game for any e € F9, it

suffices to show that the payoff function, u;, does not have increasing difference in (m;, m_;):

811- . . .
520 - +1, ifj=1+41,;
—— =0 Zu_1 ifj=i—1;
@mﬁmj Y

%—ya if j#i—1,9+1.

By Definition 1, %y”" < 0,50 2% < (forall j # i+ 1. By Theorem 1, u; does not have

Om;Om;
increasing difference in (s;, s_;).

(3) To show that the Kim mechanism is not a supermodular game for any e € E%, it suffices

to show that the payoff function, u;, does not have increasing difference in (s;, s_;):

Pui 1 <0
om0z,  n
By Theorem 1, u; does not have increasing difference in (s;, s_;). Q.E.D.
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